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Abstract: Measuring gases for environmental monitoring is a demanding task that requires 

long periods of observation and large numbers of sensors. Wireless Sensor Networks 

(WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to 

monitor large, remote, and difficult access areas, as these technologies have the possibility 

of carrying specialized gas sensing systems. This paper presents the development and 

integration of a WSN and an UAV powered by solar energy in order to enhance their 

functionality and broader their applications. A gas sensing system implementing 

nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to 

measure concentrations of CH4 and CO2. Laboratory, bench and field testing results 

demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during 

flight operations. The field testing integrated ground sensor nodes and the UAV to measure 

CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during 

the mission was transmitted in real time to a central node for analysis and 3D mapping of 

the target gas. The results highlights the accomplishment of the first flight mission of a solar 
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powered UAV equipped with a CO2 sensing system integrated with a WSN. The system 

provides an effective 3D monitoring and can be used in a wide range of environmental 

applications such as agriculture, bushfires, mining studies, zoology and botanical studies 

using a ubiquitous low cost technology. 

Keywords: air pollution monitoring; environmental monitoring; gas sensors; greenhouse 

gases; nanostructured metal oxide sensors; UAV; UAV; WSN; solar energy 

 

1. Introduction 

Large scale monitoring of gases produced by the environment, industry and agriculture is a 

demanding task that requires long periods of observation, large numbers of sensors, data management, 

high temporal and spatial resolution, long term stability, computational resources, and energy 

availability. WSNs and UAVs are a good alternative for such demanding tasks, although their 

development and availability is limited by factors such as sensor stability over long periods, energy 

availability when deployed in remote areas, payload weight for small Unmanned Aerial Vehicles 

(UAVs), management of data produced by sensor nodes, and cost.  

Recent technological improvements in gas sensors, electronics, telecommunication, solar cells, and 

avionics have made possible the development of WSNs and UAVs equipped with gas sensing systems 

for high spatial and temporal resolution. Such systems have broad scientific and industrial applications 

including monitoring anthropogenic emissions of greenhouse gases (GHG) such as CO2 [1,2], as well as 

local pollutants from bushfires, cities, factories, and agricultural fields such as NO2 [3,4] and CH4 [5–7]. 

Practical application of WSNs has been proposed for monitoring fugitive CH4 emissions [6], coal fields 

or biomass degradation (landfills) [7], and NH3 and N2O gas releases from fertilizer use [8,9]. Some of 

these systems are already commercially available, but the cost/benefit ratio is still too high to be widely 

used. WSNs are essential to monitor large areas such as cities, roads, and forests due to their ability to 

communicate via nodes and multi hop data. These functionalities for example may allow the tracking 

and mapping of gas plumes to identify the plume origin at ground level.  

UAVs can play an important role in environmental gas sensing in remote areas due to their capability 

to carry instruments, sensors and collect data with high spatial and temporal resolution [10,11]. UAVs 

have already been used to this purpose; for instance, Watai et al. [12] reported on the development of a 

non-dispersive infrared (NDIR) sensing system on a small UAV to monitor atmospheric CO2 

concentrations. The authors designed and built an economic and accurate gas sensor system (±0.26 ppm 

precision) and performed several flight tests with a one hour flight autonomy and 3.5 kg payload. 

McGonigle, et al. [13] reported the measurements of volcanic gases with a helicopter UAV at La Fossa 

crater, Volcano (Italy), using an ultraviolet and infrared spectrometer to measure SO2 and CO2 gas 

concentrations. This UAV had a 3 kg payload weight and 12 min flight autonomy. Astuti, et al. [14,15] 

developed a fixed wing UAV for volcanic monitoring at Mt Etna. The UAV carried a CO2 infrared 

spectrometer and an SO2 electrochemical sensor. Khan, et al. [16] developed a greenhouse gas analyser 

using a vertical cavity surface emitting laser (VCSELs) embedded in a helicopter UAV. CO2, CH4 and 
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water vapour were targeted by developing a sensing module for each targeted gas, with a vertical and 

horizontal resolution of less than 1 m. Each module weighed 2 kg and required 2 W of power to operate.  

The most popular gas sensing technology used in WSNs for environmental monitoring is based on 

Metal Oxide (MOX) resistive sensors, while optical gas sensing devices are more popular among UAV 

users [6,7,9,12,13,17]. This research aims at using the same sensing technology to integrate WSNs and 

UAVs in order to reduce complexity and cost. Both technologies were evaluated according to their 

advantages and disadvantages for ground and aerial mission; monitoring of continuous and instant 

release of pollutants; computational resources required; maximum achievable resolution; and financial 

cost. Table 1 presents a comparison of these two technologies. 

Table 1. Advantages and disadvantages of MOX and optical gas sensing technologies when 

used in WSNs and UAVs. 

