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Chronic lymphocytic leukemia cells have an altered energy metab-
olism compared to normal B cells. While there is a growing
understanding of the molecular heterogeneity of the disease, the

extent of metabolic heterogeneity and its relation to molecular hetero-
geneity has not been systematically studied. Here, we assessed 11 bioen-
ergetic features, primarily reflecting cell oxidative phosphorylation and
glycolytic activity, in leukemic cells from 140 chronic lymphocytic
leukemia patients using metabolic flux analysis. We examined these
bioenergetic features for relationships with molecular profiles (including
genetic aberrations, transcriptome and methylome profiles) of the
tumors, their ex vivo responses to a panel of 63 compounds, and with
clinical data. We observed that leukemic cells with mutated
immunoglobulin variable heavy-chain show significantly lower gly-
colytic activity than cells with unmutated immunoglobulin variable
heavy-chain. Accordingly, several key glycolytic genes (PFKP, PGAM1
and PGK1) were found to be down-regulated in samples harboring
mutated immunoglobulin variable heavy-chain. In addition, 8q24 copy
number gains, 8p12 deletions, 13q14 deletions and ATM mutations were
identified as determinants of cellular respiration. The metabolic state of
leukemic cells was associated with drug sensitivity; in particular, higher
glycolytic activity was linked to increased resistance towards several
drugs including rotenone, navitoclax, and orlistat. In addition, we found
glycolytic capacity and glycolytic reserve to be predictors of overall sur-
vival (P<0.05) independently of established genetic predictors. Taken
together, our study shows that heterogeneity in the energy metabolism
of chronic lymphocytic leukemia cells is influenced by genetic variants
and this could be therapeutically exploited in the selection of therapeutic
strategies.
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ABSTRACT

Introduction

Resistance to apoptosis rather than aberrant proliferation is regarded as the rea-
son for chronic lymphocytic leukemia (CLL) cell accumulation. However, active
proliferation also contributes to CLL pathogenesis, as sizable clonal birth rates
were observed in this disease.1,2 This suggests a substantial bioenergetic demand
for proliferating subsets of CLL cells in order to support cell growth and division.
Deregulated energy metabolism is considered to be one of the hallmarks of cancer.3

While molecular mechanisms promoting survival and proliferation of CLL cells
have been extensively studied, fewer studies have addressed energy metabolism in
CLL. Garcia-Manteiga et al. suggested oxidative phosphorylation as the primary



source of energy.4 This hypothesis is supported by subse-
quent findings that aerobic mitochondrial respiration
results in high levels of oxidative stress of circulating CLL
cells5 and that targeting the respiratory machinery can be
therapeutically exploited to achieve selective toxicity.6

However, Maclntyre et al. reported increased concentra-
tions of pyruvate and glutamate in serum samples from
CLL patients as compared to healthy donors, which sug-
gests active glycolysis.7

It has been well established that genetic heterogeneity
contributes to the variable clinical outcomes of CLL. Based
on the somatic mutation status in the variable regions of the
immunoglobulin (Ig) heavy chain (IGHV) genes, CLL can be
divided into two subgroups with distinct prognosis: CLL
cells with unmutated IGHV genes (U-CLL) display higher
B-cell receptor (BCR) signaling activity and are more aggres-
sive than CLL cells with mutated IGHV genes (M-CLL).
Serum samples from U-CLL patients were found to contain
higher levels of lactate, fumarate, and uridine than those
from M-CLL patients,7 suggesting U-CLL cells might have
higher rates of aerobic glycolysis. This finding is in line with
the observation that normal B cells undergo a metabolic
switch from oxidative phosphorylation towards glycolysis
upon BCR stimulation.4 However, considering the number
of clinically relevant genetic alterations documented in
CLL,8,9 the relationship between genetic heterogeneity and
energy metabolism remains largely unexplored. Our previ-
ous work showed that many of the recurrent mutations
influence drug sensitivities of CLL.10 As metabolic repro-
gramming has been shown to affect drug responsiveness of
various cancers,2,11,12 metabolism may serve as a promising
target for overcoming drug resistance in CLL. 

