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Abstract

Although measles incidence has reached historic lows in many parts of the world, the disease
still causes substantial morbidity globally. Even where control programs have succeeded in
driving measles locally extinct, unless vaccination coverage is maintained at extremely high
levels, susceptible numbers may increase sufficiently to spark large outbreaks. Human mobil-
ity will drive potentially infectious contacts and interact with the landscape of susceptibility to
determine the pattern of measles outbreaks. These interactions have proved difficult to char-
acterise empirically. We explore the degree to which new sources of data combined with exist-
ing public health data can be used to evaluate the landscape of immunity and the role of
spatial movement for measles introductions by retrospectively evaluating our ability to predict
measles outbreaks in vaccinated populations. Using inferred spatial patterns of accumulation
of susceptible individuals and travel data, we predicted the timing of epidemics in each district
of Pakistan during a large measles outbreak in 2012–2013 with over 30 000 reported cases. We
combined these data with mobility data extracted from over 40 million mobile phone subscri-
bers during the same time frame in the country to quantify the role of connectivity in the
spread of measles. We investigate how different approaches could contribute to targeting vac-
cination efforts to reach districts before outbreaks started. While some prediction was possible,
accuracy was low and we discuss key uncertainties linked to existing data streams that impede
such inference and detail what data might be necessary to robustly infer timing of epidemics.

Introduction

Despite considerable progress in reducing the global burden of measles infection over the last
decades [1], measles remains a leading cause of childhood mortality in many low-income
countries [2]. Measles control depends on the delivery of an effective and inexpensive vaccine
that confers life-long protection. Challenges associated with vaccine delivery mean that spatial
heterogeneity in coverage persists even in countries with otherwise effective vaccination pro-
grams allowing sporadic outbreaks to occur [3].

Characterising the features of control programs that allow measles outbreaks to occur is of
clear programmatic importance. The underlying principles are well understood: the timing
and magnitude of epidemics will be determined by seasonal fluctuations in transmission [4,
5] changing patterns of local susceptibility [6], extinction and the timing of introduction
events that spark transmission chains [7]. Local susceptibility is defined by the history of vac-
cination coverage, exposure to natural infection and birth rates [6] and will determine whether
measles goes locally extinct [6, 7]. Where measles is locally extinct, yet susceptibility is suffi-
ciently high, generally as a result of the accumulation of unvaccinated births, outbreak risk
depends on the probability of contact with an infected individual, shaped by patterns of spatial
connectivity resulting from human travel [6].

In endemic pre-vaccination settings, regular, seasonal patterns of susceptible depletion and
extinction and recolonisation occurred [6]. As countries introduced vaccination and eventually
approached elimination, this regularity was lost and heterogeneities in susceptibility and
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movement were likely to play an increasingly important role in
shaping dynamics [8]. Inference into the core drivers in these set-
tings is more challenging: sparser incidence and greater immunity
from vaccination amplify the role of stochasticity in dynamics.
This occurs alongside increased uncertainty in the observation
process since cases are rare. Theoretically, because both measles
infection and vaccination are immunising, population susceptibil-
ity can be directly calculated by accounting for past births and
subtracting natural infections and immunisation by vaccination.
In reality, in most vaccinated population settings, uncertainty in
historic case incidence [8], combined with spatially variable and
often poorly documented vaccination coverage and doses [9]
and complexities in disentangling vaccination from immunisation
preclude this analysis. For example, many countries have inaccur-
ate data on multiple doses, although this would help greatly illu-
minate the population at risk.

Settings with sufficiently detailed incidence data pre-
vaccination allow estimates of another important variable for mea-
sles dynamics: the patterns of population connectivity underpin-
ning re-introduction events [6]. Some populations experience
disease-free periods because they are too small to sustain transmis-
sion chains in the face of stochastic extinction [10]. The duration
of fade-outs (periods with zero detected cases) can be used to esti-
mate the probability of measles being introduced to a community
from another location. All else being equal, longer measles fade-
outs are expected for less connected cities. Consequently, by
accounting for seasonal fluctuations in measles transmission and
susceptible accumulation and depletion [6], the length of disease-
free periods can be used to estimate how connected each city is to
the rest of the country [11]. Using this approach, it has been
shown that for the UK, larger cities were more connected, i.e.
experienced a higher probability of the arrival of an infected indi-
vidual [11]. Similar approaches have been used to examine city
connectivity in other pre-vaccination settings [12]. The need for

accurately characterised patterns of susceptibility (challenging for
reasons described above), in tandem with knowledge of the sea-
sonal swing in the magnitude of transmission, complicate simul-
taneous estimation of these processes in vaccine-era settings.

