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Abstract 

Background:  Hepatocellular carcinoma (HCC) is one of the most lethal cancers, with a poor prognosis. Prognostic 
biomarkers for HCC patients are urgently needed. We aimed to establish a nomogram prediction system that com-
bines a gene signature to predict HCC prognosis.

Methods:  Differentially expressed genes (DEGs) were identified from publicly available Gene Expression Omnibus 
(GEO) datasets. The Cancer Genome Atlas (TCGA) cohort and International Cancer Genomics Consortium (ICGC) 
cohort were regarded as the training cohort and testing cohort, respectively. First, univariate and multivariate Cox 
analyses and least absolute shrinkage and selection operator (LASSO) regression Cox analysis were performed to con-
struct a predictive risk score signature. Furthermore, a nomogram system containing a risk score and other prognostic 
factors was developed. In addition, a correlation analysis of risk group and immune infiltration was performed. Finally, 
we validated the expression levels using real-time PCR.

Results:  Ninety-five overlapping DEGs were identified from four GEO datasets, and we constructed a four-gene-
based risk score predictive model (risk score = EZH2 * 0.075 + FLVCR1 * 0.086 + PTTG1 * 0.015 + TRIP13 * 0.020). More-
over, this signature was an independent prognostic factor. Next, the nomogram system containing risk score, sex and 
TNM stage indicated better predictive performance than independent prognostic factors alone. Moreover, this signa-
ture was significantly associated with immune cells, such as regulatory T cells, resting NK cells and M2 macrophages. 
Finally, RT‒PCR confirmed that the mRNA expressions of four genes were upregulated in most HCC cell lines.

Conclusion:  We developed and validated a nomogram system containing the four-gene risk score, sex, and TNM 
stage to predict prognosis.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most 
malignant digestive tumors, accounting for the third 
most frequent cancer mortalities in the world [1]. The 
Chinese people are deeply affected by HCC because 
there are large numbers of persons with hidden hepa-
titis B virus, and it is estimated that in 2018, there were 
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392.9 thousand newly diagnosed cases and 369 thousand 
HCC-associated deaths in China [2]. Among the treat-
ments for HCC, surgery is still the predominant method. 
Moreover, most patients are already at an advanced stage 
when they are diagnosed with HCC. With the develop-
ment of targeted therapy and immunotherapy, a large 
number of HCC patients can improve their conditions 
and fortunately have the opportunity to undergo surgical 
procedures. However, the overall 5-year survival of HCC 
patients is currently less than 20% [3]. Thus, there is an 
urgent need to identify prognostic biomarkers for HCC 
patients and further help clinical doctors make the best 
medical decisions.

The American Joint Committee on Cancer TNM 
staging system is widely applied in clinical practice [4]. 
Genetic alterations are widespread and contribute to 
the pathogenesis of HCC. However, due to the different 
molecular mechanisms of HCC, the prognosis of patients 
with the same stage may be different. In recent years, 
due to the rapid development of biotechnology, tran-
scriptomics have promoted the identification of genetic 
candidates with prognostic value for HCC patients. In 
particular, some researchers constructed prognostic sys-
tems based on gene signatures. For example, Luo et  al. 
constructed a prognostic model for HCC patients based 
on a 10-immune gene signature [5]. Xia et al. developed 
a powerful classifier to predict early-relapse based on a 
24-mRNA signature [6]. Shi et al. established a stemness-
based eleven-gene signature to predict the clinical out-
comes of HCC patients [7]. However, these previous 
studies that only focused on a gene signature are still 
insufficient, and comprehensive analysis is required to 
further show its value.

We aimed to establish a novel and robust prediction 
signature that not only involves a minimum number of 
genes but is also combined with clinicopathological char-
acteristics. In the present study, differentially expressed 
genes (DEGs) were identified from four publicly available 
Gene Expression Omnibus (GEO) datasets. Then, a four-
gene signature and nomogram predicting overall survival 
were developed by The Cancer Genome Atlas (TCGA), 
and we examined the robustness of our results in the 
International Cancer Genomics Consortium (ICGC) 
cohort. Considering the importance of immune infiltra-
tion in the tumor microenvironment, we further inves-
tigated the differences in immune infiltration between 
high-risk and low-risk groups of HCC patients.