To gain a better understanding of the metabolic land-
scape of CLL tumor cells in relation to their genetic profile,

and to determine the role of metabolism in the response
to drug treatments, we assessed the bioenergetic features
of primary CLL samples (n=140 patients) through extra-
cellular flux assays investigating two major metabolic
processes: 1) aerobic glycolysis; and 2) oxidative phospho-
rylation. We performed an integrative analysis of these
data with previously recorded ex vivo responses of the
same samples to a panel of 63 drugs, somatic genome
mutations, tumor transcriptomes, DNA methylomes, and
clinical data.10 We found multiple associations between
the mutational status and bioenergetic features, and found
glycolysis activity of CLL cells  contributed to resistance
towards compounds targeting mitochondria-related bio-
logical processes that include rotenone, orlistat, veneto-
clax, and navitoclax. In addition, glycolytic capacity and
glycolytic reserve features were shown to provide addi-
tional information to known genomic markers, such as
IGHV and TP53, for predicting overall survival (OS). 

Methods

Extracellular flux assays
Extracellular flux analyses (illustrated in Online Supplementary

Figure S1) were performed on 152 CLL samples and nine B-cell
samples from healthy donors on a Seahorse XFe96 system as pre-
viously described.13 The resulting data files (*.asyr) were converted
to comma-separated value (CSV) files using the Wave Desktop
software package (Agilent/Seahorse Bioscience) and imported into
R for quality assessment and further analysis. The data for 140 of
the 152 CLL samples passed quality control and were used for
subsequent analyses. A detailed description of the workflow and
criteria for quality control are provided in the Online Supplementary
Methods. 
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Table 1. Results of multivariate Cox regression model for overall survival (n=119, events =18) by including either glycolytic reserve or glycolytic
capacity as a predictor.
Multivariate Cox model including glycolytic reserve
Factor                                                                                   P                               Hazard Ratio                    Lower 95% CI                  Upper 95% CI

Glycolytic reserve                                                                             0.033                                           1.10                                          1.00                                          1.20
U-CLL                                                                                                   0.095                                           3.00                                          0.83                                         11.00
Treatment                                                                                           0.206                                           2.50                                          0.61                                          9.90
Trisomy12                                                                                            0.265                                           2.40                                          0.52                                         11.00
Age                                                                                                        0.413                                           1.20                                          0.79                                          1.80
TP53 mutations                                                                                  0.504                                           1.60                                          0.42                                          5.90
11q22.3 deletions                                                                              0.629                                           0.71                                          0.17                                          2.90
17p13 deletions                                                                                 0.790                                           0.80                                          0.16                                          4.00
Multivariate Cox model including glycolytic capacity
Factor                                                                                   P                               Hazard Ratio                    Lower 95% CI                  Upper 95% CI

Gycolytic capacity                                                                              0.046                                           1.10                                          1.00                                          1.10
U-CLL                                                                                                   0.101                                           2.90                                          0.81                                         10.00
Treatment                                                                                           0.178                                           2.60                                          0.65                                         10.00
Trisomy12                                                                                            0.312                                           2.20                                          0.48                                          9.70
TP53 mutation                                                                                    0.469                                           1.70                                          0.42                                          6.50
11q22.3 deletions                                                                              0.494                                           0.61                                          0.15                                          2.50
Age                                                                                                        0.546                                           1.10                                          0.76                                          1.70
17p13 deletions                                                                                 0.644                                           0.68                                          0.13                                          3.60
CI: Confidence Interval; U-CLL: chronic lymphocytic leukemia cells with unmutated IGHV genes.



Integrative data analysis
Analyses were performed using R 3.4 and included univariate

association tests, multivariate regression with and without lasso
penalization, Cox regression, generalized linear models, principal
component analysis, and gene set enrichment analysis. For associ-
ation tests between bioenergetic features and genetic variants (i.e.
copy number variants and gene mutations), only those with five
or more variant cases were included. Summary statistics of
patients’ demographic and clinical features are provided in Online
Supplementary Table S1. All P-values from association tests were
adjusted for multiple testing by applying the Benjamini-Hochberg
procedure to control false discovery rate (FDR). Further details are
provided in the Online Supplementary Methods. 

Data availability
Our data and analysis are provided as a reader-reproducible

pipeline supported by the R package seahorseCLL
(https://github.com/lujunyan1118/seahorseCLL). An online platform
based on R Shiny (http://mozi.embl.de/public/seahorseCLL) is also
provided for reference and to visualize our dataset.

