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Abstract: This paper presents an implementation of RoSA, a Robot System Assistant, for safe and
intuitive human-machine interaction. The interaction modalities were chosen and previously re-
viewed using a Wizard of Oz study emphasizing a strong propensity for speech and pointing gestures.
Based on these findings, we design and implement a new multi-modal system for contactless human-
machine interaction based on speech, facial, and gesture recognition. We evaluate our proposed
system in an extensive study with multiple subjects to examine the user experience and interaction
efficiency. It reports that our method achieves similar usability scores compared to the entirely human
remote-controlled robot interaction in our Wizard of Oz study. Furthermore, our framework’s imple-
mentation is based on the Robot Operating System (ROS), allowing modularity and extendability for
our multi-device and multi-user method.

Keywords: augmented reality; activity recognition; cooperative systems; facial recognition; gesture
recognition; human-robot interaction; interactive systems; robot control; speech recognition

1. Introduction

Recently, collaborative robotics (cobots) has experienced increasing popularity as it is
targeted to be a more flexible and general task type of robot [1]. Compared to conventional
industrial robots, cobots share their work area with humans and interact directly. This
requires new standards of safety and interaction interfaces. Typically, robots are instructed
by buttons, knobs, joysticks, specific speech, and gestures commands, teaching through
touching and guiding or dedicated teaching panels. Either way, the handling of the robot
requires prior knowledge and is not intuitive for untaught users. Therefore, the interaction
interface must shift to a more human-centered and adaptive relation to enable the use of
cobots in an unconstrained environment with varying tasks and interchanging human
collaboration partners.

There have been multiple promising research approaches tackling flexible Human-
Robot Interaction (HRI) scenarios [2–5], but most of their methods are driven by the
introductions of new techniques instead of focusing on the needs and characteristics of
interaction patterns from a human perspective.

With the aim of a better understanding of human behavior in robotic interaction
scenarios, we carried out an extensive Wizard of Oz (WoZ) study [6] to examine com-
mon communication intuitions of untaught human interaction partners. In addition, we
worked out human key actions to approach human-robot interactions. On this basis, we
conceptualized and implemented a new multi-modal robotic system called “RoSA” (Robot
System Assistant) that tackles the challenge of intuitive and user-centered human-robot
interaction by facilitating multiple input streams such as speech, gesture, face, body, and
object recognition. The use of a wide range of perception capabilities combined with speech
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processing ensures a robust scene and interaction state estimation and leads to an efficient
and intuitive human-robot collaborative task performance.

In this paper, we tackle the challenge of turning the results from our prior WoZ
study into a fully autonomous robotic systems that can handle interaction with untaught
human partners without external control. First, we derive a concept that enables the
robot visual and acoustic perception of potential human interaction partners and the scene
understanding. We show which features are crucial for perceiving interpretable indications
to derive meaningful instructions for the robot. We continue with an in-depth analysis of
each module and its interplay with the core system and present further implementation
details. Finally, the evaluation of our RoSA system is conducted via a separate study similar
to our previous Wizard of Oz study, but this time with a fully autonomous robotic system.

2. Related Work

In our earlier Wizard of Oz (WoZ) study [6], we reviewed different interaction modali-
ties required for an intuitive HRI. The participants were permitted to use different features
like gestures, speech, mimics, and gaze without any limitations to communicate with a
cobot and execute different tasks like cube stacking. We tricked the subjects into think-
ing they were interacting with a state-of-the-art artificial intelligence controlling a cobot,
whereas in fact, we were remote controlling the cobot based on the participant’s instructions
and a strict set of rules. This principle is commonly called a Wizard of Oz experiment.
Figure 1 shows multiple views of the subjects interacting and giving orders through speech
or gestures.

Figure 1. Previous field study for natural human-robot interaction using the Wizard of Oz method.
A video summary can be found here: https://youtu.be/JL409R7YQa0 (accessed on 18 January 2022).

It was shown that 97% of the 36 subjects used speech and 75% used pointing gestures
to solve the given tasks. Most of the subjects preferred the path planning to be done by
the robot assistance system and did not want to guide the robot directly but give more
complex commands.

In regard to safety, by complying with the standards, ISO 10218-1/2 [7] and ISO/TS
15066 [8] on HRI, the danger to the user is minimized. As Pasinetti et al. [9] have shown,
time-of-flight (ToF) cameras can be used to detect the operator and, in combination with
virtual barriers, slow or stop the robot when safety guidelines are infracted. In addition,
one of our previous implementation of a gadget-less HRI concept Robo-HUD suggests
that a non-contact approach also contributes to a safe HRI [10]. An attention module
based on head posture estimation was introduced to monitor attention, allowing intended
user actions.

https://youtu.be/JL409R7YQa0
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It also introduced an Attention Module based on head pose estimation to monitor aware-
ness, enabling the interaction only when intended. This module allows users to switch
between workstations without logging in or out when used in a multi-device scenario.