Materials and methods
Data acquisition and identification of DEGs
We searched the expression profiling by using arrays of 
HCC datasets in the GEO database, and the criteria for 
inclusion were as follows: Homo sapiens; arrays with 

more than 10 pairs of samples comparing the transcrip-
tome profiles between tumor tissues and matched adja-
cent normal tissues. After carefully scrutinizing the 
GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), we 
included four eligible datasets, namely, GSE45436 [8], 
GSE121248 [9], GSE101685, and GSE112790 [10]. First, 
the raw counts of the RNA-sequencing data were log2 
transformed and quantile normalized. Next, we used the 
K-nearest neighbor method to fill in missing gene expres-
sion values. Then, the “Limma” R package was used to 
identify significant DEGs between the HCC and matched 
normal samples. The adjusted P values were calculated 
by using the Benjamini‒Hochberg false discovery rate 
method. An adjusted P value < 0.05 and |log2-fold change 
(FC)|≥ 2 were used as cutoff values for DEG inclusion. 
Ultimately, all DEGs from the four GEO datasets were 
merged to identify the upregulated and downregulated 
DEGs via the Venn tool.

Functional enrichment analysis and construction 
of protein‒protein interaction (PPI) networks of DEGs
First, we selected the Database for Annotation, Visuali-
zation and Integrated Discovery (DAVID) (Version 6.8, 
https://​david.​ncifc​rf.​gov/) for functional enrichment 
analysis because it applies a comprehensive set of func-
tional annotations for molecular functions (MFs), cellular 
components (CCs), biological processes (BPs) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [11]. Func-
tional enrichment with P values less than 0.05 was con-
sidered significant, and only the top six GO enrichment 
pathways and KEGG pathways were visualized using a 
chord plot. Next, protein‒protein interaction (PPI) net-
works of DEGs were constructed based on the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database (https://​string-​db.​org/) [12]. Interactions with 
combined scores > 0.4 were considered statistically signif-
icant interactions. Next, the significant interactions were 
exported to Cytoscape software (version 3.8.2) for visual 
presentation and calculation of the top 10 hub genes.

Screening for survival‑associated DEGs and development 
and validation of a gene predictive signature
The overlapping DEGs obtained from the above analysis 
were further used to build a predictive gene signature. 
First, the RNA-seq data profiles of HCC and their cor-
responding clinical information were downloaded from 
the TCGA database (https://​portal.​gdc.​cancer.​gov/) 
and ICGC database (https://​dcc.​icgc.​org/​proje​cts). The 
details of the four GEO datasets are listed in Table  1. 
Data from TCGA database were regarded as the train-
ing group. Next, univariate Cox regression analysis and 
multivariate Cox regression analysis based on the Akaike 
information criterion (AIC) were performed to identify 
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survival-associated DEGs with the “survival” R pack-
age (P < 0.05). Then, based on the survival-associated 
DEGs obtained from the above analysis, we utilized the 
“glmnet” R package to conduct least absolute shrinkage 
and selection operator (LASSO) regression Cox analysis 
(simulation times = 1,000), and a risk score model based 
on gene mRNA values and coefficients of four DEGs was 
constructed. Furthermore, we divided the TCGA cohort 
into a high-risk group and low-risk group based on the 
mean value of the risk scores. Kaplan‒Meier survival 
curves were utilized to confirm the association between 

the risk score model and overall survival (OS). Next, a 
time-dependent receiver operating characteristic curve 
(time-dependent ROC) was drawn to evaluate the pre-
dictive ability of this predictive model based on the “tim-
eROC” R package. To confirm its role as an independent 
prognostic factor, we conducted univariate Cox regres-
sion analysis and multivariate Cox regression analysis. 
We also investigated the association between risk score 
group and clinicopathological characteristics. Finally, the 
risk score model constructed by the TCGA cohort was 
further validated in the ICGC cohort.

Development and validation of a nomogram system
To develop a nomogram prediction system to predict 
the 1-year, 3-year, and 5-year OS probabilities of HCC 
patients in the TCGA cohort, three independent prog-
nostic factors, including sex, TNM stage and risk score, 
were sequentially subjected to a stepwise Cox regression 
model. Next, we plotted a calibration curve to assess the 
consistency between the observed rates and predicted 
OS. At the same time, we drew time-dependent ROC 
curves to compare the predictive performance of differ-
ent prognostic factors. Finally, this nomogram prediction 
system was further validated in the ICGC cohort.