Study approval
The study was approved by the Ethics Committee Heidelberg

(University of Heidelberg, Germany; S-206/2011; S-356/2013).
Patients who donated tumor material provided written informed
consent prior to study.

Results

Chronic lymphocytic leukemia cells and B cells show
distinct energy metabolic phenotypes

We first compared the energy metabolic profiles of the
140 CLL samples and nine B-cell samples from healthy
donors. In a principal component analysis (PCA) (Figure
1A), the CLL samples were clearly separated from the B-
cell samples, which indicates that CLL cells have a distinct
metabolic phenotype. Nine of the 11 bioenergetic features

showed altered levels between CLL cells and B cells
(ANOVA test, Benjamini and Hochberg multiple testing
method for FDR = 5%) (Online Supplementary Table S2). In
accordance with a previous report,6 mitochondrial respira-
tion-related features, including basal respiration, maximal
respiration, and ATP production were increased in CLL
cells (Figure 1B).

With regard to aerobic glycolysis, no significant differ-
ences were seen in basal glycolysis activity between CLL
and B cells. However, CLL cells showed elevated glycolyt-
ic capacity and glycolytic reserve (Figure 1B). As these two
features measure the maximum capability of cells for gly-
colysis and the flexibility of cells to respond to energetic
demands, this observation suggests an increased adapt-
ability of CLL cells to use glycolysis as an energy source
when needed, although they do not primarily rely on it.

Molecular determinants of energy metabolism in
chronic lymphocytic leukemia

Figure 1 shows a variability among the bioenergetic pro-
files of the CLL samples. We hypothesized that this vari-
ability may be related to the molecular heterogeneity of
CLL.8,9 Therefore, we tested the tumor-to-tumor variations
of the bioenergetic features for possible correlations with
20 molecular features, including recurrent somatic muta-
tions and copy number variations, IGHV status and
methylation clusters (Figure 2A and Online Supplementary
Figure S2).

The most prominent association identified was IGHV
status: IGHV mutated CLL (M-CLL) samples had lower
glycolytic activity and glycolytic capacity than IGHV
unmutated CLL (U-CLL) samples (Figure 2B). Patients
with M-CLL and U-CLL have been observed to have dis-
tinct serum metabolite profiles; U-CLL patients have high-
er lactate level in serum, which can be considered a sign of
elevated glycolysis.7 To our knowledge, our large sample
size study provides the first direct proof that U-CLL do
indeed have a higher glycolytic activity than M-CLL.

J. Lu et al.
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Figure 1. Difference in energy metabolism between chronic lymphocytic leukemia (CLL) cells and normal B cells. (A) Scatterplot of the top two principal components
of the 11 tested bioenergetic features. Each dot represents a CLL patient sample (blue) or a healthy-donor derived B cell (red). (B) Beeswarm plots showing differ-
ences of six of the bioenergetic features between B-cell samples (n=9) and CLL samples (n=140).
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IGHV status is strongly associated with three subtypes of
CLL defined by their global levels of CpG methylation.14

Accordingly, we found that the high-programmed CLL
(HP-CLL) subtype, which has higher global methylation
level, had a lower glycolysis activity than the low-pro-
grammed CLL (LP-CLL) subtype (Figure 2C). 

To further dissect the role of IGHV status in metabolic
reprogramming, we analyzed transcriptome data that we
had measured for 120 of these patient samples (of which
111 had annotation for IGHV status). We performed gene
set enrichment analysis on the genes that were differen-
tially expressed between M-CLL and U-CLL samples
using the Hallmark gene sets from Molecular Signature
Database (MsigDB).15 We found that genes down-regulat-
ed in M-CLL were enriched in the glycolysis pathway
(Figure 3A). Thirty-four glycolysis-related genes were
down-regulated in M-CLL (Figure 3B), including several
that encode key enzymes PFKP (Phosphofructokinase,
platelet), PGAM1 (Phosphoglycerate Mutase 1), and PGK1
(Phosphoglycerate kinase 1) (Figure 3C).16-18 This analysis
suggests that IGHV status directly influences the expres-
sion of genes related to glycolysis resulting in the observed
difference in glycolytic parameters between M-CLL and
U-CLL. As IGHV status reflects the B-cell receptor (BCR)
signaling activity,19 we referred to two published datasets
for the transcriptomic signatures of BCR stimulation in
CLL, either by anti-IgM antibody20 (GEO ID: GSE49695)
or unmethylated bacterial DNA (CpG) (GEO ID:
GSE30105). In both conditions, genes that were up-regu-
lated after BCR stimulation were significantly enriched in
the glycolysis pathway (Online Supplementary Figure S3).