Category 
MOX Sensors Optical Sensing Techniques 

Advantages Disadvantages Advantages Disadvantages 

Aerial 

missions 

Low energy 

consumption and 

light weight 

Slow sensor response 

hinder aerial applications 
Tested and proved 

Energy consumption and 

weight may limit  

flight endurance 

Ground 

missions 
Tested and proven 

Cross reference to 

different gases and 

sensitive to humidity 

High sampling 

frequency, high 

specificity to target gas 

No literature found, 

sensor are too expensive 

to be left unattended 

Continuous 

release mission 

Low energy and light 

weight, covers wide 

range of gases 

No literature found 

High sampling 

frequency, high 

specificity to target gas 

Energy consumption and 

weight may limit  

flight endurance 

Instantaneous 

release 

Low energy and light 

weight, cover wide 

range of gases 

Low sensor response 

time 

High sampling 

frequency, high 

specificity to target gas 

Energy consumption and 

weight may limit flight 

endurance 

Computational 

resources 

Few output variables, 

and same variables 

remain over large 

range of gases 

No literature found - No literature found 

The number of output 

variables to measure 

depends on the optical 

technique used and  

target gas 

Resolution 

Regular resistive 

sensors achieve ppm 

resolution 

Few sensors achieve ppb 

resolution 

Several techniques 

achieve ppm and  

ppb resolution  

No literature found 

Cost position 

in Market cost 
Low None 

NDIR modules  

have Low 

Complex systems 

Medium to High 

Recent advances in nanotechnology have benefited the development of MOX sensors facilitating the 

synthesis of novel classes of materials with enhanced gas sensing performance [18]. Within this nano-range, 

the physical, chemical, optical, mechanical, electronic and biological properties of these materials can be 

substantially different from those observed for the bulk sensing materials [18,19]. Such unique properties 

are attributed to the small size, as the quantum regime becomes predominant over the classical limit. The 

performance of nano-structured sensors depends also on the type of morphology. Research on 1-D 

nanostructures for gas sensing applications has intensified due to their high surface-to-volume ratio, 
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quantum confinement and improved crystallinity [20]. The most common 1-D metal-oxides 

nanostructures used in the fabrication of resistive based gas sensors are in the form of nanorods, 

nanowires, nanofibers, nanotubes, nanobelts, nanoribbons, nanowhiskers, nanoneedles, nanopushpins, 

fibre-mats, urchin, lamellar and hierarchical dendrites [21]. The MOX nanowires demonstrated improved 

sensitivity to a wide range of gas species and stability due to their high degree of crystallinity [22]. The 

increasing number of scientific publications focused on nanowires and nanowire based sensors during 

the last ten years reached its highest peak in 2011 [23]. The addition of a small amount of noble metals 

like Ag, Au, Pd, and Pt over the MOX surface; tuning of the working temperature toward a given 

compound with respect to another, coating the surface by specific functional groups can increase up to 

five times their sensitivity [24]; and multi-component sensing elements (sensor array) coupled with 

signal processing functions can be applied to differentiate the response of nanowires toward the target 

gas [22,25]. MOX sensors have found wide spread commercial applications [26], and most WSN users 

employed commercial MOX sensors. For the above mentioned reasons, this research selected MOX 

nanowires to measure CH4 concentrations. Since optical sensing technologies have been widely tested 

for gas sensing applications and have produced high quality and reliable results [27] a NDIR sensor 

device was also selected to measure CO2 concentrations. 

Power is major issue for portable applications such as WSN and UAV because its availability limits 

their service life, reduces data collection and limits its applications. WSNs powered by solar energy have 

been developed [28,29], but their use for environmental gas sensing is limited. The concept of harvesting 

solar energy to power aircrafts in the field of UAVs has a long history and many solar powered aircraft 

have been successfully created [30,31]. The UAV developed in this work pursuit flight endurance and 

the ability to power a gas sensing system simultaneously. The following section describes the 

development of the gas sensing technology developed for the WSN and UAV.  

2. Sensing System Design 

2.1. Solar Powered WSN  

The four principal components of our wireless sensor node are the Fleck [32,33], which is a 

microprocessor with networking capabilities, the humidity sensor, the solar panel with its power 

management electronics and the gas sensing system. The WSN was created by using the Fleck network 

cards developed by CSIRO [32,33]. The sensor board interface, microprocessor and communication 

capabilities of the sensor node were tested and reported in previous research papers [34–36]. Data 

collected from sensor nodes were stored and displayed on live webpages using the data management 

platform illustrated in Figure 1. The base node (Figure 2) was equipped with a Fleck and connected to 

the field computer by USB. 
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Figure 1. Illustrates the design of a solar powered WSN and a UAV integrated to a data 

management platform for continuous monitoring of pollutant gases.  

 

Figure 2. Wireless sensor node and base node configuration. 

Humidity Sensor: humidity has an important influence on the performance of gas sensors, especially 

MOX sensors. Water absorbed on the MOX surface will not donate electrons to the sensing layers, 
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lowering the MOX sensitivity [20]. Prolonged exposure of sensors to humid environments leads to the 

gradual formation of stable chemisorbed OH− on the surface causing a progressive deterioration of the 

performance of gas sensors [20]. Humidity interference is not expected in the SnO2 sensor used for CH4 

samples, as the sensor temperature was higher than 200 °C, where molecular water is no longer present 

at the surface [37]. For this reason, the sensor node was equipped with a humidity sensor for studies 

where the sensor is kept at temperatures below 200 °C. A HIH-4010 humidity sensor from Honeywell 

Inc. (Minneapolis, MN USA) was selected as this sensor produces an output voltage (~0.8–3.8 V) 

proportional and linear to the humidity percentage. The sensor board reads this signal using one of the 

ADC ports, and the data acquired is used to compensate any drift in the sensor baseline or sensor 

response, when the sensor works below 200 °C.  

