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Abstract: The development of genetic manipulation techniques has been reported in many protozoan
parasites over the past few years. However, these techniques have not been established for Babesia
microti. Here, we report the first successful transient transfection of B. microti. The plasmids containing
the firefly luciferase reporter gene were transfected into B. microti by an AMAXA 4D Nucleofection
system. Twenty-four-hour synchronization, the 5′-actin promoter, program FA100, and 50 µg of
plasmid DNA constituted the best conditions for the transient transfection of B. microti. This finding
is the first step towards a stable transfection method for B. microti, which may contribute to a better
understanding of the biology of the parasite.
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1. Introduction

The protozoan parasite Babesia microti is the main agent of human babesiosis. This parasite invades
and multiplies within red blood cells (RBCs) and infections vary greatly in their presentation depending
on the age and immune competency of the host [1]. Severe symptoms are observed in neonates, or in
older adults, possibly due to depressed cellular immunity and in the immunocompromised of any age,
particularly splenectomized individuals [2]. In patients who were hospitalized with severe B. microti
infection, death occurred in 10% of the cases. Mild disease caused by B. microti usually presents
intermittent fever with general malaise and weakness [3].

The difficulties in identifying B. microti virulence factors and developing effective therapies
for human babesiosis have been partly attributed to the lack of genetic manipulation tools [4].
The development of these techniques has been reported in bovine and canine Babesia parasites,
including B. bovis, B. ovata, B. bigemina, B. gibsoni and B. ovis [5–10]. The application of transfection
systems can lead to a better understanding of host–parasite interactions, the mechanisms underlying
drug resistance and provides novel information for vaccine development and drug target discovery [11].
For example, transgenic B. bovis has been used to analyze gene functions and live vaccines against
bovine babesiosis [12–14].
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In this study, in order to identify the transfection condition for B. microti, the episome plasmids
that contain promoters, firefly luciferase reporter, and terminator, were transfected into synchronized
B. microti merozoites.

2. Results

The schematic diagram of transient transfection described in this study is shown in Figure 1.
During the time course of synchronization, parasite viability decreased while the percentage of
merozoites significantly increased (Figure 2). Luminescence was shown to require the presence of a
parasite and transfection pulse (Figure 3a). Twenty-four-hour synchronized parasites showed higher
luciferase activity than the unsynchronized parasites or parasites with 12 and 36-h synchronization
(Figure 3b). 5′-actin was the best promoter out of the three candidates tested in this study (Figure 3c).
Program FA100 showed higher luciferase activity than other programs (Figure 3d). Fifty micrograms
of plasmid DNA was more efficient than 2, 5, and 20 µg (Figure 3e). The sequences of B. microti 5′-actin,
5′-ef-1α-subunit, and 5′-hsp70 promoter were deposited into the GenBank database (accession numbers:
MN891916-MN891918). The primers are listed in Table 1.
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Figure 2. B. microti synchronization. (a) Unsynchronized (left) and 36-hour (right) synchronized thin 
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viability were calculated by Hoechst 33342/Propidium iodide (PI) double staining. (d) Fluorescent 
microscope images of synchronized B. microti. Parasites were stained by Hoechst 33342/PI double 
staining at 36 hours post-synchronization. Hoechst 33342 was used to stain the nuclei of both live and 
dead parasites. PI was used to stain the nuclei of dead parasites. The values are presented as a mean 
± S.D. of three independent experiments. 