Despite these challenges, understanding measles dynamics in
the vaccine era is an increasingly important public health goal
as progress is made towards elimination. While strengthening
routine programs is broadly agreed to be of fundamental import-
ance in moving forwards towards elimination [13], a related issue
is identifying priority areas for further investment in control. If
measles introduction risk can be adequately described, early
warning systems could allow reactive vaccination programs to tar-
get districts or cities at highest risk of introduction when out-
breaks occur. However, the degree to which health system data
on vaccination coverage and incidence is of sufficient quality to
allow the landscape of population susceptibility to be defined
remains unclear [14]. Also unclear is the degree to which alterna-
tive sources of travel data (beyond directly using incidence data as
described above) captures measles-relevant movement.

To characterise the degree to which it was possible to antici-
pate measles spatial dynamics based on existing data-streams
of vaccination coverage and mobility, we attempt to predict a
large measles outbreak that took place in Pakistan in 2012–2013
and evaluate our prediction by comparing our estimated spatial
and temporal outbreak risk to that observed via available inci-
dence data from the outbreak. Pakistan is a country with a large
(>185 million), mobile population with high birth rates (e.g. 31
births per 1000 population), as well as substantial spatial hetero-
geneity in measles vaccine coverage (see Supplementary
Information). Prior to 2012, Pakistan had experienced a decade
with very few large outbreaks of measles (Fig. 1a). In 2012–
2013, however, the country experienced a large outbreak with
more than 30 000 reported cases across the country (see
Figs. 1b for outbreak cases for provinces, 1c for districts). While

Fig. 1. The country, province and district level measles data. (a) The country reported measles cases per year from 1980 to 2010 from the WHO (black line).
Historically, the yearly number of cases has been steadily declining with <10 000 reported in recent years. In general, vaccination coverage has been increasing
(red line), although the vaccination coverage estimate varies depending on the data source with census (blue, green lines) estimates often lower than WHO esti-
mates (red). (b) In 2012–2013, a large measles outbreak was reported in Pakistan with over 30 000 suspected cases. The timing and province of these suspected
cases are shown for the course of the epidemic. (c) Alert case data (see Materials and Methods) for each district coloured by the corresponding province from
October 2011 to late November 2014 (province colours as in 1(b)).
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administrative measures of coverage – calculated as the number of
doses divided by the target population size – are estimated to have
increased from 60% to close to 90% since 2004 and the Pakistan
Population and Health census estimates suggest that coverage has
remained more or less stable at approximately 80% (by recall) or
60% (by vaccine record), implying that doses have been deployed,
but may not be reaching their targets (see Materials and
Methods).

Using an array of sources of measles data, vaccination coverage
and travel, we estimated the key features defining spatial and tem-
poral outbreak risk in Pakistan: population-level susceptibility and
connectivity. We additionally compared multiple approaches to
estimating human travel at the provincial and district spatial
scale in Pakistan including an analysis of mobile phone data
from approximately 40 million individual mobile subscribers
over 7 months (1 June–31 December 2013), as well as a known
human mobility model, i.e. the gravity model [15, 16]. We discuss
what further evidence would be required to strengthen this infer-
ence and to move forward in validating the power of novel sources
of travel data for early warning systems.

Materials and methods

Population and geographic data

Pakistan’s large population is divided into eight provinces and areas;
Balochistan, Punjab, Sindh, Khyber Pakhtunkhwa, Islamabad cap-
ital territory, Federally Administered Tribal Area (FATA),
Gilgit-Baltistan and Azad Jammu & Kashmir. We obtained gridded
population estimates and aggregated these data to the province and
district levels (http://www.worldpop.org). The percentage of the
population residing in urban and rural areas for each province and
district were derived from Worldpop as well.

Quantifying population-level susceptibility to measles

National routine vaccination coverage from 1980 to 2010 was
obtained from WHO and UNICEF estimates [3] (http://www.

data.unicef.org/fckimages/uploads/immunization/pakistan.pdf). At
a finer spatial scale, the Pakistan Population and Health census
reported province and district level routine vaccination coverage
values for urban and rural populations every 2 years (2004–
2012) from household surveys (available in Supplementary
Information, Fig. 1a, Table S2, Fig. 2a and b) across six of the pro-
vinces (Balochistan, FATA, Islamabad, KP, Punjab and Sindh, see
Fig. S1). A child is considered vaccinated if they have a record
of having received the measles-containing vaccine by 24 months
of age.