Solar Panel and Power Management: the power electronics manage the energy provided by the solar 

panel to supply regulated power to the sensor node (3.5‒6 V, 500 mA), recharge a standard lithium 

battery (3.7 V, 1200 mAh) with the surplus energy, and keep the solar panel working at the maximum 

power point (MPPT). The BQ 24030 electronic chip from Texas Instruments Inc. (Dallas, TX, USA) [38] 

was selected and configured to develop this task, which bench testing and results were reported in 

previous published papers [34–36].  

2.2. Gas Sensing System for the Wireless Sensor Network 

MOX sensor: several MOX sensors developed by Brescia University and QUT (Queensland University 

of Technology) were tested at different CH4 concentrations. Laboratory results indicated that a tin oxide 

(SnO2) nanowire was the best candidate to be implemented in the WSN due to its appealing characteristic 

among the developed MOX sensors [25,39]. MOX sensors usually require working temperatures between 

150 °C and 400 °C to activate the chemical reactions leading to the resistivity change when interacting 

with gases. The fabricated sensor has an embedded platinum heater at the back of the sensor plate. After 

several outdoor experiments, it was found that the sensor baseline drifted due to environmental 

conditions such as humidity and correlation to other gases [40]. A drifty baseline affects the reliability 

of the sensor measurements and requires re-calibration procedures. This undesirable effects increase 

substantially in aerial applications due to higher wind speed and variable atmospheric conditions.  

In response to this challenge, a heating cycle protocol was developed to stabilize the sensor baseline 

for outdoor performance. The sensor heater was connected in series to a high frequency switching 

transistor and a shunt resistor to control and measure the delivered power. The transistor collector was 

connected to the positive power, the gate was connected to the Fleck and the Source was connected to 

the sensor. The power was provided by a fixed DC voltage (3.3 V), which was applied to the transistor. 

The opening and closing time of the transistor gate was controlled by the Fleck with a Pulse Width 

Modulation (PWM) signal, which regulates the heater current. The duty cycle of the PWM signal was 

adjusted automatically from 50% to 100% to reach the selected temperature based on the current 

measured on the shunt resistor, which is in series with the heater sensor. The heating cycle of the sensor 

was set to 300 °C for 2.5 min, when exposed to CH4 concentrations; and 400 °C for 2 min in air, after 

each gas measurement to evaporate any water or gas molecule attached to the sensor surface, which 

produced a stable baseline. 
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MOX-CH4 gas testing: the sensor response to CH4 concentrations was evaluated at QUT laboratories 

by using a high precision multi-channel gas testing system. The testing system includes a 1100 cc test 

chamber capable of testing four sensors in parallel, eight high precision mass flow controllers (MKS 

1479A, Andover, MA, USA) to regulate the gas mixture, 8-channel MFC processing unit (MKS 647C), 

and a picoammeter (Keithley 6487, Cleveland, OH, USA). The measurements were performed with a 

mixture of synthetic air and CH4 gas at different concentrations (up to a maximum of 10.6 ppm of CH4 

balanced in synthetic air), 25 °C, and 0 humidity. The right concentrations of CH4 gas in air were 

obtained by adjusting the respective flow rates via the MFCs, while maintaining a total constant flow 

rate of 200 SCCM (mL/min). The sensor heater was connected to an electronic board that executed the 

heating protocol described previously, and the picoammeter applied 1 bias volt to the sensor upon gas 

exposure in order to read the sensor resistance. The sensor was left in the test chamber overnight under 

dynamic flow of synthetic air, which helps to stabilize the sensing layer before the test. Once the sensor 

was stable, it was tested towards 5 and 10.5 ppm of CH4 for 5 times in order to characterize the sensor 

response. The average time response (tr) of the sensor was 15.7 min and 24.3 min, respectively when exposed 

to 5 ppm and 10.5 ppm of CH4; and the average recovery time was 8.7 min at 5 ppm, and 8.86 min at 10.5 

ppm. This sampling frequency will suit most of the studies required for ground pollutants, however this 

response time will hinder aerial applications that require faster responses. The sensor response can be 

expressed as the ratio of Rs/Ro, where Rs is resistivity in gas and Ro is the resistivity in air. Rs varied from 

0 to 1.5, when CH4 concentrations varied from 0 to 10.5 ppm, respectively (Figure 3). These values show 

that the sensor has high sensitivity to the gas for a short concentration span. 

 

Figure 3. Response of the SnO2 sensor for different concentrations of CH4. The cycling 

temperature of the heater was 300 °C for 2.5 min and 400 °C for 2 min. 

The sensor response exhibits a linear behavior for this short span concentration according to Figure 4. 

