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Stress granules (SGs) are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function
as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of
SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are
stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to
function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to
function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular
microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

1. Introduction

Stress granules (SGs) are nonmembranous cytoplasmic foci
that rapidly appear in cells exposed to various types of stress
including oxidative stress, heat shock, viral infection, and
UV irradiation, all of which impair translation initiation (as
reviewed in [1-3]). In response to such cellular insults, the
cell activates mechanisms to selectively repress the transla-
tion of house-keeping gene transcripts to conserve energy
for repair of stress-induced damage, while upregulating
translation of proteins required for the repair process such as
DNA-repair proteins, chaperone proteins, and transcription
factors (as reviewed in [3—6]).

In this paper, we will discuss the importance of the mi-
crotubule network and the microtubule motors involved in
SG dynamics including the assembly, coalescence, and dis-
assembly processes. There are at least three different elements
that are known to affect SG assembly and dynamics: post-
translational modifications, protein-protein interactions,
and the microtubule network. The first two factors have been
previously reviewed in [5, 7], and in this paper we will focus
our attention on the role of the microtubule network and as-
sociated molecular motors in SG dynamics.

Although the components of SGs often vary in different
experimental systems or even under different types of stress,
the formation of SGs is highly conserved [5, 7, 8]. SG
formation has been observed in various systems including
yeast [9-11], trypanosomatid [12], and mammalian [4, 13,
14]. Furthermore, SGs are not limited to in vitro cell culture
models, as SGs have been observed in the tissues of stressed
animals. Animals subjected to gentamicin-induced toxicity
[15], ionizing radiation (IR) [16], and ischemic reperfusion
injuries exhibit several hallmarks of SG formation [17, 18].
These results indicate that SG formation is part of a cell’s
native physiological response, rather than an in vitro artifact
of cell culture systems.

At the onset of stress, SG formation typically begins
through a mechanism involving phosphorylation of elF2a
mediated by one of four elF2« kinases (PKR, PERK, HRI,
or GCN2) [1, 5, 8, 14]. Each of these kinases are activated
in response to specific types of stress, for example PKR is
activated by double-strand RNAs in response to heat shock,
UV, or viral infection [19, 20], PERK is activated in response
to unfolded protein accumulation in the endoplasmic ret-
iculum lumen [21, 22], HRI in response to oxidative stress
[23], and GCN2 responds to amino acid deprivation and
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low nutrient levels [24]. elF2« is a component of the ter-
nary complex elF2-GTP-tRNA;MET required for translation
initiation. Phosphorylation of elF2« causes a reduction in
the availability of elF2-GTP-tRNAMET thus preventing as-
sembly of the 48S preinitiation complex required for normal
translation initiation [19]. The lack of available preinitiation
complexes does not affect those transcripts actively un-
dergoing elongation, allowing the translating ribosomes to
terminate and run off, disassembling the polysomes [1, 2,
25]. The elF2/elF5 deficient “stalled” 48S preinitiation com-
plexes consisting of bound polyadenylated mRNAs, the small
ribosomal subunits, as well as various translation initiation
factors including elF3, eIF4E, and eIF4G, are organized into
the newly forming SGs [26, 27]. These defective 48S preini-
tiation complexes are critical substrates for the assembly
process of SGs to occur [26]. This formation is promoted
through a variety of RNA-binding proteins (TIA-1/R [14],
Fragile X Mental Retardation protein FMRP/FXR1 [28],
G3BP [29], TTP [30], BRF1 [31], CPEB [32], and SMN [33]),
some of which bind to RNA and oligomerize, leading to the
initiation of SG assembly [3, 5].

Phosphorylation of eIF2« is not exclusively required for
SG formation, as treatment with the translation initiation
inhibitors pateamine A [34] or hippuristanol cause SG for-
mation independent of elF2a phosphorylation [35]. Both
translation initiation inhibitors target the eIF4A helicase,
thus preventing ribosome scanning and ultimately leading to
inhibition of translation initiation and polysome disassembly
[36, 37]. Polysomes and SGs are thought to be in equilib-
rium, as polysome stabilization with elongation inhibitors
leads to disassembly of SGs even in the presence of elF2a
phosphorylation [5, 38]. Additionally, overexpression alone
of specific RNA-binding proteins whose translation is typi-
cally repressed [5, 31, 32, 39, 40] or even the inhibition of
certain initiation factors results in spontaneous SG forma-
tion [5, 41].