Gene set enrichment analysis (GSEA)
GSEA is often used for the analysis and interpretation 
of genome-wide expression profiles [13]. Two gene sets 
databases: h. All. V7.4 Symbols.gmt (Hallmarks) and 
c2.cp.kegg.V7.4 Symbols.gmt (Curated) were down-
loaded from MSigDB (http://​www.​gsea-​msigdb.​org/​gsea/​
msigdb/​index.​jsp). Then, we used GSEA software to iden-
tify the enriched signaling pathways based on the DEGs 
between the high-risk and low-risk groups in the TCGA 
cohort. Significantly enriched pathways were defined as 
those with P values <0.05, |normalized enrichment scores 
(NES)|> 1, and false discovery rates (FDR) <0.25.

Correlation analysis of risk group and immune infiltration 
in the tumor microenvironment
Considering the important role of immune infiltration in 
tumorigenesis and progression, we first used the “e1071” 
and “parallel” R packages to analyze the infiltration levels 
of 22 types of immune cells in HCC tissues. Gene set sig-
natures for each immune cell type were downloaded from 

Table 1  Clinicopathological characteristics of HCC patients in 
the TCGA cohort and ICGC cohort

Characteristic Group N

TCGA cohort Age (years)  ≤ 60 167

 > 60 171

Gender male 231

female 107

Fustat alive 224

deceased 114

Grade G1 45

G2 166

G3 115

G4 12

T stage T1 170

T2 84

T3 74

T4 10

TNM Stage stage I 168

stage II 83

stage III 83

stage IV 4

ICGC cohort Age (years)  ≤ 68 120

 > 68 123

Gender male 182

female 61

Fustat alive 199

deceased 44

TNM Stage stage I 37

stage II 109

stage III 75

stage IV 22

Fig. 1  Identification of differentially expressed genes (DEGs) in GEO datasets. (A) volcano plots from GSE45436, (B) volcano plots from GSE101685, 
(C) volcano plots from GSE112790, (D) volcano plots from GSE121248, (E) venn plots from upregulated DEGs from four included GEO datasets, (F) 
venn plots from downregulated DEGs from four included GEO datasets, and (G) heatmap of the top 20 downregulated and upregulated DEGs. 
Green and red colors represent the down- and upregulated |FC| values, respectively. Values of P < 0.05 and lg|FC|≥ 2 were considered significant

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  The top six significant enrichment GO terms and KEGG pathways of reference genes for all DEGs in HCC and protein‒protein interaction (PPI) 
networks of DEGs. Chord plot depicting the reference genes for all DEGs associations via ribbons to their assigned GO terms (A) and KEGG pathways 
(B). Colored rectangles represent the logFC values of genes. PPI networks(C) and hub genes (D) were visualized by cytoscape software. Green and 
red colors represent the downregulated DEGs and upregulated DEGs, respectively

Fig. 3  Construction of a prognostic model of four DEGs in the training cohort (TCGA cohort) and validation of that in the validation cohort (ICGC 
cohort). Cross-validation to find the optimal lambda value in the LASSO regression (A). LASSO regression analysis was performed to select radiomic 
features for prognostic model-building for HCC patients. Feature coefficients were plotted against the shrinkage parameter (Lambda) (B). Risk score 
analysis of the four-gene-based signature. Risk score distributions (top), survival overviews (middle), and heatmaps (bottom) for patients assigned 
to high-and low-risk groups based on the risk scores in the TCGA cohort (C) and ICGC cohort (D). Kaplan‒Meier estimates of the overall survival (OS) 
using the prognostic model for patients in the TCGA cohort (E) and ICGC cohort (F) Time-dependent receiver operating characteristic (ROC) curves 
for the survival of high- and low-risk groups in the TCGA cohort (G) and ICGC cohort (H). Different colors represent different years

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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CIBERSORTx (https://​ciber​sortx.​stanf​ord.​edu/​index.​
php) [14]. Then, we analyzed the difference in immune 
infiltration between the high-risk and low-risk groups 
based on the Wilcoxon test. Finally, we investigated the 
correlation analysis between risk scores and 22 types of 
immune cells based on Spearman’s correlation analysis.