Therefore, the sensor response as a change in resistance was linearized to estimate concentrations from 

0 to 10.5 ppm. The independent variable (gas concentration) was plotted on the X axis, while the 

dependent variable (estimated concentration) was plotted on the Y axis. A simple linear regression or 

least mean square (LMS) model was applied to the data in order to calibrate the system. 
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Figure 4. Linearization of the sensor response in resistance towards CH4 concentrations 

from 0 to 10.5 ppm. 

The intercept term (q) and slope parameter (m) were calculated using the following equations [41]:  

𝒀 = 𝒎𝑿 +  𝒒 + 𝜺 (𝟏) (1) 

where m was calculated by using Equation (2): 

𝒎 =
(𝑵 ∑ (𝑿𝒊 × 𝒀𝒊) − (∑ (𝑿𝒊) × (∑ 𝒀𝒊𝒊 )𝒊 ) 𝒊

𝑵 ∑ (𝑿𝒊)
𝟐 − (∑ 𝑿𝒊𝒊 )𝟐

𝒊
  (2) 

and q was calculated by using Equation (3): 

𝒒 =
(∑ 𝒀𝒊𝒊 ) × ∑ (𝑿𝒊)

𝟐 − (∑ 𝑿𝒊𝒊 ) × (∑ (𝑿𝒊𝒀𝒊)𝒊 )𝒊

𝑵 ∑ (𝑿)𝟐
𝒊 − (∑ 𝑿𝒊𝒊 )𝟐

 (3) 

The variables are defined as: 

X: known gas concentration 

Y: sensor response in resistance (ohms) 

N: total experimental points 

i: sequence of each experimental point 

By replacing the values on equation 1, the new estimated gas concentration (Y) values were defined as: 

𝒀 = 𝟑𝟏𝟎𝟏. 𝟒 +  𝟏𝟒𝟎. 𝟒𝟖𝑿 (4) 

Field testing of the sensing systems: the baseline stability of the SnO2 sensor was tested outdoors on 

the roof of S block at QUT, Gardens Point and at SERF (Samford Ecological Research Facility), QUT. 

The sensor was placed in a special sensor shelter powered by a solar panel. The temperature of the sensor 

was controlled by the heating protocol described in previous section, which results are plotted in Figure 5. 

Two sensor response levels are clearly identified from the graph in Figure 5. The bottom level was 

produced by the sensor response when heated for 2 min at 400 °C. This sensor response level was stable, 

with almost no drift and was used as sensor baseline. The top level response, produced when the sensor 

was heated for 2.5 min at 300 °C, is the sensor response towards environmental gases. 
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Figure 5. SnO2 sensor response towards environmental gases in SERF, QUT,  

Brisbane, Australia. 

CO2 module: CO2 concentrations were measured by an off-the-shelf NDIR sensor (CDM30K, Figaro 

Inc., Osaka, Japan), which is pre-calibrated from factory at 0 and 400 ppm. The accuracy of the reading 

were cross checked with a LI-840A CO2 analyzer for one operational day showing an overall error in the 

measurements of 5%. The signal output of the module is a DC voltage between 0 and 4 V, which represents 

0–2000 ppm, respectively [42].  

The sensing system was tested under different environmental conditions in a farm field for 93 days. 

Figure 6 shows the CO2 concentration and the temperature registered by one of the sensor modules 

during one day of operation. The CO2 concentrations were mostly influenced by vegetation activity of 

the surrounded rural area, which increased the CO2 levels during night periods and decreased it during 

sun-light hours. Conversely, the environmental temperature presented the opposite behavior. The carbon 

dioxide levels registered are similar to the values recorded by George et al. [43] in rural areas with 

extensive vegetation. Additionally, the output data was cross checked periodically with a CO2 analyzer 

(Li-840A) to verify the reliability of the readings. Significant loss in performance was not detected 

during the time span of the experiment. 

 

Figure 6. Response of one of the CO2 nodes installed at SERF (QUT, Brisbane, Australia) 

during one day of operation. 
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2.3. Gas Sensing System for the Solar Powered UAV 

The main sub-systems of the UAV are the gas sensing, navigation, communication, propulsion and 

power system, which are highly integrated into the aircraft frame. The block diagram of each sub-system 

is depicted in Figure 7. The Gas Sensing System described in Section 2.2 was installed in the UAV, and 

a sampling system was adapted to the sensor due to higher wind speed conditions. The main components 

of the system are the sensor, sensor heater, sensor board interface, a network board (Fleck) with radio 

transmitter/receiver capability and a solenoid valve control.  

 

Figure 7. Configuration of the four main sub-systems integrated in the UAV. 