Together these results indicate a causal link from BCR sig-
naling to glycolysis activity in CLL, in line with previous
evidence.21,22

We also identified several other novel associations
between bioenergetic features and genetic variants (Online
Supplementary Figure S4). Gain of 8q24, deletion of 8p12,
ATM mutation, EGR2 mutation and MED12 mutation
were found to be associated with higher values of respira-
tion-related features such as ATP production and maximal
respiration, while tumors with chromothripsis showed
lower oxygen consumption rate (OCR) values.

Glycolytic activity contributes to drug resistance in
chronic lymphocytic leukemia

Sensitivity to drugs is an informative cellular phenotype
that reflects pathway dependencies of tumor cells.10

Therefore, we asked how the 11 intrinsic bioenergetic fea-
tures were related to the vulnerabilities of CLL cells
towards a panel of 63 drugs applied ex vivo. This panel
comprised clinically used drugs as well as small molecule
probes of pathways important in leukemia. Using the
Pearson correlation test, we identified 118 significant
(FDR=10%) associations between drug sensitivities and
bioenergetic features (Figure 4A and Online Supplementary
Figure S5). Thirty-two drugs had at least one significant
association with a bioenergetic feature. A significant asso-
ciation between a bioenergetic feature and an ex vivo drug
response indicates that the sensitivity or resistance of CLL
samples to the drug is affected by the intrinsic activity of
the bioenergetic feature. 

At an aggregate level, glycolysis-related features of the
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Figure 2. Associations between genetic variants and bioenergetic features. (A) The distribution of P-values of the associations between each genetic variant and
each energy metabolic feature (ANOVA test). Gray: associations that did not pass a threshold corresponding to a 5% false discovery rate (FDR) (Benjamini and
Hochberg method); red: associations with higher bioenergetic values in mutated cases; blue: associations with lower bioenergetic values in mutated cases (or high-
programmed subtype). (B and C) Examples of associations, visualized in beeswarm plots. (B) Glycolysis and IGHV status. (C) Glycolysis and DNA methylation cluster.



CLL cells were positively correlated with the viabilities of
those cells after drug treatment, while respiration-related
features were negatively correlated. This suggests that
higher glycolysis activity of CLL cells reduces sensitivity
to drugs, while higher respiration activity contributes to
increased sensitivity ex vivo. There were more specific pat-
terns for drugs with different target profiles. CLL samples
with higher respiration activity were more sensitive to
kinase inhibitors, including the inhibitors of Bruton’s tyro-
sine kinase (BTK), ibrutinib, and of spleen tyrosine kinase,
tamatinib, both of which target the BCR pathway. In addi-
tion, two checkpoint kinase 1 (Chk1) inhibitors, AZD7762
and PF-477736, and the heat shock protein 90 (Hsp90)
inhibitor AT13387 showed similar association patterns,
which is in line with the report that they also target the
BCR signaling cascade.10 

Viabilities after treatment of drugs targeting mitochon-
dria-related biological processes (rotenone, venetoclax and
navitoclax) were positively correlated with the glycolysis-
related features (Figure 4A and  Online Supplementary Figure
S6) for most of the drug concentrations (Online
Supplementary Figure S5); the multivariate test results show
that this finding is not merely due to confounding by
IGHV status (Online Supplementary Figure S7). Rotenone is
a mitochondrial complex I inhibitor, which disrupts the
electron transport chain and thus blocks cellular respira-
tion. Therefore, the correlation between rotenone
response and glycolysis activity can be explained by the
fact that higher glycolysis activity or potential (with
increased metabolic flexibility) can compensate for cyto-
toxic effects of respiration inhibition by providing an alter-
native way of producing ATP. Venetoclax and navitoclax

are BH3-mimetics that target the BCL2 protein and lead to
mitochondrial damage and the inhibition of oxidative res-
piration.23 Thus, lower reliance on oxidative respiration is
a plausible explanation for the resistance to BH3-mimetics
of CLL cells with high glycolysis activity. We also
observed associations between glycolysis-related features
and the responses to orlistat, an anti-obesity drug, which
has also been identified as a pro-apoptotic agent in CLL by
inhibiting lipoprotein lipase (LPL),24 and KX2-391, an
inhibitor of the proto-oncogene tyrosine-protein kinase
Src (Online Supplementary Figure S6). 