2. SG Dynamics

Within minutes of stress, the buildup of defective 48S pre-
initiation complexes overwhelms the cells’ ability to deal with
the stalled translation, and cells begin to store these complex-
es temporarily [25]. This initiates the first stages of SG for-
mation, where SGs begin to develop as small foci, which then
coalesce or fuse to form larger foci that persist while the dam-
age is repaired, and ultimately disassemble within a few hours
of the stress recovery [4, 5]. As SGs disassemble, the mRNAs
and associated proteins are able to resume normal transla-
tion.

The process of SG disassembly does not appear to sim-
ply be the process of assembly in reverse. Although certain
markers of SG assembly/disassembly appear to correlate
(i.e., phosphorylation status of elF2«), the most compelling
argument for distinct mechanisms of these two processes is
that the series of events that occurs during the formation of
SGs (small foci that coalesce into larger foci) is not recipro-
cated during the disassembly process. Rather, disassembly is
observed as a dissolution of SGs rather than a breaking apart
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into smaller distinct foci [4, 5, 38]. These phenotypic dif-
ferences are suggestive of different mechanisms underlying
SG assembly and disassembly. Table 1 lists proteins that as-
sociate or function with the cytoskeleton under nonstressed
conditions and participate in SG dynamics. These proteins
are characterized based on their function in SG dynamics as
assembly factors, disassembly factors, or those proteins with
additional functions in SG dynamics.

Despite the fact that SGs can persist for several hours,
SGs are highly dynamic. Fluorescence recovery after photob-
leaching (FRAP) experiments has demonstrated that certain
components of SGs continuously exchange with cytosolic
pools [7, 31, 38]. Some proteins stay associated with SGs
until disassembly, however other proteins, exhibiting half-
lives of 2—60 seconds, rapidly shuttle between the cytoplasm
and SGs [4, 31, 38, 91-94]. Some of these rapidly shuttling
proteins include RNA-binding proteins known to control
mRNA stability, structure, and function (TIAl, TIAR-1,
G3BP, PABP, HuR, and TTP) and those known to regulate
mRNA translation and decay. This shuttling of proteins and
mRNA in and out of SGs implies that they function as mRNA
triage centers that sort sequestered mRNAs for storage, deg-
radation, or translation reinitiation [5, 6, 95]. An RNAI
screen completed by Ohn et al. identified over a hundred
proteins which function in SG assembly [96]. Additionally, in
a recent survey of the literature Buchan and Parker identified
over 80 proteins which have been confirmed to localize to
SGs [7]. Some of these proteins were not only found to be
involved in mRNA metabolism, but some of which have
functions in other cellular processes. Those proteins not
involved in RNA metabolism span diverse functions as tran-
scription factors, RNA-binding proteins, helicases, nucleases,
molecular motors, and other signaling proteins [2, 3, 5, 7].
Because of this diversity, one cannot, with knowledge of
protein function alone, predict if a protein will be found
in SGs or not. This is exemplified by the fact that different
experimental conditions produce SGs that contain different
components.

3. SG Dynamics Require the
Microtubule Network

Investigation of microtubule function in SG dynamics is
made possible through the use of chemical inhibitors that
allow disruption or stabilization of microtubules. Multiple
investigations have concluded that the microtubule network
is required for SG dynamics including the assembly, the co-
alescence, and the disassembly process as will be discussed
below. Furthermore, recent data is emerging that is begin-
ning to unravel which specific molecular microtubule motors
participate in SG dynamics.

4. SG Assembly

Ivanov et al. were the first to investigate the effects of micro-
tubule disruption on SG assembly [97]. Using the mammal-
ian CV-1 cell line and two different inhibitors that depoly-
merize microtubules, nocodazole or vinblastine, a striking
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TaBLE 1: Cytoskeletal-associated proteins that participate in SG dynamics. All proteins in this table localize to SGs. Assembly factors are
shown in (a), disassembly factors are shown in (b), and proteins associated with SGs but with additional functions in SG dynamics are
shown in (c). Cytoskeletal-associated proteins that functioned in SG coalescence were not identified, but publications demonstrating the
importance of microtubule function in SG coalescence are suggestive of molecular motors aiding in this process.

(a) Assembly factors/phenotypes

Protein Function Cytoskeletal-association
Translational regulator; OX induces SG formation; binding partners: .

CPEB RCK, eIFAE, FXRIP [32] MT-associated [42]

DIC1/DHCI1 Required for SG formation; transport [43—45] MT-associated molecular motor [46]
May function as a translational regulator; OX promotes assembly of .

bIS1 SGs; binding partner elF3h [47] MT-associated [48]

CIF4A An RNA hf:hcase required for ribosome recruitment; inhibition induces Cytoskeletal-associated [49]
SG formation [35]
Functions in mRNA transport or translation; OX induces SG .

