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Different spectral probes were employed to study the stabilizing effect of various polyols, such as, ethylene glycol (EG), glycerol
(GLY), glucose (GLC) and trehalose (TRE) on the native (N), the acid-denatured (AD) and the thermal-denatured (TD) states of
Aspergillus niger glucoamylase (GA). Polyols induced both secondary and tertiary structural changes in the AD state of enzyme
as reflected from altered circular dichroism (CD), tryptophan (Trp), and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence
characteristics. Thermodynamic analysis of the thermal denaturation curve of native GA suggested significant increase in enzyme
stability in the presence of GLC, TRE, and GLY (in decreasing order) while EG destabilized it. Furthermore, CD and fluorescence
characteristics of the TD state at 71∘C in the presence of polyols showed greater effectiveness of both GLC and TRE in inducing
native-like secondary and tertiary structures compared to GLY and EG.

1. Introduction

Maintenance of native conformation (folded state) is an
important determinant for protein stability. However, native
conformation is marginally stable over to its denatured coun-
terpart, and this has been attributed to acquiring a unique
three-dimensional structure by a protein in solution [1].
Therefore, protein stability subject has become an important
issue for scientists to search for possibleways to increasing the
stability of proteins in aqueous solution as they are generally
used in industrial, medical, and pharmaceutical sectors. One
of the popular strategies used to increase protein stability is
the employment of cosolvents (osmolytes), which are small
organic molecules such as sugars, polyols, and neutral amino
acids, favoring the folded ensemble. Recently, various studies
have shown increase in thermal stability, gelation, foaming,
and emulsion-stabilizing performance of globular proteins in
presence of these osmolytes [2–4].

Different molecular characteristics of the cosolvents such
as size, structure, and their interactions with other solvent
molecules have been suggested to translate their effectiveness

to alter the properties of globular proteins in aqueous solu-
tion. Furthermore, the type and the amount of the cosolvent
play a critical role in modulating protein functionality, that
is, enhancing conformational stability of the protein against
certain environmental stresses such as exposure to extreme
(high and low) temperature, high pressure treatment, or
dehydration as well as obtaining an appropriate confor-
mational state of the protein [5–7]. Although employment
of cosolvents such as salts, amino acids, and polyols is a
routinely used strategy to enhancing protein stability, the
mechanism by which these cosolvents stabilize native protein
conformation is still debatable. Numerous models have been
proposed to explain the molecular basis of polyol-induced
protein stabilization such as preferential interaction and
surface tension [8], excluded volume effect [9], transfer free
energy of protein’s chemical groups [10], andWyman linkage
function [11]. Preferential interaction theory emphasizes the
role of preferential interactions between the protein surface
and the cosolvent-solvent molecules [5–7] through either
the steric exclusion or differential interactions [5, 12] in the
polyol-induced structural stabilization of globular proteins
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in aqueous solutions. Most of the studies on polyol-induced
protein stabilization have resided on the role of polyols in
terms of their chemical nature and concentration require-
ment in inducing protein stability. Importance of protein’s
intrinsic factors such as size, charge, and chemical composi-
tion has rarely been attended in polyol-induced stabilization
of proteins. In view of the above, there is a need to extend
polyol-induced stabilization study on other proteins in order
to generalize the stabilization mechanism.

Glucoamylase (GA) (EC 3.2.1.3), an industrial enzyme is
employed for the commercial production of glucose from
starch, which is used in the preparation of fructose syrup
and ethanol [13, 14]. GAs from Aspergillus niger and Rhi-
zopus oryzae have received industrial preferences due to
their higher stability and activity [15]. GA from Aspergillus
niger is a glycoprotein with a molecular mass of 97KD
and is composed of 616 amino acid residues, arranged in
a linear polypeptide chain. Three-dimensional structure of
Aspergillus niger GA shows the presence of two domains,
an N-terminal catalytic domain (1–440) and a C-terminal
starch binding domain (SBD) (509–616), connected by a
glycosylated linker region [16, 17]. The two isoforms of GA
can be differentiated on the basis of SBD region, which is
absent in GA II [17]. Presence of 12 𝛼-helical segments,
forming 𝛼/𝛼 barrel and six 3