In addition to the routine vaccination program, between 2007
and 2008, major supplementary immunisation activities (SIA)
were conducted in the country with 66.5 million measles doses dis-
tributed, targeted to children ages 9 months–13 or 15 years [17]
(http://www.who.int/immunization/monitoring_surveillance/data/
en/). The ratio of doses deployed to the target population during
these SIAs was >100%. However, a third of the cases reported in
the 2012–2013 district level outbreak data were aged >5 years
and thus would have had the opportunity to be immunised during
the SIA (see Supplementary Fig. S5), suggesting less than complete
coverage. We consequently assume coverage during SIAs to be 80%
and verified that qualitative results were not sensitive to the exact
value assumed (which may, in fact, be much lower, see e.g. [18]).

The data on routine and SIA coverage must then be combined
with an estimate of the pattern of infection over age to estimate
the fraction of the population that was immune at the time of
the outbreak (2012). For each age, a, we first assumed that the
proportion in that age cohort immunised by routine vaccination
reflected the routine vaccination coverage reported for the year
of their birth, using the finest spatial scale available in the relevant
year (i.e. country, province, or district; for older individuals only
country scale data was available). Next, for age cohorts that were
within the target age range for SIAs, we increased this proportion
to 80% if this value was larger than the reported value for routine
immunisation, i.e. we assume complete overlap between vaccin-
ation campaigns and routine immunisation, as a conservative esti-
mate that minimised our estimate of combined coverage. To
account for the impacts of natural infection on susceptibility,

Fig. 2. The vaccination and travel data for Pakistan. The
reported vaccination coverage levels per district via the
Pakistan Population and Health census (see
Supplementary Information, Materials and Methods for
details) in (a) 2004 and (b) 2012. Vaccination coverage is
spatially heterogeneous with low coverage in Balochistan
and KP provinces. Punjab has the highest coverage values,
although even in this province many districts have coverage
levels lower than 90%. In many locations, coverage has
decreased from 2004 to 2012, most notably in Balochistan
and the southern part of Punjab. (c) Using the mobile
phone data or the (d) gravity model, travel between districts
(black points) was quantified (see Materials and Methods).
The top 0.5% of routes (based on the amount of travel)
between districts is shown as an arrow. Travel estimated
from the mobile phone data indicates large amounts of tra-
vel between Sindh province (pink) and Punjab (purple) with
little travel to/from Balochistan (yellow).
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we set the proportion of individuals protected by maternal
immunity at age a to exp(−0.0375a) following [19]; and assumed
that individuals acquired measles according to a constant hazard
of infection of age. This was set such that in 1980, 90% of indivi-
duals were infected by age 20; to capture the fact that the hazard
of infection will decline as vaccination coverage increases and case
numbers fall, this rate was reduced according to the ratio of cases
to have occurred over the period of low incidence between 1990
and 2012 (during the period of low incidence) relative to those
in 1980 (as reported in [3]) yielding a P(infection by age a) = 1
− exp(−0.055 × a). This is clearly a simplification given the poten-
tial for erratic outbreaks, but as we were uncertain of the ability of
the existing data to inform such spatial and temporal heterogen-
eity, we chose to use this relatively simple one-parameter
approach. Modifying this rate does not alter the qualitative results
of the analysis.

Quantifying population travel

Mobile phone data
We analysed all voice-based, originated, call data records (CDRs)
from 39 785 786 subscriber SIMs over a 7-month period, from 1
June till 31 December 2013 (see Fig. S8 for a geographic coverage
map). These data are de-identified and are not considered human
subjects data. These data were previously described elsewhere
[16]. The tower level mobile phone data were aggregated to the
corresponding district (admin level 2). On average, 15.2 million
subscribers generated a record in the CDR per day. At the time
of data acquisition, the mobile network operator was the second
largest provider in Pakistan with approximately 25% of the mar-
ket share. This source of information on connectivity is limited to
national travel based on the operator data analysed and more
detailed information about spatially variable subscribership was
unavailable.

We focused on data originating from the six most populated
provinces in Pakistan (Balochistan, Islamabad, FATA, KP,
Punjab and Sindh) that also reported vaccination coverage esti-
mates (Table S2, Fig. S1). Using previously developed methods,
we estimated the daily location based on each subscriber’s most
frequently used mobile phone tower [16]. Every caller was
assigned to their most frequently used base station/mobile
phone tower on a given day. Using the inferred daily location
of each caller based on the longitude and latitude of the most fre-
quently used or most recently used routing tower, we measured
daily travel between mobile phone towers relative to subscriber
location on the previous day. Trips were aggregated to each dis-
trict (Fig. 2c) based on the location of the origin and destination
tower. The majority of travel connected Sindh and Punjab pro-
vinces (see Fig. 2c) along the major national highway (see
Fig. S4 for a major roadmap). For further analyses designed to
explore the degree to which this data capture measles relevant
introduction pressures, we also aggregated all incoming trips to
create a single measure of incoming travel.