We previously showed that although drug response
phenotypes of CLL cells were largely influenced by genet-
ic variants, there was still substantial variance in the drug
response phenotypes that were not explained by genetics.
Thus, we asked whether the energy metabolism profile
could add additional predictive information. For each
drug, we built two multivariate linear regression models
to predict its response profile: one included only the 20
genetic features shown in Online Supplementary Figure S2
as predictors, the other included these genetic features
plus 11 bioenergetic features. As a measure of predictive
strength, we compared the variance explained (R2 value
adjusted by numbers of predictors) between the two mod-
els. For most drugs, including bioenergetic features in the
model did not increase explanatory power (Figure 4B, dots
on diagonal line); moreover, responses to individual kinase
inhibitors were well explained by the genetic features
(blue dots in Figure 4B and Online Supplementary Figure S8).
However, for five drugs, including venetoclax and
rotenone, the variance explained increased by 10% or
more upon inclusion of the bioenergetic features (red dots
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Figure 3. Genes from the glycolysis pathway are down-regulated in immunoglobulin variable heavy-chain (IGHV) gene mutated  chronic lymphocytic leukemia (M-
CLL) samples. (A) Hallmark gene sets that are significantly (10%;  Benjamini and Hochberg method for false discovery rate) enriched among genes differentially
expressed between M-CLL and unmutated CLL (U-CLL). (B) Heatmap showing z-score of the expression values of glycolysis pathway genes that are differentially
expressed between M-CLL and U-CLL samples. (C) Beeswarm plots for the expression values of three key genes in the glycolysis pathway: 
PFKP (Phosphofructokinase, platelet), PGAM1 (Phosphoglycerate Mutase 1), and PGK1 (Phosphoglycerate kinase 1).
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in Figure 4B). In addition, except for cephaeline, bioener-
getic features were more significant than genetic features
in the multivariate models (Figure 4C).

Association between clinical course and energy 
metabolism of chronic lymphocytic leukemia 

The use of primary patient cells enabled us to investi-
gate the associations between bioenergetic features with
patient history or outcome in CLL. In our study cohort, 43
patients had received treatment before sample collection,

in all cases with chemotherapeutic agents (Online
Supplementary Table S1), and none of them was undergo-
ing treatment when samples were collected. Therefore,
we first asked whether these completed treatments prior
to sample collection affected the energy metabolism of
primary tumor samples, as studies have shown
chemotherapy or targeted therapy could drive clonal evo-
lution leading to drug resistance or oxidative stress.25-27 We
found two bioenergetic features, namely glycolytic capac-
ity and glycolytic reserve, associated with pretreatment

Characterizing energy metabolism of CLL

haematologica | 2019; 104(9) 1835

Figure 4. Correlation test results between drug response phenotypes and bioenergetic features. (A) y-axis: negative logarithm of the Pearson correlation test 
P-values. Only drugs with at least one significant association with bioenergetic features are shown (Benjamini and Hochberg method for false discovery rate (FDR)]
= 10%). Viabilities across different drug concentrations were aggregated using Tukey’s median polish method. Correlations with glycolysis-related features are in
warm colors and correlations with respiration-related features are in cold colors. The dotted line indicates the P-value threshold given by the Benjamini and Hochberg
method for FDR (10%). (B) Comparison of explained variance of drug responses between the multivariate model, including only genetic features, and the model
including genetic and bioenergetic features. (C) Red: predictors with significant   (<0.05) P-values in multivariate models for the drugs; red bar:  a positive association
with drug responses (higher drug sensitivity is associated with presence of the mutation or higher value of the bioenergetic feature);  blue bar:  negative association.
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status at a significance threshold of P<0.05 (Online
Supplementary Table S3 and Online Supplementary Figure
S9). However, pretreatment status was also highly corre-
lated with IGHV (P=0.0006, χ2 test). This reflects the fact
that U-CLL patients more frequently receive treatment
due to faster progression. Furthermore, glycolytic capacity
and reserve are correlated with IGHV status based on our
analysis (see above). Thus, to dissect confounding from
more direct association, we included IGHV status as a
blocking factor in a multivariate model. In this more in-
depth analysis, no significant association between pre-
treatment status and bioenergetic features was detected
(P<0.05). In a second analysis to assess potential roles of
pretreatment status on the biology of the tumor samples,
we revisited our association tests between the bioener-
getic features and: i) the genetic variants; and ii) the drug
responses. Including pretreatment status as a blocking fac-
tor had negligible impact on directions, strengths and 