10
-helices, characterizes the

catalytic domain whereas the SBD is rich in one parallel and
six antiparallel pairs of 𝛽-strands forming an open-sided 𝛽-
barrel [18, 19]. The effect of different denaturants such as
temperature, guanidine hydrochloride (GdnHCl), and urea
on the conformation and activity of GAhas been studied [20–
22]. In a previous study, we have characterized the AD state
ofAspergillus nigerGA at pH 1.0 as amolten globule-like state
[23]. Transformation of the molten globule-like state into
the partially folded state will add towards our understanding
about folding of a particular protein. Polyols are well-known
protein stabilizers [5–7, 12]. However, the effect of polyols
on the structure and stability of the N state and the AD
state of GA has not been studied so far to the best of our
knowledge. In this report, we present our results on the effect
of four cosolvents (polyols) including two sugars (glucose
(GLC) and trehalose (TRE)) and two alcohols (glycerol (GLY)
and ethylene glycol (EG)) on the conformation and stability
of theN state and theAD state at pH 1.0 using different probes
such as, far-UV CD spectral signal, ANS fluorescence, and
Trp fluorescence. Furthermore, thermal denaturation data of
the N state of GA in the absence and the presence of these
polyols are also included.

2. Materials and Methods

2.1. Materials. Glucoamylase from Aspergillus niger (Lot
1390149), 1-anilinonaphthalene-8-sulfonic acid (Lot 104K
2510), trehalose (Lot 011M7000V), glucose (Lot 080M0175V),
glycerol (Lot SHBB4673V), and ethylene glycol (Lot
STBB0339H9) were procured from Sigma-Aldrich Inc., USA.
Analytically pure samples of other chemicals were used.
Acid-denatured (AD) state of GA was prepared following
the procedure described earlier [23].

2.2. Analytical Procedures. Spectrophotometric method,
using a molar extinction coefficient of 1.37 × 105M−1 cm−1 at
280 nm, and the method of Lowry et al. [24] were employed
to determine GA concentration.

ANS concentration was determined spectrophotometri-
cally, using a molar extinction coefficient of 5 × 103M−1 cm−1
at 350 nm [25].

2.3. Far-UV CD Spectroscopy. Jasco spectropolarimeter,
model J-815, fitted with a thermostatically-controlled
cell holder and linked to a water bath, was used for CD
measurements under constant nitrogen flow. The solution
of (+)-10-camphorsulfonic acid was used to calibrate the
instrument, and a scan speed of 50 nm/min with a response
time of 1 s was fixed for CD measurements at 25∘C. The
spectral measurements were made in the far-UV region
(200–250 nm) using a protein concentration of 1.4𝜇M, taken
in a 1mm path length cuvette. Each spectrum was recorded
in triplicate, and the average of three scans was corrected
with appropriate blanks. The transformation of CD data into
mean residue ellipticity, MRE values in deg⋅cm2⋅dmol−1, was
made following the procedure described elsewhere [26].

2.4. Fluorescence Spectroscopy. Fluorescence spectra were
recorded on a Jasco spectrofluorometer, model FP-6500,
attached to a data recorder and supplied with a thermostat-
ically-controlled cell holder at 25∘C or 71∘C. The protein
solution (0.12 𝜇M), taken in a 1 cm path length cuvette, was
excited at 295 nm, and the emission spectra were recorded
in the wavelength range of 310–400 nm, using a slit width of
10 nm for both excitation and emission wavelengths.

In ANS fluorescence experiments, fluorescence spectra
were recorded in the wavelength range of 400–600 nm while
the excitation wavelength was set at 380 nm, using a protein
concentration of 0.26𝜇M. The molar ratio between the ANS
and the protein was fixed at 70 : 1.

2.5. Thermal Denaturation. The effect of temperature on
native GA both in the absence and the presence of different
polyols was studied by measuring mean residue ellipticity at
222 nm (MRE

222 nm) in the temperature range of 20–100∘C. A
scan rate of 1∘C min−1 was used throughout the temperature
range, while other experimental conditions were maintained
similar to those described above. Thermal denaturation
curves were analyzed using two-state model [23].