Gravity model
Although we were able to directly measure mobility patterns using
mobile phone data, in many instances these data may not be avail-
able, particularly during an outbreak. In lieu of these data, trad-
itional sources of travel data, such as a national census, may be
used. However, in Pakistan, these data are unavailable, leading
us to use a baseline spatial interaction model as a basis of com-
parison for mobile phone travel, i.e. the gravity model. This

type of model using the below framework is possible to quantify
in lieu of these other data sources. Following a naïve gravity
model specification, the amount of travel between districts i and
j of population size Ni and Nj (with populations obtained from
Worldpop) is equal to NiNj /distance(i,j), [20] and distance
reflects Euclidean distance between district centroids (see
Fig. 2d). Previous analyses have found that the effect of both
source and destination population sizes scales with an exponent
slightly larger than unity [21]; and that there was either no effect
of distance [21]; or linear scaling as in the relationship above [22].
Since it was not clear exactly what scaling might be appropriate in
this setting and since qualitative patterns were invariant for small
changes in exponents on the components of the numerator and it
seemed reasonable to assume some effect of distance, we retained
this simple framing.

Available measles data

We used three sources of measles data: national reported cases,
province outbreak cases and district alert data.

National level historical data
Yearly countrywide measles cases have been reported to the WHO
since 1980 (Fig. 1a); and are available in the Supplementary
Information (Fig. 1a).

Province level case data
During the 2012–2013 measles outbreak, the number of cases per
province were reported in the Weekly Epidemiological Reports
published by the National Institute of Health, Islamabad and
the World Health Organisation, as part of a weekly disease system
that provides highlights of their early warning disease system and
responses to these warnings across the country. These data were
digitised (mid-September 2012– early September 2013) (Fig. 1b,
Supplementary Information for data) and geolocated to the six
most populated provinces (Balochistan, FATA, Islamabad,
Khyber Pakhtunkhwa (KP), Punjab and Sindh).

Alert district level data
The Weekly Epidemiological Reports also publishes measles-
related ‘outbreaks’ and ‘alerts’. Alerts are any report of a suspected
case of measles in any reporting health facility in the week.
‘Outbreaks’ are defined as five or more related cases from a single
alert. We analysed the data of reports that met the outbreak clas-
sification but refer to these cases as alert cases to avoid confusion
with the 2012–2013 outbreak-related case data. These reports
were digitised from week 40, 2011 to week 48, 2014 (see Fig. 1c,
Supplementary Information). The location (up to the reported
district), date, the age of the cases (<5 or 5+), gender and a num-
ber of measles cases associated with each alert (five or more asso-
ciated cases) were analysed. Importantly, surveillance system
capacity is likely to vary across the country and this will result
in a distorted view of the pattern of outbreaks. Our focus here
was on evaluating the potential for using existing data-streams
to project future outcomes, so we did not investigate this further,
but an interesting direction for future research might be to evalu-
ate correlation between vaccination coverage, case reporting and
other economic or development indices across districts to develop
an index for surveillance capacity across the country.
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Combining the landscape of susceptibility with mobility to
define outbreak risk

We predicted the timing of measles outbreaks from the available
data on susceptibility and mobility and evaluated this prediction
using the available incidence data. In a district that currently
has no measles cases, a new outbreak will spark if there is contact
with an infected individual from elsewhere and if both the size of
the susceptible pool and the magnitude of transmission are suffi-
cient to allow the epidemic to take off [6]. The discrete time haz-
ard of the outbreak, h(t,j), for time t and location j, can be
estimated as:

h(t, j) = bSt,j(1− exp (−(∑k c j,kxt,k) St,j))
1+ bsSt,j

where β is a transmission coefficient; St,j is the proportion of the
population that is susceptible in location j calculated as described
above; cj,k reflects mobility from location k to location j; and xt,k is
the fraction of the population that is infected in location k. We
can compare outcomes for connectivity matrices cj,k that (i)
assume equal connectivity in all locations, (ii) follow the gravity
model and (iii) follow the mobile phone data.

Estimating the magnitude of transmission β is intractable given
the measles incidence data available for Pakistan and we thus
assume a value reflecting R0 = 15 as observed for measles in
many settings [6]; changing this does not change the qualitative
results of our analysis. We assumed that transmission did not
vary spatially, or seasonally, despite the fact that seasonal fluctua-
tions in transmission linked to seasonal changes in population
aggregation are a general feature of measles [11, 23]. However,
if the seasonal variation is similar across the country, as might
be the case if school terms are the key driver [11], this will miti-
gate the impact on our inference.