The adaptations performed on the gas sensing system to make it functional for aerial missions are 

illustrated in Figure 8. The sample intake was adapted to capture samples for gas analysis during flight 

maneuvers. A fin shell was designed and 3D printed to house the gas sensing system on top of the central 

wing. The fin shell was made of lightweight materials (<50 g) to avoid significant drag and weight to 

the aircraft. A small gas chamber (63 cm3) was designed and installed inside the fin shell to retain the 

sample volume during analysis. The gas chamber has a T shape to let the sample flows across the horizontal 

trajectory and to insert the sensor in the vertical cavity, which ensures proper contact with the gas volume 

(Figure 8). A solenoid valve was installed at the inlet of the chamber to control the time and flow of the 

sample intake (Figure 8). The closing time of the valve depends on the sensor response time to the expected 

gas concentration, for instance 5 s close was enough time to analyze CO2 concentrations from 0 to 400 ppm; 

and 2 s was the opening time of the valve to completely flush the chamber after each analysis. 
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The valve was closed or opened by changing the polarity of the solenoid inductor, which requires a 

power pulse of 6 V/580 mA for at least 30 m. The cycling time of the sampling system could be 

controlled by the Fleck microprocessor which activated the solenoid depending on the gas concentration 

detected. A second control option was an electronic timer circuit (LM 555), which time was fixed before 

the mission started. The electronic battery eliminator circuit (BEC) of the Electronic Speed Controller 

(ESC) of the aircraft provided up to 5 VDC, 2 A of power for the gas sensing system, and a step-up 

converter circuit attached to the BEC provided the 6 V required to activate the solenoid valve. Once the 

Fleck acquired the sensor data, the information was transmitted to the base node by using the radio 

module of the Fleck, antenna of which was installed on the top of the airframe.  

.  

Figure 8. Gas sensing system for airborne applications: aerodynamic fin shell, gas sensor, 

sensor socket, gas chamber and solenoid valve. 

Bench and field testing of the Gas Sensing System for the UAV: the CO2 sensing system was mounted 

inside the fin shell, which was installed on top of the middle wing. A bench test was conducted with the 

engine, propeller and avionics of the aircraft running during the emission of a pollutant source. Figure 9 

graphs the response of the CO2 module during the experiment, which shows that the sensing system 

successfully detected a CO2 peak within 60 s after the pollutant emission started; it shows that the sensor 

baseline was not altered by the downstream wind produced by the propeller, and the sensor baseline 

returned to its original level of about 425 ppm after the emissions stopped. The background level registered 

by the sensor corresponds to the CO2 concentration of the surrounded volume. 
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Figure 9. Bench testing of the CO2 gas sensing system integrated in the aircraft fuselage. 

Another bench testing was conducted to evaluate the performance of the CH4 system integrated to the 

UAV. The development of the experiment was similar to the previously described CO2 test; except for 

the valve control that was manually activated to determine the response time of the SnO2 sensor. The 

testing procedure was developed as follows (Figure 9): 

 First, the stability of the sensor baseline was verified with the avionics and motor of the aircraft 

switched off.  

 Then, CH4 emissions were released from a pollutant source in front of the UAV for 12 min, until the 

sensing system started to register changes in the sensor resistance. 

 Next, the motor was switched on, clearing any remainder of emissions inside the chamber. It was 

observed that the sensor baseline dropped back to the resistance level registered at the beginning of 

the test. 

 Emissions from a contaminant source were continuously released for 34 min at a rate of 1 L/min, 

while the motor was kept at 50% power. 

 Once the emissions reached the gas sensing system, the solenoid valve was closed to fill the chamber 

with the gas volume, and let the sensor response to the gas concentration. 

 After the sensor response was stable, the solenoid valve was re-opened for 2 s to flush the chamber, 

producing a sudden decrease in the sensor resistance. 

 The previous procedure was repeated twice to verify the functionality of the solenoid valve and the 

sensor response to the contaminant. 

The experiment successfully tested the performance of the gas sensing system during an emulated 

airborne operation, which results are plotted in Figure 10. The sensor baseline was stable under the 

regular wind flow produced by the natural atmospheric dynamics and when the propeller was activated 

during the experiment, indicating a noise free background of the system. After the chamber was closed 

the sensing system detected variations in the sensor resistance, which indicates a successful capture of 

the sample and a stable environment inside the chamber. The closing time of the valve allowed the sensor 
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to reach its chemisorption and physisorption stability on each measurement. When the solenoid opened 

the chamber, the sample was washed away producing a sudden decrease in the sensor resistance, until it 

reached its baseline level again. It was observed that the probability of detecting contaminants in front 

of the aircraft was increased due to the vortex effect of the propeller. This fact confirmed that the location 

of the gas sample intake was not negatively affected by the propeller, which on the contrary could have 

a beneficial effect.  

 

Figure 10. Bench testing of the CH4 sensing system with a pollutant emission source. 

3. Solar UAV Design and Flight Test  

The UAV developed in this work was based on the Green Falcon UAV [44,45] developed at QUT 

and the Australian Research Centre for Aerospace and Automation (ARCAA). The principal sub-systems 

are: (i) Navigation system, which main components are the autopilot, air speed sensor, gyro sensor, 

accelerometer, magnetometer, barometric pressure, GPS, and fail safe system. The autopilot used in the 

UAV was the ArduPilot Mega 2.5, which is a complete open source autopilot system with a high 

benefit/cost ratio [46] and low weight (23 g). The autopilot system works mainly in three modes: 

autonomous mode, to fully perform unmanned mission by pre-programing waypoints from the ground 

control station (GCS). Stabilized mode, to assist a ground pilot in controlling and stabilizing the flight of 

the aircraft; in this mode the pilot has partial control of the aircraft and when there is no pilot input the 

autopilot will maintain a level flight of the aircraft. Manual mode, which is useful to perform the pre-flight 

check as the autopilot acts as a pass-through for all the RC commands; this mode allows the pilot to freely 

preform manual take-offs, maneuvers and landings, when the autopilot is not pre-programed to perform 

these tasks. In all modes, the autopilot is capable of transmitting important flight information such as roll, 

pitch, yaw, airspeed, GPS position and battery status to the GCS by using the telemetry module.  