2.6. Structural Changes in GA in the Presence of Various
Polyols. The structural changes in the native and the acid-
denatured GAs in the presence of various polyols were stud-
ied following the method described by Devaraneni et al. [27].
To 0.5mL stock protein solution dissolved inwater (14𝜇Mfor
CD and 1.2 𝜇Mfor fluorescencemeasurements), 4.5mL of the
buffer (10mM glycine-HCl buffer, pH 1.0, or 10mM sodium
phosphate buffer, pH 7.0) containing the desired polyol
concentration was added. The contents in each tube were
mixed gently, and the mixture was incubated for 12 h at 25∘C
before CD/fluorescence measurements. Blank solutions were
prepared in the sameway except that the protein solution was
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Table 1: Effect of various polyols on the MRE222 nm of different states of GA.

Polyols N state (pH 7.0, 25∘C) AD state (pH 1.0, 25∘C)

MRE222 nm

∗

ΔMRE222 nm
(%) MRE222 nm

ΔMRE222 nm
(%)

— −10500 — −7400 —
2.6M GLC −11683 11.3 −9637 30.2
1.3M TRE −11664 11.1 −8570 15.8
8.0M GLY −11936 13.7 −10858 46.7
8.0M EG −11018 4.9 −8948 20.9
∗

ΔMRE222 nm represents percentage change in the MRE222 nm in the presence of polyols.

replaced with the suitable buffer. Far-UV CD spectral signal
was employed to monitor the secondary structural changes
in the presence of various polyols, whereas the change in
the tertiary structure was studied by Trp fluorescence and
ANS fluorescence measurements. Furthermore, MRE

222 nm
measurements were also used to study the stabilizing effect
of various polyols on the native GA.

3. Results and Discussion

3.1. Polyol-Induced Structural Changes in the Native and
the Acid-Denatured GAs. The effects of various cosolvents
(polyols) including a monosaccharide (GLC), a disaccharide
(TRE), a dihydric alcohol (EG), and a trihydric alcohol
(GLY) on the conformation of the N and the AD states of
glucoamylase were studied using different probes such as far-
UV CD, Trp fluorescence, and ANS fluorescence.

3.1.1. Far-UV CD Spectra. Polyol-induced secondary struc-
tural changes in the N and the AD states of GA were studied
using far-UV CD spectroscopy. Figure 1 shows far-UV CD
spectra of the N and the AD states of GA, obtained at 25∘C
both in the absence and the presence of various polyols
(GLC, TRE, GLY, and EG). As can be seen from Figure 1,
far-UV CD spectrum of the N state was characterized by
the presence of two negative signals around 210 and 219 nm,
characteristic of the 𝛼-helical structure of the protein [28].
On the other hand, far-UV CD spectrum of the AD state
showed a significant decrease in the MRE values along with a
shift in thewavelength of the negative signals, which occurred
at 212 and 216 nm. Both these changes indicated a different
conformation (with less 𝛼-helical structure) of the AD state
of GA compared to the N state. In a previous report, we have
characterized the AD state of GA at pH 1.0 as the molten
globule-like state [23]. Addition of polyols to the N and
the AD states of GA produced structural changes in both
states as reflected from the increase in the MRE values, being
more pronounced in the AD state than the N state (Figure 1).
Quantitative analysis of these results in terms of MRE

222 nm
values of the two states of GA obtained in the absence and
the presence of various polyols along with the percentage
increase in theMRE

222 nm value (ΔMRE
222 nm) in the presence

of polyols is given in Table 1. Whereas the presence of GLY
produced a maximum increase in the MRE

222 nm of ∼47%
in the AD state, only ∼14% increase in the MRE

222 nm was

observed in the N state. These results were similar to various
reports on other proteins where the effect of different polyols
on the N state was found relatively lesser than that observed
with the AD state [29, 30]. A comparison of polyol-induced
conformational changes in the N and the AD states of GA,
based onΔMRE

222 nm, showed greater effectiveness of GLY in
both states. On the other hand, EG and TRE were found least
effective in altering the secondary structures in the N state
and the AD state, respectively. Quantitatively, various polyols
showed the order of effectiveness in increasing MRE

222nm
value in the AD state as GLY > GLC > EG > TRE (Table 1).