FMRP formation; binding partners Ago2, RISC [28] Cytoskeletal-associated [50, 51]
Translational regulator; K/D inhibits SG formation; stimulates SG

Grb7 formation by stabilizing TIA-1 aggregates and enhancing SG or RNP  Cytoskeletal-associated [53]
integrity [52]

Pumilio 2 Transla.uonal inhibitor; OX induces SGs; K/D interferes with SG MT-associated [54]
formation [54]

Smaugl Translational repressor; OX induces SG formation [55] Cortical cytoskeletal-associated [55]
mRNA binding, transport, and decay; OX impairs SG formation; .

Staufen depletion facilitates SG assembly [56] MT-associated [56, 57]

SMN Assembly of small mRNP complexes; OX induces SG [33] Role in actin dynamics [58]

TDP-43 OX induces SG; K/D has no effect on formation [59] Role in microtubule organization [60]

(b) Disassembly factors/phenotypes

Protein Function Cytoskeletal-association

FAK K/D impairs SG disassembly; FAK activity causes Grb7 phosphorylation Role in actin assembly/microtubule organization
and SG disassembly in recovering cells [52] [61, 62]

KHC/KLC ie‘?]ulred for SG dissolution; K/D inhibits SG disassembly; transport MT-associated molecular motor [63]

Dynein Inhibition affects dissolution; transport [43-45] MT-associated molecular motor [46]

(c) Factors with additional roles in SG dynamics

Protein Function Cytoskeletal-association

elF2B Guanine nucleotide exchange factor for eIF2 [27] Cytokeletal-associated [64]

elF3 Recruited to SGs during disassembly [5, 27] MT-associated [49]

elF4E mRNA 5’ cap binding protein [65] Cytoskeletal-associated [66]

elFAG Early translation initiation factor [67] Roles m E—actm localization/microtubule

organization [68]

FXR1P FRMP-associated protein [28] MT-associated [50]

FXR2P FMRP-associated protein [28] MT-associated [50]

Hsp27 Granzyme-associated molecular chaperone [69] Cytoskeletal-associated [70, 71]

HuD ELAV/Hu family of RNA-binding proteins, mRNA localization [72] MT-associated [73]

NAT1/p97  Related to eIF4G, translational repressor activated in apoptosis [74] MT-associated [75]

PABP-1 Initiation factor binds poly(A) tail [38] Binds mRNA to MT [76]

PMRI1 mRNA decay endonuclease forms a complex with TIA-1 [77] [(;}g]oskeletal—assoaated through binding partners

RACK1 Allows survival of stressed cells [1, 79] Required for astral MT length [80]

Sam68 Nuclear RNA-binding protein [81] Roles in cytoskeleton organization [82]

TRAF2 Allows survival of stressed cells [1, 83] Regulates actin cytoskeleton [84]

Xrnl 5'-3" exoribonuclease I [31, 85] MT-associated [86]

YB1 SG stability [87, 88] Binds mRNA to microtubules [76]

ZBP1 RNA-binding protein important for localized translation [89] MT-associated [90]




inhibition of SG formation in the presence of aresnite was
observed. In agreement, Kwon et al. showed a similar phe-
nomenon in HeLa cells following nocodazole treatment [43].
However, in contrast with these results, Kolobova et al., and
Fujimura et al., amongst others, reported that microtubule
disruption not only delayed SG formation, but when SGs
did form, they were of significantly smaller size, greater in
number and variable in distribution, rather than observing
an abolishment of SG formation [44, 98, 99]. Some of these
differences may be attributed to the concentration of the SG-
inducing agent (arsenite) used, cell line-specific effects, or the
markers used to measure SG formation.

SGs typically range in size from 0.2 to 5 um [1, 98, 100],
however after microtubule disruption by nocodazole or col-
chicine, SGs were found to remain small (<0.6 ym) [98],
with a complete loss of large SGs [44, 98, 99]. Additionally,
Kolobova et al. demonstrated that the number of individual
SGs per cell was found to significantly increase, depending
on the SG marker used [98]. Similar effects were observed
by different groups in a variety of cell lines including CHO,
HeLa, and COS-7 [44, 99, 100]. A decrease in SG size and
an increase in SG number suggest a loss of SG coalescence in
the absence of microtubules. These experiments demonstrate
that microtubules are not required for the initial steps of SG
formation, but are required for secondary steps in SG coales-
cence/aggregation [98].