The telemetry module used was the RFD900, which works at 900 MHz, is lightweight (50 g), small 

size, has large transmission range (>40 km), and requires about 1 W (+30 dBm) transmit power. The 

Mission Planner GCS was selected to create the waypoint mission based on Google maps, send 



Sensors 2015, 15 4085 

 

 

commands to the autopilot, receive and graph in real time autopilot’s data outputs, download mission 

log files, and data analysis.  

The airframe is easy to transport for fast deployment and hand launched take off; it has a wingspan 

of 2.52 m, wing aspect ratio (AR) of 13, and length of 960 mm. The original weight of the wing was 960 g, 

and after the addition of the SSC panels it increased to 1610 g; therefore, the final weight of the UAV 

was 3285 g. (Figure 11A). The net power consumption of the UAV was 42.52 Wh, when equipped with 

the CO2 sensing system (Figure 11B), and 42.92 Wh with the nano-sensor system. The pie chart 

evidenced that the power consumption of the gas sensing system was only a small proportion of the total 

energy demand; and the energy consumption does not vary significantly between the CH4 and CO2 

sensing systems. 

 

Figure 11. (A) Weight distribution of the UAV with the nano-sensor system; (B) power 

consumption breakdown of the UAV assembled with the CO2 sensing system. 

The total energy demand of the UAV is expected to be higher due to electronics inefficiencies that 

are calculated using Equation (5): 

𝑬𝒅𝒆𝒎𝒂𝒏𝒅_𝒕𝒐𝒕𝒂𝒍 =
(𝑬𝒂𝒗𝒊𝒐𝒏𝒊𝒄𝒔 + 𝑬𝒈𝒂𝒔_𝒔)

𝜼𝒑𝒐𝒘𝒆𝒓 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒊𝒄𝒔 × 𝜼𝒂𝒗𝒊𝒐𝒏𝒊𝒄𝒔
 (5) 

where the efficiency of the power electronics (𝜂𝑝𝑒) is 0.86, and the avionics (𝜂𝑎𝑣) is 0.90. 



Sensors 2015, 15 4086 

 

 

Replacing values in Equation (6): 

𝐸𝑑𝑒𝑚𝑎𝑛𝑑_𝑡𝑜𝑡𝑎𝑙 =
(42.12 𝑊ℎ + 0.8 𝑊ℎ)

0.86 × 0.9 
 

𝐸𝑑𝑒𝑚𝑎𝑛𝑑_𝑡𝑜𝑡𝑎𝑙 = 55.4 𝑊ℎ  

The total energy demand (55.4 Wh) needs to be supplied by the solar wing and the battery as follows. 

The solar panels for the wing were constructed using small silicon solar cells (SSC) ribbons connected 

in serial and parallel configuration to achieve the voltage and current required. Each SSC ribbon has an 

area of 0.00375 m2 and 12% efficiency. The solar panel area was limited by the wing area (490 cm2), 

ailerons, narrow ends, and the area allocated for the gas sensing system (53 cm2). Finally, 70 SSC ribbons 

were distributed along the available wing area (Figure 12), which output power produced was calculated 

as follows: 

𝐴𝑟𝑒𝑎𝑆𝑆𝐶_𝑝𝑎𝑛𝑒𝑙 = 𝐴𝑟𝑒𝑎𝑆𝑆𝐶_𝑟𝑖𝑏𝑏𝑜𝑛 ×  70 𝑢𝑛𝑖𝑡𝑠 = 0.2625 𝑚2 (6) 

The average output energy of the panels was calculated based on the mean sunshine hours of Brisbane 

(QLD, Australia), which are 7.4 h with a mean irradiance of 750 Wh/m2, according to the Australian 

Bureau of Meteorology. Therefore, the expected average energy produced by the solar wing is: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑆𝐶 𝑝𝑎𝑛𝑒𝑙 =
0.2625 𝑚2 × 750 𝑊ℎ × 0.12 

1 𝑚2
= 23.625 𝑊ℎ (7) 

 

Figure 12. Energy demand and the energy available in the UAV. 