P-values of these associations (Online Supplementary Figure
S10). Together, these results indicate that the treatments
experienced by 43 of our patients led to no detectable dif-
ferences between the metabolic phenotypes of their circu-
lating CLL cell samples and those of the other 97 patients.
Therefore, we proceeded with the subsequent analysis
using the combined dataset of 140 samples.

Returning to clinical outcomes, we considered two end
points: time to treatment (TTT) and OS. Univariate Cox
regression models indicated that glycolytic reserve, maxi-
mal respiration, and spare respiratory capacity were asso-
ciated with TTT, and glycolytic capacity and glycolytic
reserve were associated with OS (P<0.05) (Online
Supplementary Figure S11). Samples with higher values of
these features were associated with worse clinical out-
comes, i.e. shorter time to treatment and OS. In multivari-
ate Cox models including age, trisomy 12, deletion of
11q22.3, deletion of 17p13, TP53 mutation and IGHV sta-
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Figure 5. Associations between bioenergetic features and clinical course. (A and B) Kaplan-Meier plots for overall survival (OS) stratified by immunoglobulin variable
heavy-chain (IGHV)  gene status and glycolytic capacity (A) or glycolytic reserve (B). The cutoff to define high and low bioenergetic groups was estimated by maximally
selected rank test. The cutoff value and number of samples in each group are shown inside the parentheses in the figure panels. (C and D) Scatter plots for associ-
ations of CD38 expression with glycolytic capacity and glycolytic reserve.
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tus as co-variates, bioenergetic features were not picked
up as predictive for TTT (Online Supplementary Tables S4-
S6). However, glycolytic capacity and glycolytic reserve
were the most significant predictors for OS also in the
multivariate Cox models (Table 1), indicating that these
two glycolysis-related features provide additional OS-
related information to established variables such as IGHV
status, one of the most reliable prognostic markers in CLL.
M-CLL patients with low glycolytic capacity or reserve
showed best prognosis, U-CLL patients with high gly-
colytic capacity or reserve showed worst prognosis, while
the other two groups lie in between (Figure 5A and B).

We also investigated associations of each bioenergetic
feature to clinically relevant phenotypes including CD38

expression, CD49d (IGTA4) expression, and lymphocyte
doubling time (LDT), which are considered as indicators
for CLL progression.28-31 Again, we considered IGHV status
as a potential confounder (Online Supplementary Tables S7
and S8). There were significant correlations between
CD38 gene expression with glycolytic capacity and  gly-
colytic reserve (5% FDR) (Figure 5C and D). As well as the
known fact that CD38 expression is highly associated
with IGHV status,32 we found that it was positively corre-
lated to glycolytic capacity or glycolytic reserve in both
M-CLL and U-CLL disease subgroups (Online
Supplementary Figure S12). This result suggests an IGHV
status-independent link between CD38 activity and
adaptability of CLL cells to glycolysis as an energy source.