Figure 2. B. microti synchronization. (a) Unsynchronized (left) and 36-h (right) synchronized thin blood
smears. (b) The percentages of merozoites were calculated by Giemsa staining. (c) Parasite viability
were calculated by Hoechst 33342/Propidium iodide (PI) double staining. (d) Fluorescent microscope
images of synchronized B. microti. Parasites were stained by Hoechst 33342/PI double staining at 36 h
post-synchronization. Hoechst 33342 was used to stain the nuclei of both live and dead parasites.
PI was used to stain the nuclei of dead parasites. The values are presented as a mean ± S.D. of three
independent experiments.
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programs. 2b (AMAXA Nucleofector 2b using Human T-cell buffer) and 4D (AMAXA 4D 
Nucleofector using an SF buffer). (e) Transfection by varying amounts of plasmid. Twenty-four-hour 
synchronized parasites were used in a, c, d, and e. Actin promoter was used in a, b, d, and e. Program 
FA100 was used in a, b, c, and e. Twenty micrograms of plasmid was used in a, b, c, and d. The values 
are presented as a mean ± S.D. of three independent experiments. 
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Figure 3. (a) Transient transfection of B. microti. (b) Transfection by various synchronized parasites.
(c) Selection of promoters. Actin (5′-actin), ef-1α (5′-ef-1α-subunit) and hsp70 (5′-hsp70). (d) Selection of
programs. 2b (AMAXA Nucleofector 2b using Human T-cell buffer) and 4D (AMAXA 4D Nucleofector
using an SF buffer). (e) Transfection by varying amounts of plasmid. Twenty-four-hour synchronized
parasites were used in a, c, d, and e. Actin promoter was used in a, b, d, and e. Program FA100 was used
in a, b, c, and e. Twenty micrograms of plasmid was used in a, b, c, and d. The values are presented as
a mean ± S.D. of three independent experiments.
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Table 1. List of primers used in this study.

Element Primer Sequence (5′→3′) Size (bp) Reference

Promoter

Bm 5′-actin (Hind III-F) GACGGTATCGATAAGCTTATCTTTGTTCCCTTTAGTAT
1252 This study

Bm 5′-actin (Hind III-R) GAATTCGATATCAAGCTTTTTATCTAAATTAGAATGTAATT

Bm 5′-ef-1α-subunit (Hind III-F) GACGGTATCGATAAGCTTTCTTTTCTTTTGTGGCGA
1152 This study

Bm 5′-ef-1α-subunit (Hind III-R) GAATTCGATATCAAGCTTTTTTCTAACATTCAAGAGGCT

Bm 5′-hsp70 (Hind III-F) GACGGTATCGATAAGCTTTGTTATCATCAGTTACACGCAG
1314 This study

Bm 5′-hsp70 (Hind III-R) GAATTCGATATCAAGCTTGTTGGCAGAAATTTCACTCC

Reporter Firefly luciferase (EcoR I-F) AAGCTTGATATCGAATTCATGGAAGACGCCAAAAACAT
1653 Liu et al. [8]

Firefly luciferase (EcoR I-R) CCCGGGCTGCAGGAATTCTTACAATTTGGACTTTCCGCC

Terminator
Bb 3′-rap (Pst I-F) TTGTAAGAATTCCTGCAGGATGAGATGCGTTTATAATGGC

1281 Liu et al. [15]
Bb 3′-rap (Pst I-R) GGATCCCCCGGGCTGCAGCCTACGAACGATATGTCAAAGAG

Restriction enzyme sites are underlined.

3. Discussion

In the United States, human babesiosis caused by B. microti is considered an emerging infectious
disease. Aside from being transmitted by the hard tick, the majority of the cases are blood transfusion-
transmitted babesiosis [16]. Increasing global interconnectivity raises the risk for B. microti infections
spreading to other countries [17–19]. B. microti has the smallest nuclear genome among all apicomplexan
parasites [20]. Genome-wide phylogenetic analyses indicate that B. microti defines a new clade in
the phylum Apicomplexa. Additionally, the difference in both the copy number and organization of
multigene families resulted in the phylogeny and life cycle of B. microti being significantly distant from
those of other Babesia and Theileria parasites [21,22]. Therefore, the established transfection methods
for other apicomplexan parasites may not be used for B. microti.

As expected, the common transfection system for bovine Babesia parasites, the AMAXA
Nucleofector 2b transfection system (Lonza, Cologne, Germany), was not efficient (Figure 3d).
The AMAXA 4D Nucleofector provides a more suitable transfection system for non-bovine Babesia
parasites [15]. The transfection system of other parasites was established by this system [23]. However,
the optimal transfection program is also different among those parasites, such as FA113 (B. gibsoni)
and EH100 (Cryptosporidium parvum), and may not be applicable to B. microti transfection. Overall,
the results presented in this study also indicate that 4D Nucleofection system was more efficient than
previous systems for non-bovine Babesia parasites.