A commercial lithium polymer 44.4 Wh, 3.0 mAh 4 cells battery was used in combination with the solar 

panel to meet the energy demand of the aircraft. Only 80% of the battery capacity (35.52 Wh) was taken 

into account for safety reasons. The total energy expected (EnergySSC panel + Energybattery)  was 

therefore 59.14 Wh, enough to satisfy the total energy demand of the UAV. Figure 12 summarizes of the 

energy demand of the UAV and the energy available. 
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The SSC ribbons were distributed along the three parts of the wing by placing 19 units on each side 

wing (total 38), and 32 units in the middle wing for a total of 70 SSC units (0.2625 m2). The weight 

density of a single SSC ribbon with the tabbing wire installed was 0.53 kg/m2, and the internal 

connections of panels were in serial configuration. The SSC panels were encapsulated in a flexible 

structure that takes the shape of the wing to avoid losses in aerodynamic performance and to withstand 

mechanical stress produced by the aircraft in operation. The encapsulation was developed by using a 

clear resin, which is flexible and totally transparent (Figure 13). 

 

Figure 13. Solar powered wing construction: (A) left wing SSC panel in the mold; (B) right 

wing SSC panel encapsulated with clear and flexible resin; (C) left wing peeled on the skin to 

accommodate the solar panel; (D) final installation of the SSC panel on the surface of the wing. 

The open circuit voltage (Voc) of the side wing panels was 19 Voc, with an expected short circuit 

current (Isc) of 1.16 A. The middle wing panel was constituted of 32 SSC ribbons in serial configuration, 

which produced 16 Voc, and short circuit current (Isc) of 1.16 A (Figure 14). The right and the left wing panels 

were connected in series, and the output of these were connected in parallel to the middle wing panel in order 

to produce a final output of about 16–19 (Voc), 2 A (Isc) (Figure 14). The panels have slightly different 

output voltage was due to space limitation in the wings; this fact is not desirable because it produces two 

different maximum power points and the panel with lower voltage becomes a load for the other. The 

problem can be solved by using two MPPT at the outputs, at expenses of increasing the power 

consumption and weight of the aircraft. For this reason, the solution implemented was to set the 

maximum power point of the MPPT in the middle of both output voltages (17 V) to mitigate this effect; 

this solution is viable due to the proximity of both output voltages. During flight operations is likely that 

part of the solar panel area is shaded due to flight manoeuvres; if this is the case, the shaded panel 

becomes a load for the others panels connected in parallel, or an obstruction for panels connected in 

series. A diode was installed at the output of each panel to create a bridge or a bypass to avoid this 

negative effect (Figure 14).  
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Figure 14. Panel configuration for the solar wing. 

4. Field Testing of the Gas Sensing Technology and UAV 

The first field test involved two nodes to monitor CO2 at ground level, and the UAV equipped with 

the original wing (non-solar) to monitor CO2 at about 100 m ASL. One ground node was connected to 

the base computer and the other solar powered node was located 30 m away, south of the ground station. The 

mission consisted of a continuous circular flight above the ground nodes for 20 min. The CO2 readings 

recorded from the three sensors are shown in Figure 15. The geo-location of each sample was not 

reported in this experiment as the autopilot or a separate on-board GPS was not involved in the 

experiment. The graph shows that the ground node and the base node registered similar CO2 

concentrations of about 399 ppm throughout the test; the node located 30 m away showed some CO2 

spikes at the beginning of the test, corresponding to the emulation of a contaminant source. The aircraft 

readings are represented by the red line and their average value was 379.7 ppm. The readings from the 

UAV were slightly lower than the readings registered by the ground nodes, probably due to higher wind 

speed and slightly lower atmospheric pressure experienced during the flight mission. The values 

obtained are reasonable in comparison to the 392.722 ppm of CO2 recorded by the Cape Grim Baseline 

Pollution Station (Tasmania, Australia), at the atmospheric baseline in June 2013. 

The second test evaluated the solar powered wing and power electronics. The solar wing was installed 

on the aircraft and produced an open circuit voltage (Voc) of 20.7 V, given the sun irradiance conditions 

of that day before the flight. The short circuit current (Isc) was 2 A at full sun irradiance. The UAV was 

hand launched with the solar wing and the flight lasted for 20 min, showing a stable performance of both 

the aircraft and wing structure. Post-landing inspections did not show any significant deformation or 

structural failure of the solar panel or wing shape, indicating a successful construction technique for the 

solar wing. Figure 16 shows the final configuration of the solar UAV before the flight and an aerial 

photography of the aircraft flying. 
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Figure 15. Monitoring of atmospheric CO2 integrating two ground nodes and one aerial node. 

 

Figure 16. (A) Final configuration of the solar UAV; (B) aerial photography of the aircraft flying. 

The final test integrated a GCS, a base node, one CO2 ground node, a weather station, and the solar 

UAV equipped with a CO2 node. The field test was developed in Christmas Creek, QLD on the 23 July 

2013 and included the controlled release of a contaminant source. The CO2 ground node and the weather 

station were deployed 20 m away, and the pollutant source 30 m away, south of the CGS. The mission 

of the UAV was to fly in a circular trajectory up to 50 m ASL over the area monitored, especially above 

the sensor node and pollutant source. The CO2 contaminant was release for 6 min, at a rate of 0.0027 kg/s, 

for a total mass of 1 kg with an average wind speed of 1.09 m/s (Figure 18). 