Characterizing energy metabolism of CLL
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Figure 6. Multivariate regression models for energy metabolism features. (A) Explanatory power (cross-validated R2) of datasets of different data types for the prediction
of the energy metabolic features. Error bars represent standard deviations of R2 over 100 repeated cross-validations. Numbers in parentheses after dataset names indi-
cate the number of variables in the dataset. (B) Visualization of fitted adaptive L1 (lasso) regularization multivariate models using drug responses, gene mutations,
immunoglobulin variable heavy-chain (IGHV) gene status, pretreatment status, and the top 20 principal components of the gene expression (RNASeq) data. Numbers in
parentheses indicate the number of samples used for the regression. (Bottom) Scatterplot of Z-scores of the energy metabolic features (i.e. centered by mean and scaled
by standard deviation). (Middle) Predictor values. The continuous variables [drug responses and gene expression principal components (PC)] are shown centered and
scaled using the red-white-blue color representation, the binary variables (genetic variants, IGHV status) in black and white (black: mutation present). (Left) Horizontal
bars show average model coefficients over 100 repeated cross-validations. Only the features that were selected at least 80 times out of 100 repeats are shown.



The complex network of chronic lymphocytic leukemia
energy metabolic predictors

While the analyses presented so far provide insights on
pairwise associations between bioenergetic features and
other tumor properties, we next aimed to create a sys-
tems-level map of the network of gene mutations, DNA
methylation, gene expression, ex vivo drug responses, and
bioenergetic features. We used multivariate linear regres-
sion with lasso regularization to predict each bioenergetic
feature by other available biological features and meas-
ured prediction performance using cross-validated R2
(Figure 6).

We first assessed to what extent each omics data type
alone, or the combination of all the datasets, explained
each bioenergetic features. The gene expression data and
the drug response data performed best in predicting bioen-
ergetic features (Figure 6A). Combining all datasets slight-
ly increased the predictive power for each metabolic fea-
ture, indicating that each set contains non-redundant
information. Notably, the glycolysis-related features were
better explained by the multi-omics data than the respira-
tion-related features (Figure 6A and Online Supplementary
Figure S13). 

We visualized predictor profiles for individual bioener-
getic features, focusing on the ex vivo drug responses, gene
expressions, and genetic variants (Figure 6B and Online
Supplementary Figure S13). In accordance with the above
univariate analysis, the multivariate model identified
IGHV status and response to mitochondria-targeting
drugs like venetoclax and rotenone as important predic-
tors for glycolysis-related features. In addition, SF3B1
mutation was identified as one of the top predictors for
glycolytic capacity and reserve, as its presence is associat-
ed with higher values. SF3B1 is an mRNA splicing factor
that is frequently mutated in CLL and associated with
more aggressive disease and worse survival, but its onco-
genic mechanism is still elusive.33 Another genomic aber-
ration, deletion of 13q14, was selected as one of the top
predictors for basal respiration and ATP production. 

Several principal components (PC) from the gene
expression datasets were also identified by the multivari-
ate modeling. PC8 was the top predictor with positive co-
efficient for all respiration-related features. As the genes
with high positive loadings on PC8 are enriched in E2F tar-
gets, this suggests that higher expression of E2F targets
associates with higher respiratory activity in CLL cells. On
the other hand, PC10 was the top predictor, with negative
coefficient, for maximal respiration and spare respiratory
capacity (Online Supplementary Figure S14). Based on
enrichment analysis, genes with high negative loadings on
PC10 are enriched in the mTOR pathway and therefore
this also suggests higher mTOR pathway activity associ-
ates with high respiration capability. These findings are in
line with previous reports that E2F transcription factors
and mTOR pathway are key players in regulating mito-
chondrial activity.34,35

PC 2, 4, 6 and 11 were identified as predictors for several
glycolysis-related features (Figure 6B and Online
Supplementary Figure S13). Gene set enrichment analysis
highlighted TNFa-NFκB signaling as the most enriched
pathway for genes with high loadings on PC2, 4 and 6
(Online Supplementary Figure S14). This finding is consis-
tent with previous reports that NFκB signaling pathway
controls energy homeostasis in inflammatory and cancer
cells.36 As we also found NFκB activation signatures in the

two published transcriptomic profiling datasets of BCR
stimulation (Online Supplementary Figure S3), which is in
line with previous reports that BCR stimulation activate
NFκB, we suggest that NFκB activation may play a role in
increased glycolysis after BCR activation.37,38 