In addition to the increase in MRE
222 nm value of both

states of GA in the presence of different polyols, change in
the shape of the CD spectrumwas also noticed. Although the
characteristic shape of the CD spectrum showing 𝛼-helical
structure was retained in the CD spectra of the N state in the
presence of polyols, shape of the CD spectrum of the AD state
was transformed into a CD spectrum showing characteristics
of 𝛽-structure in the presence of all polyols except GLC
(Figure 1). Since the catalytic domain of GA is rich in the 𝛼-
helical segments while 𝛽-structure is more populated in the
SBD [18, 19], these polyols seem to induce structural changes
in both domains to a different extent in the AD state. On the
other hand, polyols might have produced structural changes
restricted to the catalytic domain of GA in its N state.

3.1.2. Trp Fluorescence Spectra. In order to study tertiary
structural changes in the N and the AD states of GA
in presence of polyols, Trp fluorescence was employed to
monitor the microenvironment around Trp residues. The
fluorescence spectra of the N and the AD states of GA both in
the absence and the presence of different polyols are shown in
Figure 2. As evident from the figure, fluorescence spectrum
of the N state of GA was characterized by the presence
of an emission maximum (𝐸

𝑚
) at 340 nm, when excited at

295 nm. About 36% decrease in the fluorescence intensity
(FI) along with 2 nm red shift in the 𝐸

𝑚
was noticed in

the fluorescence spectrum of the AD state (Table 2). These
results were in agreement with our previous results on the
AD state of GA [23]. A marked increase (46–94%) in the
FI at 342 nm (FI

342 nm) of the AD state of GA was observed
in the presence of polyols, following the order EG > GLY >
GLC > TRE (Table 2), which was suggestive of the transfer
of Trp residues from a polar environment to a nonpolar
environment in the presence of these polyols. In addition to
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Figure 1: Effect of various polyols, such as, glucose (GLC), trehalose (TRE), glycerol (GLY), and ethylene glycol (EG), on the far-UV CD
spectra of the native and the acid-denatured GAs. Different line symbols represent native GA (thick curve), acid-denatured GA (thin curve),
native GA + polyol (dashed curve), and acid-denatured GA + polyol (dotted curve). The spectra were recorded at 25∘C using a protein
concentration of 1.4 𝜇M. Different polyol concentrations used were 2.6M GLC, 1.3M TRE, 8.0M GLY, and 8.0M EG.

Table 2: Effect of various polyols on the fluorescence spectral characteristics of different states of GA.

Polyols N state (pH 7.0, 25∘C) AD state (pH 1.0, 25∘C)
1
𝐸
𝑚

(nm) 2FI340 nm
3
ΔFI (%) 𝐸

𝑚

(nm) FI342 nm ΔFI (%)
— 340 222 — 342 143 —
2.6M GLC 338 195 −12.2 341 214 49.7
1.3M TRE 338 201 −9.5 340 208 45.5
8.0M GLY 339 218 −1.8 343 247 72.7
8.0M EG 339 256 +15.3 344 277 93.7
1

𝐸
𝑚
: Emission maxima.

2FI: Fluorescence intensity at 340/342 nm.
3
ΔFI: Percentage change in the fluorescence intensity in the presence of polyols.

an increase in the FI
342 nm, a slight red shift (1-2 nm) in the𝐸

𝑚

was also observed in the presence of EG and GLY whereas
GLC and TRE showed a small blue shift (1-2 nm) in the 𝐸

𝑚

(Table 2). These results suggested partial refolding of the AD
state of GA in the presence of these polyols, marked by the
burial of Trp residues in nonpolar interior of the protein.
In view of the distribution of Trp residues in the catalytic
domain (13 Trp) and SBD (4 Trp) [16], change in the FI

342 nm

of the protein mainly reflected the structural changes in the
catalytic domain. Furthermore, these results were supported
by the far-UV CD spectral results, showing increased 𝛼-
helical structure in the AD state of GA in the presence of
polyols (Table 1).