We initiated our analysis assuming that a case was present in
each of the districts where alert data reported (starting the analysis
during the week of 22 September 2013) and then projected mea-
sles incidence by simulating a stochastic process of introduction
into districts where measles was currently extinct according to
the hazard defined above:

It+1,j � Binom(h(t, j)) for It = 0

In districts where measles had emerged, we simulated deter-
ministic dynamics, including both transmission and susceptible
depletion, according to:

It+1,j = bSt,jIt,j for It . 0

St+1,j = St,j − It,j+1 + (1− v)b

where β = 15 as above, v is the vaccination coverage in each dis-
trict, b is the approximate birth rate (∼28 per 1000 per year)
and we use a time step of 2-weeks, the generation time of measles.

As neither the gravity model nor the mobile phone data pro-
vide absolute measures of individuals moving (e.g. for the mobile
phone data, we are constrained to subscribers), to create predic-
tions that resemble the observed patterns of the timing of measles
outbreaks across districts first requires rescaling the mobility
matrices. Accordingly, we first simulated time-series of measles
for the metapopulation of districts in Pakistan, across a gradient

of scalars multiplying each of the three connectivity matrices
and introducing the resulting cj,k into the equation for h(t,j)
defined above. We repeated the simulation 100 times for each
value of the scalar. We then selected the scalar that resulted in
the minimum sum of squares difference between the observed
and predicted timing or biweek in which measles was first seen,
in each district across the 100 simulations for each scalar (see
Fig. S6).

With each type of connectivity matrix scaled to most closely
reflect the observed pattern of outbreaks, we subsequently simu-
lated measles dynamics across the metapopulation of Pakistan
and compared the timing of measles outbreaks in each district
to the timing of measles outbreaks observed in the data (Fig. 3).
In order to better understand how and where prediction failed,
we plotted the pattern of residuals across provinces to see if dis-
tricts from particular provinces tended to be delayed or earlier
in the simulation relative to the observed. Delays could be attrib-
uted to under-estimation of susceptibility or under-estimation of
connectivity to districts within this province; and vice versa.

Results

Vaccination coverage varied by province and between rural and
urban areas. For example, Islamabad, the capital province, con-
sistently reported the highest routine vaccination values for
both rural (average over the time frame: 92.2%) and urban (aver-
age over the time frame 89.8%) populations. By contrast,
Balochistan, a primarily rural province (10% of the population
lives in urban areas) in the western part of the country, had the
lowest vaccination values for both urban (average over the time
frame: 77.4%) and rural areas (average over the time frame:
47.8%) (Fig. S1). Nationally, in the years following 2005, vaccin-
ation coverage values were all below the 90% theoretical threshold
for measles elimination required even for a relatively low estimate
of R0 = 10 (see Fig. 1a). This translates into a considerable risk of
outbreaks throughout this between 2005 and 2012, particularly
given large birth cohorts. The SIA in 2007–2008 may have been
partly responsible for the fact that outbreaks were not observed.
However, evidence for lower coverage in this campaign [24] sug-
gests a role for other aspects. Candidates include heterogeneity in
vaccination coverage, coupled with incomplete mixing across the
country, which could interrupt disease circulation and delay the
outbreak, even though herd immunity had not been established.

At smaller spatial scales (Fig. 2a and b, Supplementary
Information for data), vaccination coverage ranged from an aver-
age of 0–99% (mean: 79%, standard deviation: 19%) in urban
areas, 3–99% (mean: 72%, standard deviation: 20%) in rural
areas. By 2010, only 4% of the districts had >90% vaccination
coverage [16] (mean vaccination coverage for districts: 73% in
2010, 2012, see Supplementary Information for data, Fig. S1,
Fig. 2a and b) and in many parts of the country, vaccination
coverage values have been decreasing [24] (Fig. 2a and b,
Supplementary Information for data) with possible explanations
including failures in the supply chain, difficulty reaching nomadic
populations and an increased reliance on non-routine vaccination
campaigns [24]. Even in areas with some of the highest coverage
levels (e.g. Punjab) vaccination coverage levels alone suggest the
potential for outbreaks (Fig. S1). Districts in Balochistan and
Sindh, in particular, experienced strikingly high risk (vaccination
coverage of only 58% and 70%, respectively in 2010). Again, vac-
cination heterogeneity and contact heterogeneity are likely to have
played a role in delaying contacts between infected and
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susceptible individuals, thus delaying measles spread and result-
ing in the large observed outbreak.