Cell culture
Human HCC cell lines (e.g., SNU-449, HCCLM3, Hep-
3B, HepG2, SK-Hep-1, MHCC97-H, PLC-8024, HuH7) 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco Invitrogen, Carlsbad, CA, USA) sup-
plemented with 10% fetal bovine serum (Gibco). All cell 

Fig. 4  Risk score is an independent prognostic factor for HCC patients. Univariate cox regression analysis and multivariate cox regression analysis 
were conducted. Forest plot of univariate cox regression and multivariate cox regression of the risk scores in the TCGA cohort (A) and ICGC cohort 
(B)

https://cibersortx.stanford.edu/index.php
https://cibersortx.stanford.edu/index.php
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lines were purchased from the Cell Lines Service (Cell-
cook Biotech Co., Ltd., Guangzhou, China).

RNA extraction, reverse transcription, and quantitative 
reverse transcription PCR
Total RNA was isolated using an RNA quick purification kit 
(ESscience, China) and reverse-transcribed to cDNA using 
reverse transcription performed using a Fast All-in-One 
RT Kit (ESscience, China). Super SYBR Green qPCR Mas-
ter Mix (ESscience, China) was used for RT‒PCR accord-
ing to the manufacturer’s instructions. The qPCR primers 
are listed in Supplementary Table 2. The relative expression 
levels of five necroptosis-related genes were compared with 
that of β-actin, and the 2−△△ct method was utilized to cal-
culate the fold changes.

Statistical analysis
R software (version 4.1.0), GraphPad software (version 8) 
and SPSS software (version 20) were used for statistical 
analysis. The associations between the risk score groups 
and clinicopathological characteristics were assessed using 
the χ2 test or Fisher’s exact test. P values < 0.05 were consid-
ered significant in the present study.

Results
Identification of DEGs between HCC and adjacent normal 
tissue
Four GEO datasets were analyzed by the HG-U133_
Plus_2 platform. Based on the cutoff values mentioned 
above, the DEGs in these four GEO datasets were iden-
tified (Fig. 1A-D). The overlapping DEGs were merged 
via a Venn diagram, and as shown in Fig.  1E, F, there 
were 62 upregulated DEGs and 33 downregulated 

Fig. 5  Heatmap of signatures and clinical parameters of HCC patients in the TCGA cohort (A) and ICGC cohort (B)

Table 2  Correlations between risk scores and clinicopathological 
characteristics in the TCGA cohort and ICGC cohort

a  Pearson chi-square test
b  Continuity modified chi-square test
c  Fisher’s exact test

Parameters Risk score χ2 P

Low High

TCGA cohort Age 9.9541 0.0016a

 ≤ 60 69 98

 > 60 100 71

Gender 2.3110 0.1285a

male 122 109

female 47 60

Grade 43.9071  < 0.0001a

G1-G2 135 76

G3-G4 34 93

T stage 9.1249 0.0025a

T1-T2 139 115

T3-T4 30 54

TNM Stage 8.1880 0.0042a

I-II 137 114

III-IV 32 55

ICGC cohort Age 0.2024 0.6528a

 ≤ 68 58 62

 > 68 63 60

Gender 0.1654 0.6842a

male 92 90

female 29 32

TNM Stage 5.9368 0.0148a

I-II 82 64

III-IV 39 58
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DEGs. The list of overlapping differentially expressed 
genes (DEGs) is shown in Supplementary Table 1. The 
top 20 downregulated and upregulated DEGs are pre-
sented in Fig. 1G.

Functional enrichment and signal pathway analysis
In our study, the DAVID database was used for func-
tional enrichment analysis of the overlapping DEGs. The 
gene ontology results suggested cell division and mitotic 
nuclear division in BP, midbody and spindle in CC, and 
microtubule binding and protein kinase binding in MF 
(Fig. 2A). The KEGG pathway analysis indicated that cell 
cycle, oocyte meiosis, caffeine metabolism, p53 signaling 
pathway, and bile secretion were significantly enriched 
(Fig.  2B). Collectively, we concluded that these overlap-
ping DEGs might be involved in the development of HCC.

Construction of PPI networks of DEGs and hub genes 
analysis
To explore the functions of these genes, we used the 
STRING database to construct PPI networks of these 
overlapping DEGs. The results indicated that the PPI net-
works contained 68 nodes and 937 edges (Fig.  2C). Hub 
gene analysis was further conducted by the cytoHubba 
application in Cytoscape, and maternal embryonic leu-
cine zipper kinase (MELK), PDZ binding kinase (PBK), 
DNA topoisomerase II alpha (TOP2A), cyclin-dependent 
kinase 1 (CDK1), abnormal spindle microtubule assembly 
(ASPM), kinesin family member 20A (KIF20A), RAD51 
associated protein 1 (RAD51AP1), DLG associated protein 
5 (DLGAP5), non-SMC condensin I complex subunit G 
(NCAPG), and cyclin B1 (CCNB1) were regarded as the 
top hub genes (Fig. 2D).