Fujimura et al. confirmed the loss of SG coalescence
after microtubule disruption by immunofluorescence while
Kolobova et al. confirmed this coalescence defect by live cell
imaging of cells transfected with mCherry-G3BP, a SG com-
ponent, and RNA-binding protein [98, 99]. Depolymeriza-
tion of microtubules led to decreased SG movement and
an obvious loss in SG fusion/coalescence [98, 100]. Closer
examination of fixed cells with various antibodies demon-
strated changes in the composition of SGs [98]. A majority
of SGs consistently contained many of the typical markers
of SGs such as TIA1, G3BP, TIARI, and other RNA-binding
proteins [98, 99], but were deficient in a variety of proteins
including CCAR-1, AKAP350A, elF2a, HuR, and CUGBP,
suggesting that loss of microtubules causes asymmetrical
assembly of SGs, not just slowed assembly [8, 98, 99]. There-
fore, coalescence is a microtubule-based phenomenon and is
required to incorporate specific markers of SGs as the com-
plete and proper assembly and maturation of SGs is affected
after loss of microtubules.

Typically, after SG formation and during the process of
coalescence, the fully formed SGs are transported and or-
ganized around the perinuclear region [99, 100]. However
after microtubule depolymerization, SGs were observed in
fixed cells to be diffusely distributed throughout the cell in no
discernable order, suggestive of microtubules functioning in
transport and the reorganization process of SGs [44, 98—
100].

Investigation of SG transport by live cell imaging of CHO
cells, selected for their distinct radial microtubule network,
provided compelling evidence that SGs are indeed trans-
ported along microtubules [100]. Following double trans-
fection of mCherry-tagged PABP and GFP-tagged tubulin
revealed that SGs traveled along microtubules relocating to
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FiGure 1: Model of microtubules and molecular motors in stress
granule dynamics. When cells are exposed to stress-induced trans-
lational inhibition, SGs begin to form as small foci (A), assisted
by assembly factors, and are transported along microtubules by
molecular motors, enabling coalescence of SGs into larger foci (B).
This process of coalescence continues while SGs are transported
along microtubules to the perinuclear region where larger granules
reside (C). Once the stress is removed SGs disassemble (D) aided by
molecular motors as well as other disassembly factors. See Table 1
for the list of cytoskeletal proteins that function in these processes.

the perinuclear region [100]. This movement of SGs along
microtubules tracked by time-lapse imaging was noncontin-
uous, but directional. SGs were found to move in one di-
rection, stop, and sometimes travel again but not always in
the same direction, consistent with the movement of micro-
tubule motors. However, through its movement, the SGs
continuously remained associated with microtubules, as con-
firmed in fixed cells [100]. When microtubules were dis-
rupted, the dynamic movement of SGs was severely inhibited
and ultimately SGs were not transported to the perinuclear
region, confirming that microtubules are involved in the
spatial intracellular placement of SGs. The above studies
suggest that SGs are transported in a microtubule-dependent
manner as small foci coalesce with other foci to form large
SGs while on their way to their final destination of the
perinuclear region (Figure 1). Loss of SG coalescence and
variability in SG composition after microtubule depolymer-
ization supports a microtubule-mediated transport of SGs.

SG assembly in the presence of the microtubule stabiliz-
ing drug paclitaxel was also investigated by three groups with
different conclusions. Nadezhdina et al. showed an increase
in SG movement when microtubules were stabilized and
Ivanov et al. demonstrated that microtubule stabilization
allowed for enhanced SG formation, favoring large SGs con-
sistent with enhanced coalescence [97, 100]. However, Kwon
et al. described microtubule stabilization as having no impact
on SG assembly [43]. The reason for the discrepancy in these
results is not immediately clear.
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5. Disassembly

Microtubule function in SG disassembly has also been pro-
posed [100]. SG disassembly has been shown to depend not
only on the activity of HSP70 molecular chaperone that ac-
cumulates during stress induction, but also on the activity
of certain phospho-specific proteins present in SGs [3, 8,
29, 52, 101]. Nadezhdina et al. took advantage of cyclo-
heximides’ ability to facilitate SG disassembly; cells treated
with arsenite and cycloheximide disassembled SGs gradually
starting 30 min after its addition. However, analysis of SG
disassembly in cells treated with nocodazole prior to arsenite
and cycloheximide treatment illustrated persistent SGs that
did not disassemble or change in size [100]. This demon-
strates a complete inhibition of SG disassembly when micro-
tubules were disrupted and confirms the importance of the
microtubule network in SG dynamics.