Using these data, we estimated population-level susceptibility
combining vaccination and natural immunity (Supplementary
Information). Overall, province level susceptibility varied between
9% (Islamabad) and 14% (Balochistan) (see Fig. S2). District level
susceptibility had a wide range of values 7% – 20% (mean 11%)
(see Fig. S3).

To estimate potential routes of measles introduction events, we
first analysed mobile phone data from mobile phone subscribers
between 1 June and 31 December 2013, using methods previously
described (see Materials and Methods, general travel results found
in [16]). The sampled population took an estimated 53 000 aver-
age number of trips between provinces (300 average number of
trips between districts) per day. The majority of travel followed
a southwest – northeast corridor along the major highway to/
from Punjab and Sindh provinces (see Fig. 2c, Fig. S4 for a
major roadmap). Across Pakistan, we also identified a large
amount of travel between districts, occurring predominantly
within provinces – but there is also considerable travel between
districts in the Punjab and Sindh provinces and districts in
other provinces (see Fig. 2c). In comparison, the amount of travel
estimated from the gravity model is primarily trips to Punjab
province (see Fig. 2d). For districts, the gravity model estimates
a more diffuse pattern of travel with less within-province travel
than the mobile phone data suggests.

We evaluated the degree to which population-level susceptibil-
ity and three estimates of connectivity (mobile-phone derived,
gravity model derived and uniform, i.e. assuming equal connect-
ivity between all districts of Pakistan) could describe the spatial
and temporal patterns of 2012–2013 measles outbreak (see
Fig. 1b, Fig. S5 and Supplementary Information for outbreak
data). Cases were reported in all provinces, with the majority in

Punjab (8529 cases) and Sindh (6684 cases), where 75% of the
population resides (see Fig. 1b). The earliest reported cases were
in Sindh, Azad Kashmir (AJK) and Balochistan provinces (see
Fig. 1b). Sindh is the second most populous province whereas
AJK and Balochistan are predominantly rural (Fig. 1b). The out-
break peaked latest in Punjab province.

We would expect early outbreaks in locations with a large
amount of incoming travel and high susceptibility since these
locations are the most at risk of an introduction event (incoming
travel) and subsequent outbreak (susceptibility). This would sug-
gest that Punjab, Sindh and KP should have the earliest outbreaks
with Islamabad unlikely to have an early outbreak (see Fig. 1b,
Fig. S2, Supplementary Information). Although Sindh and KP
do have cases early on (see Fig. 1b), surprisingly the outbreak
does not reach Punjab until much later. When we consider the
district level alert data (if a clinic reported at least five suspected
linked cases of measles based on the clinical presentation) from
2011 to 2014 (Fig. 1c), that includes the large 2012–2013 out-
break, the relationship between the timing of reported cases, dis-
trict level susceptibility and incoming travel is also at odds with
expectations. Although the earliest district alerts occurred in
Sindh, followed later by Punjab, as broadly expected based on vac-
cination coverage and connectivity (Fig. 1c, Fig. S2 and S3,
Supplementary Information), a regression with magnitude of con-
nectivity and coverage fitted as covariates explains very little of the
variation in timing of outbreaks (adjusted R2 = 0.188, see
Table S1). Beyond potential biases in estimates of the timing of
outbreaks resulting from variability in health facility reporting,
this mismatch may be because these analyses do not take into
the underlying transmission dynamics.

Accordingly, to formally evaluate the effect of susceptibility
and connectivity on the distribution of delays until case occur-
rence in the alert data, we simulated the pattern of outbreaks

Fig. 3. Simulations of the timing of outbreaks for three
connectivity models. Using a flat connectivity, gravity
model and mobile phone data we simulated the time
series of incidence for 60 biweeks for each district.
One example simulation of time series of incidence
for each model (top row), the median predicted the
timing for each district across provinces for 100 simu-
lations (middle row) and residuals for each district
around a regression linking the median of 100 simula-
tions to the observed timing organised by province
(bottom row). This latter is evaluated to explore the
degree to which the evidence suggests that susceptibil-
ity and/or connectivity might be over or under-
estimated in particular provinces. For both the gravity
model and the mobile phone connectivity-based
model, there is a suggestion that Balochistan is more
delayed in the simulations as expected; and Punjab
is earlier than expected.
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under an array of connectivity patterns (Fig. 3, top row). All mod-
els broadly predict that outbreaks should start in Sindh, followed
by Punjab, followed by KPK or ICT; Balochistan is generally
anticipated to come last (Fig. 3, 2nd row). Yet, the province
data indicate much earlier outbreaks in Balochistan provinces
(Fig. 3, 3rd row), with Punjab coming last, indicative of a mis-
match across the different data sources, even when dynamical
interactions are accounted for.