Development and validation of a four‑gene risk score 
predictive signature
To establish a risk score predictive signature, univariate 
Cox regression analysis and multivariate Cox regres-
sion analysis based on the Akaike information criterion 
(AIC) were performed to identify survival-associated 
DEGs in the TCGA cohort. A total of 16 independent 
survival-associated DEGs were identified (Supplemen-
tary Table  2). Then, these independent survival-asso-
ciated DEGs were subjected to LASSO regression Cox 
analysis, and a 4-gene signature that can predict OS in 
HCC patients was developed: enhancer of zeste 2 poly-
comb repressive complex 2 (EZH2), feline leukemia 

virus subgroup C cellular receptor 1 (FLVCR1), pitui-
tary tumor-transforming 1 (PTTG1), and thyroid hor-
mone receptor interactor 13 (TRIP13) (Fig. 3A-B). The 
results suggested that all 4 genes had positive coef-
ficients. The prognostic risk score for each patient in 
the TCGA cohort was calculated by using a combina-
tion of gene expression level values and coefficients of 
all four DEGs (risk score = EZH2 * 0.075 + FLVCR1 
* 0.086 + PTTG1 * 0.015 + TRIP13 * 0.020). Further-
more, the TCGA cohort and ICGC cohort were divided 
into a high-risk group and low-risk group, respec-
tively, according to the mean value of the risk scores. 
As shown in Fig.  3C-F, Kaplan‒Meier curve analysis 
revealed that there were significantly different survival 
times between the high-risk group and low-risk group 
in the TCGA cohort and ICGC cohort, and compared 
with the low-risk scores, high-risk scores indicated a 
poor prognosis (P < 0.05). Finally, a time-dependent 
ROC plot was drawn to evaluate the predictive ability 
of this four-gene predictive model. The area under the 
curve (AUC) is associated with model performance. 
Notably, the AUCs of this four-gene predictive model 
for 0.5, 1, 3 and 5  years were 0.658, 0.750, 0.703, and 
0.628, respectively, in the TCGA cohort (Fig. 3G). The 
AUCs of this four-gene predictive model for 0.5, 1, 3 
and 4 years were 0.608, 0.673, 0.674, and 0.727, respec-
tively, in the ICGC cohort (Fig.  3H). The AUC values 
indicated that our risk score prediction model has good 
sensitivity and specificity.

Role as an independent prognostic factor and correlation 
with clinicopathological characteristics
High-risk scores were associated with poor OS, and we 
conducted univariate Cox regression analysis and multi-
variate Cox regression analysis to further confirm their 
role as an independent prognostic factor. As shown in 
Fig.  4A, B, four-gene risk scores and TNM stages were 
considered independent prognostic factors in the TCGA 
cohort, and sex, TNM stage and four-gene risk scores 
were considered independent prognostic factors in the 
ICGC cohort (p < 0.05). We also investigated the associa-
tion between the risk score group and clinicopathologi-
cal characteristics. The details of the clinicopathological 
characteristics of each patient are presented with a heat-
map (Fig.  5A, B). Table  2 shows that the results sug-
gested that risk scores were significantly associated with 

(See figure on next page.)
Fig. 6  Construction of the nomogram predicting overall survival in the training cohort (TCGA cohort) and validation in the validation cohort (ICGC 
cohort). (A) nomogram predicting 1-, 3-, and 5-year overall survival of HCC. Calibration curve for predicting 1-, 3-, and 5-year overall survival of HCC 
in the TCGA cohort (B-D). Calibration curve for predicting 1-, 3-, and 4-year overall survival of HCC in the ICGC cohort (E-G). The y axis represents 
actual survival, and the x axis represents the predicted survival
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age, T stage, TNM stage, and grade in the TCGA cohort 
and that there was a significant association between risk 
scores and TNM stages in the ICGC cohort.