6. Molecular Microtubule Motors in
SG Dynamics

Molecular microtubule motors are a class of proteins that
transport intracellular cargoes along microtubules using ATP
hydrolysis; there are approximately 50 different microtubule
motors in humans. As discussed above, microtubules were
shown to function in SG coalescence and disassembly proc-
esses; most likely through the association of microtubule mo-
lecular motors. Microtubule disruption resulted in a number
of SG abnormalities including SG movement, coalescence,
composition, relocation, and disassembly. Each of which can
be explained through a molecular motor-based transport of
SGs along microtubules towards the perinuclear region using
SG coalescence to retain proper SG composition.

Recently, several publications have emerged demonstrat-
ing the importance of specific molecular motors in SG dy-
namics [43-45]. Loschi et al. identified the subunits of two
molecular microtubule motors, cytoplasmic dynein and con-
ventional kinesin, that localize to SGs and function in both
SG assembly and disassembly [44].

7. Dynein

Dynein is a minus-end directed macromolecular motor com-
plex functioning in numerous processes including mRNA
movement [102], mitosis [103], and most recently SG as-
sembly [44, 45]. Components of dyneins’ intermediate chain
(DIC) and heavy chain (DHC) were identified to localize to
SGs by immunofluorescence analysis [44]. Upon closer ex-
amination of SG formation in the absence of dynein activity
(by p50 overexpression [44], siRNA directed against DHC or
DLC2 [44], or pharmacological-inhibition [43]) a ~3-fold
impairment in SG formation was observed to occur after
treatment with arsenite [43, 44]. The cells that contained SGs
in the absence of dynein activity were found to be small in
size and in number, suggesting that dynein is required for
the initial stages of SG assembly [43, 44].

Studying SG dynamics in primary neurons by immuno-
histochemistry, Tsai et al. showed that dynein also functions

in SG disassembly [45]. Additionally, assays measuring SG
integrity by protease sensitivity of TIA-1 complexes [39]
demonstrated that dynein enhances the integrity of SGs by
assisting SG formation [45]. After transient expression of
dynein, the TIA-1 complexes in stressed cells became more
resistant to protease treatment than control-stressed cells,
whereas in the absence of dynein, these TIA-1 complexes be-
came more sensitive to proteases. These data demonstrate the
importance of dynein function in SG dynamics in primary
neurons not only in the assembly/disassembly process but
also in the integrity of TIA-1 complexes [45].

8. Kinesin

Conventional kinesin subunits, KIF5B (kinesin heavy chain)
and KLC1 (kinesin light chain 1), were also identified by
Loschi et al. to localize to SGs and to function in SG dynamics
[44]. Investigation of KIF5B in SG assembly after depletion
revealed that this kinesin was not involved in SG formation;
rather, after removal of arsenite treatment in cells depleted of
KIF5B or KLC1, SGs were found to persist relative to control
cells [44]. This suggests that conventional kinesin subunits,
KIF5B and KLC1, participate in SG disassembly.

Motor proteins are known to work in concert, at times
working together and at other times actively opposing each
other to achieve the proper balance of transport. This co-
ordinated relationship extends to SG dynamics as well. In
the background of dynein knockdown, Loschi et al. was able
to demonstrate that kinesin actually functions to inhibit SG
formation. As mentioned above, the inhibition of dynein
results in decreased SGs [43-45]. However, when cells were
subjected to simultaneous inhibition of dynein (DHC1) and
kinesin (KIF5B), SG formation resembled that of control
cells [44]. Furthermore, the SG defects observed following
KIF5B depletion were also partially reverted back to control
cell levels following double knockdown, suggesting a possible
redundancy of motors in the disassembly of SGs [44]. These
results suggest that SG dynamics are in part orchestrated by
a finely tuned balance of forces exerted by various molecular
motors acting simultaneously.

9. Concluding Remarks

Not all of the defects in SG dynamics after loss of mi-
crotubules are mimicked by inhibition of either dynein or
kinesin, individually or together. After impairment of dynein
activity, a complete abolishment in SG formation was not
observed, rather at least a third of the population of cells
was still able to form SGs suggesting additional motors may
participate in the assembly process [43—45]. Furthermore,
neither depletion of dynein or kinesin was found to cause
a loss in SG coalescence; this is in contrast to the disruption
of microtubules which exhibited defects in SG coalescence.
Although Tsai et al. speculated that the motor dynein plays
a role in SG coalescence, the data is not as compelling or
complete as its roles in assembly or disassembly [45]. Given
that disruption of microtubules acts as a surrogate for pan-
molecular motor inhibition, it is likely that other yet to be



discovered molecular motors contribute to SG formation
and/or participate in coalescence. Another motor, KIF18A,
was identified in an RNAi-based screen to possibly function
in SG assembly [96], but has not thoroughly been tested to
date. Thus a continued search for molecular motors which
participate in SG dynamics is needed to fully understand the
underlying SG biology.
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