The flight operation lasted for 20 min, and the base node successfully collected data from the ground and 

aerial nodes simultaneously. Figure 17 shows that the average CO2 concentration registered by the ground 

node was 404 ppm during the first 164 s; then, the concentration rose to an average value of 442 ppm when 

the contaminant was released. The average CO2 concentration registered by the aerial node was 400 ppm 

during the whole test, with few CO2 peaks above the average. The field experiment was designed based 

on Papanikolaou et al. [47] studies on short term release of CO2 from the Kit Fox gas field experiments. 

Their simulations showed that release of CO2 clouds from natural sources or Carbon Capture and Storage 

(CCS) places can reach concentrations higher than 100.000 ppm with volumes of more than 100 m3 in 

few seconds. In the UK, the limits of CO2 work place exposure are 0.5% (5000 ppm) for long term 

exposure (8 h); 1.5% (15,000 ppm) for short term exposure (15 min); and 70,000–100,000 ppm for 
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instant exposure (>1 s), which represents immediate danger to human life or health. The proposed WSN 

and UAV are suitable to perform monitoring on previous scenarios were ground sensors can raise an 

early alarm that launches a UAV to monitor the evolution of the CO2 cloud. The data collected will be 

invaluable for emergency service and control systems in order to evacuate affected areas and predict the 

evolution of the pollutant cloud. 

Post-flight analysis on the data collected from the GCS logs indicated that the horizontal sampling 

resolution of the UAV was 88.2 m, based on the average cruise speed of 12.6 m/s and the sampling 

frequency of 7 s. The total volume monitored was 3 × 106 m3 based on the circular area travelled (ᴦ = 140 m) 

by the UAV and the flight altitude of about 50 m ASL. Figure 18 illustrates the area monitored by the 

UAV, where the origin of the circle represents the contaminant source and the area affected by the 

emissions is delimited by l, due to the wind effect. The wind was blowing constantly in the North-East 

direction during the test, creating a narrow corridor of about 40° (Ɵ) for the contaminant emissions. 

Therefore, the maximum radio (ᴦ) of the monitored area was 140 m, with a maximum arc length of 

97.7 m. This indicated that just one measurement was possible per circular flight on the affected zone 

due to the horizontal resolution of the UAV (88.2 m).  

Geo-location of the sample was possible by synchronizing the log’s time of the gas sensing board and 

the autopilot GPS before the mission started. The ability to geo-locate the sample and register the time 

allowed reconstruction of taken samples in three dimensions, which facilitates visualization of local 

concentrations and analysis. The data collected allowed the creation of contour maps that help to identify 

gradients of concentrations within the volume monitored. The CO2 data values were interpolated based 

on Renka [48] and Yuan [49] algorithms used in OriginPro Graph processor program. The methodology 

creates contour maps in four steps: Triangulation, Linear Interpolation, drawing of contour lines and 

smoothing of the curves, based on the average flight altitude (50 m ASL), gas concentration, longitude 

and latitude coordinates of taken sample (Figure 19). 

 

Figure 17. CO2 readings from the ground node and aerial node during the field testing at 

Christmas Creek, QLD the 23 July 2013. 
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Figure 18. (A) Illustrates the direction and speed of the wind during the field testing;  

(B) illustrate the monitored area affected by the pollutant emissions due to the wind. 

 

Figure 19. Contour map of the CO2 concentration estimated by the UAV within the  

3 × 106 km3 monitored. 

A 3D map in Google Earth was created based on the geo-location of the taken samples. Figure 20 

indicates the real position of the base node, ground node, pollutant source and the taken samples during 

the experiment. A video of the project development is online at the Green Falcon project channel [50]. 
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Figure 20. Geo-location and values of the CO2 samples taken by the UAV during the field 

testing in Christmas Creek, 23 July 2013. 

5. Conclusions 

The WSN, UAV and gas sensing systems developed in this research are a response to challenges and 

limitations of WSNs and UAVs in the field of gas sensing and energy availability. The successful 

integration of a small solar powered aircraft equipped with a gas sensing system and networked with 

solar powered ground nodes proves the possibility of 3D monitoring of pollutant gases.  

Our electric powered aircraft allowed the use of sensitive instruments and the execution of circular 

trajectories without self-contamination. A sensing system based on resistive MOX sensors was evaluated 

both for the WSN and the UAV. We addressed the problem of the drifty baseline caused by 

environmental humidity and correlation to other gases by implementing a heating cycling protocol of 

the sensor. However, MOXs sensors were not used in flight operations due to their long response time 

that hinder aerial applications. Further research and development of MOXs nano-sensors is required to 

achieve the detection of single molecules of gas instantaneously [18]. Both our resistive gas sensing 

system and a commercial NDIR module were successfully adapted and tested for aerial missions, 

showing reliable performance and meeting the payload constraints of a small aircraft. A method to 

design, create and evaluate small solar powered UAVs equipped with a gas sensing system was 

successfully developed and validated with experimental testing.  

The results are significant, as we believe that this prototype system is an important step for the future 

of environmental monitoring; and the advances in solar cells, batteries, and sensing technologies will 

open a wide market of intensive and capillary environmental data acquisition, not limited only to gas 

concentrations, but also to temperature, humidity, aerosols, pollens, etc.  
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