To evaluate the accuracy and bias of projections of the timing
of the different connectivity matrices, we compared the correl-
ation between the predicted timing of outbreaks in districts and
the observed timing across 100 simulations (Fig. 4a). This indi-
cated the lowest correlation on average for the assumption of
equal connectivity between all districts (median correlation of
−0.01, quartiles of −0.09 and 0.09), intermediate correlation for
the gravity model districts (median correlation of 0.12, quartiles
of 0.02 and 0.25) and highest correlation for the mobile phone
data (median correlation of 0.35, quartiles of 0.21 and 0.45).

The public health application of the analyses described here
will be in shaping the strategic deployment of vaccination cam-
paigns in order to mitigate outbreaks by arriving early. We there-
fore also evaluated the fraction of cases appropriately predicted to
occur after a chosen time-horizon for each of the three connect-
ivity matrices (Fig. 4b). Early on, all three do equally well and
have good concordance with the data (expected since most loca-
tions have yet to experience an outbreak); after approximately the
6th month, the mobile phone data provides the best projection. It
is important to note, however, that even for this ‘best’ model,
accuracy is still low.

Discussion

Measles control efforts are strengthening globally and more and
more countries are approaching elimination [8]. Given persisting
inadequacies in vaccination programs, the trajectory towards
elimination may result in a period of low incidence that allows

accumulation of susceptible individuals [25], as not everyone is
vaccinated, but the risk of infection of unvaccinated individuals
is reduced, as the infection is rare, so that these unvaccinated indi-
viduals may age without acquiring infection until re-introduction
of the pathogen starts an outbreak. Large, late age outbreaks fol-
lowing such a ‘honey-moon’ period have been observed in many
parts of the world (e.g. Burkina Faso 2009 [26], Cameroon 2008–
2009 [27], Zambia 2010–2011 [28], Malawi 2010 [29], France
2008–2011 [30]), often demonstrating detectable spatial spread
[29]. Preparing for a disease outbreak by either planning reactive
vaccination or increasing vaccination coverage preemptively at
the local scale is a key way to reduce mortality and morbidity
in such measles honeymoon outbreak settings [29]. Early inter-
ventions will have the greatest impact on measles morbidity and
mortality [31] and substantial numbers of cases may be averted
even if the outbreak has already started [32]. It can take several
months to organise a vaccination campaign (around 2 months,
for example, during the 2010 outbreak in Malawi [29]) and any
sources of information that could allow for earlier warning and
targeting of investment in campaigns would be a powerful
improvement.

The potentially considerable public health benefits of antici-
pating measles outbreaks [32] lead us to explore our ability to pre-
dict the timing of outbreaks based on available epidemiological
data, combined with estimates of human mobility. Given the
data available, our framework could predict more than half the
districts where outbreaks would start after ∼4 months in the
future; and, assuming mobile phone derived connectivity, could
predict up to around 20% of outbreaks that would start after
∼6 months in the future (Fig. 4b). While this provides an inter-
esting starting point of potential relevance for vaccination efforts,
accuracy is still low and the range of predictions is wide (Fig. 4b).
Further, although ordering of district outbreaks itself is likely to
be of value for prioritisation of control efforts in resource-poor
settings and this characteristic will be tractable with only informa-
tion on susceptibility and connectivity, identifying the magnitude

Fig. 4. Comparison of prediction of outbreak order for three con-
nectivity models (flat in blue, gravity models in grey and model
phone data in red) showing (a) the distributions of correlations
between the observed and expected; and (b) proportion of dis-
tricts accurately predicted to occur in the future for varying
delays (colours as in previous), relevant for planning
interventions.
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of timing (e.g. time in months till the outbreak starts) will require
more information. Here, we leveraged simulations based on the
known trajectory of outbreaks to predict the timing (Fig. S6)
and this data will not be available in settings where vaccine target-
ing must be deployed.

Interpreting our results is complicated by the fact that all three
sources of information that we build upon each are subject to
potential biases, which could have contributed to a mismatch
between our simulations and the observed patterns. These include
misspecification of patterns (i) of incidence; (ii) of susceptibility;
and (iii) of connectivity.