On the other hand, presence of GLY, GLC, or TRE in the
incubation mixture containing native GA produced a small
quenching (2–12%) in the fluorescence intensity, suggesting
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Figure 2: Effect of various polyols, such as, glucose (GLC), trehalose (TRE), glycerol (GLY), and ethylene glycol (EG), on the tryptophan
fluorescence spectra of the native and the acid-denatured GAs. Different line symbols represent native GA (thick curve), acid-denatured GA
(thin curve), native GA + polyol (dashed curve), and acid-denatured GA + polyol (dotted curve). The spectra were recorded at 25∘C using a
protein concentration of 0.12 𝜇M. Different polyol concentrations used were 2.6M GLC, 1.3M TRE, 8.0M GLY, and 8.0M EG.

partial exposure of Trp residues to the polar environment.
Contrary to it, EG showed similar behavior with theN state as
that shown with the AD state by producing an increase (15%)
in the FI

340 nm (Table 2). The increase in the fluorescence
intensity of the N state in the presence of EG against the
decrease shown in the presence of other polyols indicated
different conformational structures acquired by the catalytic
domain in the presence of these polyols.

3.1.3. ANS Fluorescence Spectra. Binding of a hydrophobic
dye, ANS, to the AD state of GA in the absence and the
presence of various polyols was studied to get insight about
the tertiary structural changes in the AD state induced by
these polyols and the results are shown in Figure 3. Native
GA produced a weak ANS fluorescence spectrum with an
𝐸
𝑚
at 470 nm (figure omitted for brevity), indicating burial of

the hydrophobic regions in the protein interior in the N state

[31, 32]. The AD state showed a marked increase in the ANS
fluorescence intensity along with 8 nm red shift in the 𝐸

𝑚

(Figure 3), suggesting exposure of the protein’s hydrophobic
segments to the solvent at pH 1.0. These results agreed well
with those reported earlier for acid-denatured proteins [27,
33]. Presence of 2.6M GLC or 1.3M TRE in the incubation
mixture led to a further increase in the FI at 478 nm by 14%
and 15%, respectively, accompanied by 2 nm red shift in the
𝐸
𝑚
for GLC and 1 nm blue shift in the 𝐸

𝑚
for TRE, suggesting

the availability of more hydrophobic clusters to the solvent.
Interestingly, 8.0M GLY or 8.0M EG completely quenched
the ANS fluorescence, similar to that found with the N-
state, indicating burial of the hydrophobic segments, which
were solvent-exposed in the AD state. As a large number of
hydrophobic residues are predominantly distributed in the
SBD region [16], burial or exposure of these residues mainly
reflected structural alteration in the SBD. In view of the burial
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Figure 3: ANS fluorescence spectra of the acid-denatured GA in
the absence (thick curve) and the presence of 2.6M GLC (dashed
curve), 1.3M TRE (dotted curve), 8M GLY (dashed with one dot
curve), and 8M EG (dashed with two dots curve). The spectra were
recorded at 25∘C, using a protein concentration of 0.26𝜇M and
ANS : protein molar ratio as 70 : 1.

of the hydrophobic segments upon addition of GLY or EG
andmore exposure in the presence of GLC or TRE, it appears
that different conformational makeup was acquired in the
SBD in the presence of these polyols.These results agreedwell
to our far-UV CD spectral results where both GLY and EG
induced more 𝛽-structural features (Figure 1).