Development and validation of a nomogram system
Three independent prognostic factors, including sex, 
TNM stage and risk score, were sequentially subjected to 
a stepwise Cox regression model to develop a nomogram 
prediction system in the TCGA cohort (Fig.  6A). Mean-
while, a nomogram prediction system was also validated 
by the ICGC cohort. The calibration curve for predicting 
the 1-year, 3-year, and 5-year OS probabilities of HCC 
patients in the TCGA cohort indicated that the nomo-
gram-predicted survival closely corresponded with actual 

survival outcomes (Fig. 6B-D). The calibration curve of the 
ICGC cohort also indicated that the nomogram contain-
ing three independent prognostic factors performed well 
(Fig. 6E-G). Finally, we drew time-dependent ROC curves 
to compare the predictive performance of the nomogram 
system with other prognostic factors, including sex, TNM 
stage and risk score. Notably, as shown in Fig.  7A-F, the 
performance of the nomogram system was significantly 
better than that of sex, TNM stage and risk score.

GSEA of biological functions between the high‑risk 
and Low‑risk groups
GSEA was used to further explore different biological 
functions between the high-risk and low-risk groups. Fig-
ure 8A shows that the top eight KEGG signaling pathways 

Fig. 7  Time-dependent ROC curve for the nomogram. The prognostic accuracy of the nomogram system was further assessed by using 
comparisons to other prognostic clinical factors, and the AUC values for each model in the TCGA cohort (A) and ICGC cohort (B) are shown. 
Different colors represent different parameters and models
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in the high-risk patients were cell cycle, DNA replication, 
Fc gamma R-mediated phagocytosis, mismatch repair, 
oocyte meiosis, progesterone-mediated oocyte, spliceo-
some, and ubiquitin-mediated proteolysis. Meanwhile, 
we found that the top eight hallmark enrichment path-
ways were DNA repair, E2F targets, G2/M checkpoint, 
mitotic spindle, MYC targets V1, MYC targets V2, PI3K-
AKT-mTOR signaling and spermatogenesis (Fig. 8B).

Correlation analysis of risk group and immune infiltration
Considering that GSEA indicated that the high-risk 
group patients were associated with Fc gamma R-medi-
ated phagocytosis and that immune infiltration plays 
a vital role in tumors, we further performed correla-
tion analysis of risk groups and immune infiltration. 
Figure 9A shows the infiltration of 22 types of immune 
cells in HCC tissues. Moreover, there were significantly 
different B-cell memory, resting memory CD4 T cells, 
activated memory CD4 T cells, follicular helper T cells, 
regulatory T cells (Tregs), resting NK cells, mono-
cytes, M0 macrophages, M2 macrophages, resting 
dendritic cells, resting mast cells and neutrophil infil-
tration properties between the high-risk and low-risk 

groups (Fig.  9B). Finally, a correlation analysis between 
risk scores and 22 types of immune cells also confirmed 
these differences (Fig. 9C).

RT‒qPCR validation of four genes in HCC cell lines
We used RT‒qPCR to further verify the expressions of 
four genes in the HCC cell lines. The results showed 
that the expressions of four genes were upregulated in 
most HCC cell lines. The relative expressions of EZH2, 
FLVCR1 and TRIP13 in HepG2 cells were obviously 
higher than those in the others, and PTTG1 had the 
highest expression levels in Huh7 cells (Fig. 10A-D).

Discussion
In the present study, we established a four-gene risk score 
signature and constructed a nomogram containing risk 
score, sex and TNM stage to improve the ability to pre-
dict HCC prognosis. Moreover, we found that the four-
gene risk score signatures were associated with immune 
cell infiltration.

Based on 95 overlapping DEGs obtained from four 
GEO data databases, we constructed a four-gene risk 

Fig. 8  Gene set enrichment analyses (GSEA) of the different biological functions between the high-risk and low-risk groups. The top eight Kyoto 
encyclopedia of genes and genomes (KEGG) pathways in high-risk group via GSEA (A). The top eight hallmark enrichment pathways in the high-risk 
group via GSEA (B)

Fig. 9  Correlation analysis of risk group and immune infiltration. The abundance fractions of 22 kinds of immune infiltration cells in the TCGA 
cohort (A). Each column represents one sample, and different colors represent different cells. The height of the color in each column represents 
the abundance score of immune infiltration cells in this sample. The box plot shows the different immune infiltration values between high-risk 
and low-risk group patients (B). Green and red colors represent low-risk and high-risk groups, respectively. *P < 0.05; **P < 0.01; and ***P < 0.001. A 
heatmap shows the correlation matrix of risk scores, four signature genes, and relative abundances of 22 kinds of immune infiltration cells (C). Green 
and red colors represent negative correlations and positive correlations, respectively