Discussion

In this study, we identified molecular features that
underlie the heterogeneity of energy metabolism in CLL
and linked bioenergetic features with ex vivo drug respons-
es and clinical course. We found that, although CLL cells
and B cells have a similar basal glycolytic activity, CLL
cells had a significantly higher glycolytic capacity and gly-
colytic reserve, which are both indicators for the cell’s
potential to switch to glycolysis as an energy source when
necessary. Interestingly, we also found glycolytic capacity
and reserve, but not basal glycolysis, to be novel predic-
tors for OS in our cohort; CLL patients with higher gly-
colytic capacity and reserve showed worse prognosis. In
addition, higher glycolytic capacity and reserve were also
found to be correlated with high expression of the CD38
gene, a cell surface marker of B-cell activation and a nega-
tive prognostic marker in CLL. These observations can be
viewed in the context of a recent report of the increased
reliance of CLL cells on aerobic glycolysis to produce ener-
gy after a glycolytic switch induced by their contact with
stromal cells.39 Although we assayed circulating CLL cells
for our study, the glycolytic capacity and reserve in the
flux assay may actually measure the ability of CLL cells to
adapt to glycolysis in a stimulated state, similar to the
stimulation by stromal cells. Our findings thus imply that
circulating CLL cells may have previously undergone such
metabolic reprogramming and carry the metabolic reper-
toire that allows them to quickly switch to glycolysis
when a suitable stimulation occurs, e.g. upon stromal con-
tact. Our findings also suggest that the magnitude and effi-
ciency of this switch can  further impact the prognosis of
CLL patients.

We showed that U-CLL has significantly higher gly-
colytic rates, which validates the previous hypothesis that
U-CLL may have higher reliance on aerobic glycolysis due
to higher BCR signaling pathway activity.4,7 In addition,
we illustrated that the glycolysis pathway is more active
in U-CLL than M-CLL, accompanied by an upregulation
of key enzymes regulating cellular glycolysis. This indi-
cates that M-CLL and U-CLL have intrinsically different
energy metabolisms and that the BCR signaling pathway
may have a direct impact on the metabolic reprogram-
ming. We had previously attempted  to monitor circulat-
ing CLL cells in vivo by using fluorodeoxyglucose positron
emission tomography (FDG-PET), which pinpoints
anatomical locations with high rate of glycolysis.40 This
attempt failed due to insufficient sensitivity, and our
results suggest that considering the difference between
the M-CLL and U-CLL subtypes could increase the sensi-
tivity of this diagnostic approach.

We found that the CLL patient samples with gain of
8q24 showed increased respiratory activity. The likely rea-
son for this is the oncogenic activity of the extra copy of
the MYC proto-oncogene. Previous studies have shown
that MYC substantially contributes to mitochondrial bio-
genesis, and the overexpression of MYC leads to increased
respiratory capability in several cell line models, which is
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in line with our observation.41

In our study, we also highlighted the possibility of
exploiting heterogeneity of energy metabolism to
improve individualized patient care. We show that higher
glycolytic flexibility can contribute to the resistance of
CLL samples to  treatment with drugs that affect mito-
chondria, such as rotenone, venetoclax, and navitoclax.
We postulate that the cytotoxic effects of these drugs may
partially result from restricting the energy supply by
blocking cellular respiration and thus, cells with higher
glycolytic potential can counteract their effect due to high-
er metabolic flexibility.

The current study has certain limitations. Firstly, while
most of the proliferative activity of CLL cells appears in
lymph node and bone marrow, in this study we only used
circulating CLL cells due to the easier availability of
patient material, which was instrumental in providing an
adequate study size. In addition, although we observed
many biologically meaningful associations, these are gen-
erally weak, as indicated by the relatively small effect
sizes or correlation coefficients. While it is possible that
biological variables not measured by us contribute to the
heterogeneity in energy metabolism, a likely explanation
could be biological noise (since we are using patient sam-
ples instead of cell lines) and technical noise of the
Seahorse extracellular flux measurements, and the other

assays used. Indeed, our study is, to our knowledge, the
first that uses such a dynamic assay to systematically
interrogate energy metabolism on such a large scale.

Taken together, our in-depth characterization of energy
metabolism and integrative analyses provide valuable
insights on mechanisms underlying the metabolic regula-
tion of CLL cells, and reveal the possibilities of guiding
clinical diagnosis and individualized patient care based on
metabolic profiles. Our large-scale energy metabolism
dataset complements the current traditional omics
datasets, such as RNA sequencing, DNA sequencing, and
methylation profiling, and contribute to a better under-
standing of CLL biology.
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