3.2. Polyol-Induced Thermal Stabilization of GA

3.2.1. Thermal Transition. Figure 4 shows normalized tran-
sition curves (𝐹

𝐷
plots) of thermal denaturation of GA in

the absence and the presence of various polyols as studied
by MRE

222 nm measurements. As evident from the figure,
MRE
222 nm of GA remained unchanged within 20–47∘C,

decreased markedly between 53∘C and 77∘C, and became
constant thereafter up to 100∘C. Thermal denaturation of
GA showed loss of the secondary structure with increasing
temperature in a cooperative manner. Several proteins have
shown thermal transition as a cooperative process [33–35].
Thermal transition curves of GA obtained in the presence
of GLC, TRE, or GLY were found shifted toward the higher
temperature range, suggesting increased thermal stability of
GA in the presence of these polyols. Contrary to it, presence
of EG in the incubation mixture shifted the thermal transi-
tion curve toward the lower temperature range, indicating
destabilization of GA. Previous studies have also shown
stabilization of many proteins in the presence of GLC, TRE,
and GLY [36–38] and destabilization in the presence of EG
[27, 39].

Thermodynamic analysis of the transition curves was
made as described in the Materials and Methods, and the

values of 𝑇
𝑚
, Δ𝐻V𝐻, and Δ𝐺 (25∘C), thus obtained, are

presented in Table 3. The midpoint temperature, 𝑇
𝑚
(64.3∘C)

obtained for GA, was found similar to an earlier report [23].
As can be seen from the table, presence of GLC, TRE, or
GLY in the incubation mixture increased the stability of
GA whereas EG destabilized it. Glucose was found as the
strongest cosolvent in increasing thermal stability of GA
among the polyols studied, as it increased the 𝑇

𝑚
value

by 13∘C up to 77∘C along with 80% increase in the Δ𝐺
(25∘C). In general, a comparison of different polyols based on
thermodynamic parameters, shown in Table 3, suggested the
effectiveness order as GLC >TRE >GLY for GA stabilization.
This order was found similar to that reported earlier for yeast
hexokinase A [27] and 𝛼-amylase [33].

3.2.2. Effect of Polyols on the Thermal-Denatured GA at 71∘C

Far-UV CD Spectra. In order to verify the thermal stabilizing
effect of these polyols, far-UV CD spectra of the thermal-
denatured (TD) GA at 71∘C were obtained in the absence
and the presence of polyols (Figure 5). Far-UV CD spectrum
of the native GA (pH 7.0, 25∘C) has also been included in
Figure 5 for comparison. As can be seen from the figure, far-
UV CD spectrum of the TD state of GA showed ∼48% loss in
theMRE

222 nm value compared to the native GA (Tables 1 and
4), along with a shift in the CD spectral signals, suggesting
denaturation of GA at high temperature as observed with
other proteins [30, 36, 40]. Interestingly, addition of GLC or
TRE to the TD state of GAmarkedly increased theMRE

222 nm
value by ∼110% and ∼91%, respectively (Table 4), showing
significant reversal in the CD spectral characteristics close
to the native GA. However, slight change in the position of
the minima was observed with TRE. On the other hand, no
increase in theMRE

222 nmwas observed in the presence of EG,
rather it showed a ∼6% decrease in the MRE

222 nm (Figure 5),
suggesting no stabilizing effect of EG on the secondary
structural characteristics of thermal-denatured GA. GLY was
able to induce ∼22% regain in the MRE

222 nm value. Thus,
both GLC and TRE were able to induce native-like secondary
structures in the thermal-denatured GA.

Tryptophan Fluorescence Spectra. Figure 6 shows Trp fluores-
cence spectra of the thermal-denatured GA at 71∘C in the
absence and the presence of polyols. Tryptophan fluorescence
spectrum of the native GA is also included in Figure 6.
Thermal-denatured GA showed a significant decrease (54%)
in the FI

340 nm, accompanied by 9 nm red shift in the 𝐸
𝑚
,

compared to the native GA (Tables 2 and 4). Both decrease
in the FI

340 nm and significant red shift in the 𝐸
𝑚
of the TD

state ofGAwere suggestive of the exposure of theTrp residues
to the polar solvent [41], indicating protein denaturation.
Except EG, other polyols (GLC, TRE, and GLY) produced a
significant blue shift (5–9 nm) and increase in the FI

340 nm.
Both these changes in the fluorescence characteristics of
the TD GA suggested significant refolding in the enzyme,
characterized by the burial of the Trp residues in the nonpolar
environment. Both GLC and TRE were found more effective
in inducing native-like tertiary structure as reflected from
the retrieval of the 𝐸

𝑚
, similar to the 𝐸

𝑚
of the native GA.
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Table 3: Thermodynamic parameters for thermal denaturation of glucoamylase as monitored by CD spectroscopy.