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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score model. Previous studies have confirmed that 
EZH2 contributes to cisplatin resistance and sorafenib 
resistance [15, 16]. Moreover, EZH2 was associated 
with the malignant transformation of oral leukoplakia, 
and the latest research suggested that EZH2 could be 
targeted by the long noncoding RNA, RC3H2, which 
could be a complementary endogenous RNA spong-
ing miR-101-3p that further facilitates cell prolifera-
tion and invasion in oral squamous cell carcinoma [17, 
18]. FLVCR1 regulates the development of synovial 
sarcoma by inhibiting apoptosis and autophagy, but its 
role in HCC still needs to be determined [19]. Elevated 
upregulation of PTTG1 activated by lncRNA PTTG3P 
promotes tumor growth and metastasis [20]. Upregu-
lated TRIP13, interacting with ACTN4, induces pro-
gression of HCC by driving the AKT/mTOR pathway 
[21]. A study showed that TRIP13 is also related to the 
EMT pathway in lung cancer [22]. TRIP13 can pro-
mote tumor growth and metastasis in a p53-independ-
ent and MSI-independent manner [23]. Interestingly, 
GSEA of biological function between the high-risk and 

low-risk groups suggested that the high-risk group was 
mostly enriched with pathways involved in cell growth 
and the immune microenvironment. This further sug-
gests the rationality of the risk score model. We found 
that risk scores were associated with CD4 + T cells, 
Treg cells, monocytes, NK cells and M2 macrophages. 
Notably, a previous study demonstrated that EZH2 
is negatively related to immune infiltration. Inhibi-
tion of EZH2 can reduce the recruitment of regulatory 
T cells (Tregs), thereby reducing the activity of Tregs 
and enhancing T-cell infiltration in tumors to enhance 
antitumor immunity [24]. Inhibition of EZH2 leads to 
an increase in the transcription level of NKG2D, an 
NK-cell ligand, and increases NK-cell-mediated cyto-
toxicity against HCC cells [25]. Moreover, there is a 
relationship between EZH2 and immune checkpoint 
inhibitors. EZH2 can negatively regulate PD-L1 expres-
sion by increasing the promoter H3K27me3 levels of 
CD274 and IRF1 in HCC cells [26]. EZH2 inhibits the 
immunogenicity and antigen presentation of melanoma 
cells. EZH2 inhibition can cooperate with anti-CTLA-4 

Fig. 10  The mRNA expression levels of four genes in HCC cell lines. EZH2 (A), FLVCR1 (B), PTTG1 (C) and TRIP13 (D)



Page 15 of 16Guan et al. BMC Cancer          (2022) 22:830 	

and IL-2 immunotherapy to inhibit the growth of mela-
noma [27]. Collectively, risk score signatures might 
help clinical doctors to identify those patients who can 
benefit from immunotherapy. However, the potential 
relationships among the remaining four genes and the 
immune microenvironment are still unknown.

The nomogram system using the risk score, sex and 
TNM stage might have a better ability to predict prog-
nosis than the TNM stage model. Compared with most 
previous studies, the present study had some differ-
ences. First, LASSO regression Cox analysis was used 
for the identification of a gene-based signature. By 
constructing a penalty function, it can compress the 
coefficients of genes and make some regression coef-
ficients zero, thereby achieving the goal of screen-
ing for highly relevant genes [28]. Second, our risk 
score prediction model consisted of only four genes, 
while those in previous studies often consisted of 
many genes. Third, we also developed and validated 
a nomogram system using risk score, sex and TNM 
stage, which might have good predictive performance. 
Finally, immunotherapy plays an indispensable role in 
the treatment of advanced HCC, and there is an urgent 
need to identify biomarkers for predicting immuno-
therapy responses. Consistent with a previous study, 
we also conducted correlation analysis of risk groups 
and immune infiltration, which might provide a strat-
egy for immunotherapy [29].

We must acknowledge potential limitations in our anal-
ysis. First, there was only one external validating cohort 
with a small number of HCC patients. Second, the poten-
tial mechanism between risk scores and immune micro-
environments should be further investigated by in  vitro 
and animal experiments.

Conclusions
We developed and validated a nomogram system using 
a four-gene risk score, sex, and TNM stage to improve 
HCC management regarding the ability to predict prog-
nosis. Moreover, the risk score signature might help clini-
cal doctors identify those patients who can benefit from 
immunotherapy.
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