Trophozoites were considered to have low transfection efficiency in rodent malaria parasites [24].
A similar observation was noted in this study, as a high percentage of trophozoites (non-synchronization)
did not provide good result for B. microti transfection (Figure 3b). Unfortunately, the purification of B.
microti merozoites by using both a Nycodenz density-gradient and a Percoll density-gradient failed
(data not shown). As observed for the purification of Plasmodium berghei schizonts, synchronization is
needed to increase the percentage of merozoites for transfection [25]. However, over-synchronization
can affect the efficiency of transfection (Figure 3b). Because B. microti can only be maintained in a
short-term in vitro culture [26], regardless of the red blood cells’(RBCs’) condition or parasite viability,
an over-synchronized parasite may be unsuitable for transfection (Figure 2c,d).

Compared to another human Babesia parasite B. duncani [27], a lack of an in vitro culture system
for B. microti has severely impacted studies on the parasite, including the search for suitable diagnostic
and blood screening markers. Especially for genetic manipulation study, the common drug selection
systems used for Babesia parasites, such as human dihydrofolate reductase (hDHFR)/WR99210 and
blasticidin-S deaminase (BSD)/bsd selection systems, cannot be used for B. microti [28]. Additionally,
B. microti is not sensitive to pyrimethamine, which is the only drug for rodent malaria parasites selection
in vivo [29,30]. Overall, stable transfection cannot be fully assessed based on the present study due to
challenges such as a lack of a continuous in vitro culture system and unclear selection markers.

In summary, we present the first successful transient transfection of B. microti. This finding is
the first step towards a stable transfection method for B. microti, which may contribute to a better
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understanding of the biology of the parasite and paves the way for the development of more effective
molecular-based subunit vaccines and the discovery of novel drug targets for controlling human
babesiosis. However, further efforts should be put into establishing a continuous in vitro culture system
or finding an effective selection marker that can be used in vivo for developing a stable transfection
system of B. microti.

4. Materials and methods

B. microti Peabody mjr strain (ATCC®PRA-99™) was intraperitoneally administered (108 parasites)
to BALB/c mice. Infected-RBCs (300–350 µL) were collected when parasitemia was between 25–30%
and were cultured in vitro in T25 culture flask at 36.5 ◦C in an incubator with a humidified atmosphere
(5% CO2 and 5% O2). The parasites were synchronized in an RPMI-1640 culture medium supplemented
with L-glutamine (Gibco, Grand Island, NY, USA), 25 mM HEPES (Sigma, Tokyo, Japan), 0.85 g/L
NaHCO3 (Wako, Osaka, Japan), and 20% fetal bovine serum (FBS) (Biowest, Courtaboeuf, France).
Propidium iodide (Sigma) and Hoechst 33342 (Sigma) were used for confirming parasite viability by
fluorescence microscopy (Keyence, Osaka, Japan).

Transfection was conducted using a single Nucleocuvette at a final volume of 100 µL, including
20 µg of circular plasmid construct in a 50 µL SF buffer and 50 µL of synchronized iRBCs (1.25–1.5
× 108 parasites). The plasmid–iRBCs mixtures were transfected using program FA100 of the Amaxa
4D Nucleofection system (Lonza) and immediately transferred into 24-well culture plates with 1 mL
of complete RPMI-1640 culture medium containing 5% fresh mouse RBCs. The luciferase activity
was measured as described previously [8]. Briefly, the transfected iRBCs were ruptured by 10 times
volume of 0.8% NH4Cl (Wako) at 24 h post-transfection, and the parasite pellet was lysed by luciferase
assay substrate (Promega, Madison, WI, USA). Finally, the luminescence was measured using a 10 s
integration interval by a GloMax®-Multi Detection System (Promega).

All the procedures were carried out according to ethical guidelines that were approved by Obihiro
University of Agriculture and Veterinary Medicine (Permit for animal experiment: 19–120; DNA
experiment: 1723-3; Pathogen: 201709-5).
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