Glucoamylase T
𝑚

(∘C) ΔH (KJmol−1) ΔG (25∘C) (KJmol−1) ΔΔ𝐺
a (%)

Native (N) 64.3 264.30 30.79 —
N + 2.6M GLC 77.2 365.56 55.52 80.3
N + 1.3M TRE 75.3 326.77 48.12 56.3
N + 8.0M GLY 66.9 283.72 36.74 19.3
N + 8.0M EG 53.2 307.02 26.48 −14.0
a
ΔΔ𝐺 represents percentage change in the Δ𝐺 value in the presence of polyols. Negative sign shows the decrease.

Table 4: Effect of various polyols on the CD and fluorescence spectral characteristics of the thermal-denatured GA at 71∘C.

Polyols CD Fluorescence
MRE
222 nm

1
ΔMRE

222 nm (%) 2
𝐸
𝑚

(nm) 3FI340 nm
4
ΔFI (%)

— −5420 — 349 103 —
2.6M GLC −11404 110.4 340 111 7.8
1.3M TRE −10360 91.1 341 113 9.7
8.0M GLY −6624 22.2 344 130 26.2
8.0M EG −5104 −5.8 352 149 44.7
1

ΔMRE
222 nm represents percentage change in the MRE

222 nm in the presence of polyols. Negative sign shows the decrease.
2
𝐸
𝑚
= Emission maxima.

3FI340 nm = Fluorescence intensity at 340 nm.
4
ΔFI = Percentage change in the fluorescence intensity in the presence of polyols.
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Figure 4: Normalized thermal transition curves of the native GA
in the absence (◼) and the presence of 2.6M GLC (󳵳), 1.3M TRE
(I), 8M GLY (◊), and 8M EG (󳶃) as monitored by MRE

222 nm
measurements, using a protein concentration of 1.4𝜇M.

These results were similar to the far-UV CD spectral results
(Figure 5), where both GLC and TRE were found to induce
secondary structure, similar to that present in the native GA.
Presence of a polar/charged group in the vicinity of the Trp
residues might account for the lesser increase in the FI

340 nm
in the presence of GLC and TRE [42]. On the other hand,
addition of EG to the incubationmixture produced only 3 nm
red shift in the 𝐸

𝑚
along with a marked increase (45%) in
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Figure 5: Far-UV CD spectra of the native (thick curve) and the
thermal-denaturedGAs in the absence (thin curve) and the presence
of 2.6M GLC (dashed curve), 1.3M TRE (dotted curve), 8M GLY
(dashed with one dot curve), and 8M EG (dashed with two dots
curve). The spectra of the thermal-denatured GA were recorded
after equilibrating the sample at 71∘C for 6min, using a protein
concentration of 1.4𝜇M.

the FI
340 nm, indicating a different tertiary structural make-

up, compared to the one obtained with other polyols.The far-
UV CD spectral signal of the thermal-denatured GA in the
presence of EG also showed no significant change in the CD
spectral characteristics (Figure 5).
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Figure 6: Tryptophan fluorescence spectra of the native (thick
curve) and the thermal-denatured GAs in the absence (thin curve)
and the presence of 2.6M GLC (dashed curve), 1.3M TRE (dotted
curve), 8M GLY (dashed with one dot curve) and 8M EG (dashed
with two dots curve). The spectra of thermal-denatured GA were
recorded after equilibrating the sample at 71∘C for 6min, using a
protein concentration of 0.12 𝜇M.

4. Conclusions

Taken together, all polyols appeared to induce the native-like
structure (to a greater extent) in the acid-denatured GA.This
was evident from the higherMRE

222 nm and FI
342 nm values of

the acid-denatured GA in the presence of polyols compared
to those obtained in their absence (Tables 1 and 2). Polyols
were also found to stabilize the native state against thermal
denaturation. On the other hand, EG produced the opposite
effect.

Abbreviations
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