First, measles case data are only available at broad spatial reso-
lution (i.e. the province level), which could obscure the order of
emergence. While ‘alert data’ are available at finer spatial scales
(the district level), its potentially erratic nature might obscure
the nuance of the order of emergence. The ideal source of data
for this analysis would be measles case data at the district level
over multiple years, allowing inference into patterns of connectiv-
ity from the measles data itself (i.e. as in [22, 33]). Despite these
issues, it remains possible that the ordering of outbreaks indicated
by the case and alert data is accurate: in particular, the mismatch
identified suggests that outbreaks in Sindh and Balochistan pre-
cede outbreaks in Punjab, despite the fact that Punjab, a
resource-rich province, is likely to have a well-performing surveil-
lance system and therefore, if anything, one which should be
reporting outbreaks earlier if there were cases. This suggests that
the quality of the measles data alone may not be the main issue.

Second, predicting the timing of outbreaks requires unbiased
estimates of susceptibility that will be based on fine-scale estimates
of vaccination coverage [9]. Generally, spatial fluctuations in
reporting are a major challenge to obtaining this information
and cross-validation between different data sources (for example,
evaluating whether estimates of vaccination coverage, incidence,
the age of infection follow expectations across locations) will be
important to strengthen our knowledge of variability in patterns
of measles vaccination coverage. Here, we benefited from an exten-
sive household survey based data-source (rather than the usually
available administrative data). However, these data necessarily
reflect a subsample of the population and are only available in a
subset of years, so uncertainties are likely to persist. Additionally,
vaccination alone will not be the only source of immunity.
Despite the strikingly large caseload studied here, suggestive of
a post-honeymoon outbreak [25, 34], various other threads of evi-
dence indicated that solid herd immunity had not been estab-
lished, thus pointing to a role for persistent erratic local chains
of transmission in shaping spatial patterns of susceptibility, as
well as emphasising a more important immediate investment
case in bolstering immunisation programs. Although we can
only address this question at a relatively broad scale (districts)
and cannot address the fact that altering any driver (susceptibility,
connectivity, etc.) will modify the whole pattern of timing given
the tightly interdependent nature of the components, our investi-
gation suggests that, if the connectivity matrices are accurate,
districts in Balochistan might be over-estimating vaccination
coverage. Indeed, increasing susceptibility in this province within
our simulation framework moves the timing of outbreaks in
Balochistan to closer to the observed timing (Fig. S7).

Finally, understanding the timing of measles outbreaks
requires being able to capture connectivity of human populations.
Although technically, the spatial scale of mobile phone data or the
gravity model could be very fine, we were constrained by the scale
of the incidence data to focusing at the district level and this

might have obscured the patterns we were trying to titrate.
Alternatively, it might be the case that neither measure appropri-
ately reflects mobility of key individuals for measles introductions.
Gravity-like models are likely to yield an oversimplified descrip-
tion of human movement [15], but mobile phone data may also
be biased by ownership and call frequency, particularly given
that mobile phone owners are more likely to be adults and in
Pakistan, children are the highest burden of measles (although
analyses in Kenya suggest that children are unlikely to travel with-
out an adult [35]). In addition, the mobile phone data only cov-
ered 7 months of the year possibly missing seasonal differences in
travel. A longer time series of mobility data could help address
these concerns. Additionally, ever increasing mobile phone own-
ership could further strengthen the precision of this data-stream
in calibrating patterns of human mobility.

Additionally, neither model of connectivity deployed tackled
the issue of international travel patterns, despite the possibility
of introductions from outside of Pakistan being an important
consideration, particularly from neighbouring Afghanistan
where vaccination coverage is low (e.g. vaccination coverage was
∼60% in 2013), measles cases are regularly reported and which
represents the largest proportion of the migrant population in
Pakistan (57%) [36]. Data on cross-border importation is difficult
to obtain, although the politically closed situation in Pakistan
makes importations from China, India and Iran unlikely since
the majority of its borders are highly restricted. The impact of
international travel will vary by connectivity and current measles
epidemiology in neighboring countries.

To conclude, our analysis suggests that it is possible to antici-
pate the ordering of outbreaks across districts following a honey-
moon period if data on susceptibility and connectivity is
adequate. Furthermore, given a priori expectations for likely
uncertainties in the data available (e.g. in susceptibility, but also
reporting of incidence and connectivity), our model framework
could be used to systematically explore their role in modulating
timing and the mismatch between simulated and observed
dynamics (as in Fig. S2 to explore the role of susceptibility in
Balochistan). Such analyses, combined with analyses across fur-
ther settings, especially settings where case data is routinely
reported in a spatially resolved and timely fashion could delineate
the limits of predictability within this framework and thus its
potential to guide vaccination targeting within the current land-
scape of measles elimination efforts.
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