Many implementations already exist in this area [11–19]. Magrini et al. [20] pro-
posed a system that ensures human safety in a robotic cell. It is based on the method of
Pasinetti et al., which uses ToF cameras to localize users in real time. In addition, their
system enables gesture recognition for low-level robot control (e.g., start/stop). These
gestures are two-handed gestures that must be clearly shown above the head. This type of
gesture is already built into the Kinect V2 software and is known to be relatively robust.
Additionally, facial recognition can be used to personalize and create a long-term user
experience [21].

Based on these findings and due to the lack of a state-of-the-art implementation of
an intuitive multi-modal overall concept, the Robot System Assistant (RoSA) concept was
created [22].

3. Framework Overview
3.1. Concept

We worked out a concept to assemble all important information streams into synergetic
interplay. The overview can be seen in Figure 2. It consists of seven modules (face,
attention, speech, gesture, robot, scene, and cube) communicating through middleware
to a core unit, the interaction module, which is responsible for the logic and actions of
the system. The modular approach allows an independent development and evaluation
of each necessary component. While the functionality for most of the modules is self-
explanatory, the Scene Module and Cube Module require a more detailed introduction. The
Scene Module is responsible for the data storage from the virtual objects and contains the
constraints, positions, and calibration of the system. In this module, a digital twin of the
scene gets depicted.

The idea of using cubes as an interaction object was carried over from the experimental
design of preceding studies in order to stay consistent and to allow a direct comparison
with the WoZ study. The cube module takes care of the cube logic and their detection.

For scalability purposes and to evaluate a realistic scenario, the modules designed
to be able to run as multiple instances, allowing a multi-device setup. The individual
devices, the middleware, and functions of the mentioned modules are described in detail
in Sections 4 and 5.
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Figure 2. Concept: The interaction module connects through middleware to other modules.
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3.2. Features

In the previous studies RoSA was a system that was capable of speech, gesture, face,
body, and attention recognition based on the “wizard”, the operator controlling the robot.
To automate the system and combine the cobot with artificial intelligence, a set of necessary
features was elaborated, which is shown in Table 1.

Table 1. Extracted feature stream.

Stream Feature Description Methods

Face

Face embedding
Facial expression
Face box
Face center
Facial landmark
No. detected faces
Face Id

512 features ∈ [0, 1]
7 features ∈ [0, 1]
4 features for each ∈ (x, y) (in pixels)
1 features for each ∈ (x, y) (in pixels)
5 features for each ∈ (x, y) (in pixels)
1 feature ∈ Z>0
1 feature ∈ Z>0

ArcFace [23]
Residual Masking Network [24]
RetinaFace [25]
post processed
RetinaFace [25]
post processed
post processed (cosine similarity)

Head Head angles 3 features [yaw, pitch, roll] (in degrees) Im2pose [25]

Gaze
Gaze direction
Attention visual

2 features [yaw, pitch] (in degrees)
1 feature ∈ 0, 1

Gaze360 [25]
post processed

Speech

Wakeword
Voice Activity Detection
Speech-to-text
Natural Language Processing

1 feature ∈ 0, 1
1 feature ∈ 0, 1
n features ∈“spoken text”
2 features ∈ [intent, entity]

Piccovoice [26]
Deepspeech [27]
WebRCT [28]
RASA [29]

Distance
3D head position
Face distance

3 features [x, y, z]
1 feature (in meter)

post processing using kinect
post processed

Gesture Hand Pose 4 Features (Open, Closed, Finger, None) Kinect for Windows SDK 2.0

Body Body Joints 26 Features [x, y, z] Kinect for Windows SDK 2.0

Object Cube Location 4 Features (Letter, Color, Bounding Box, Angle) CubeDetector [30]

The detected features are depicted in Figure 3 showing an exemplary situation of a
user interacting with the system.

Figure 3. User pointing at a letter Cube. Multiple detected features are displayed for clarification.
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4. System Setup
4.1. Hardware

We chose a modular structure in the form of so-called workstations (WS) to be capable
of evaluating the system in a multi-device scenario and to simplify the development and
the integration of additional hardware. A WS is mainly characterized by its hardware,
which forms a closed system.

For consistency and comparison purposes, we did not change the hardware used in
the previous studies. As cobot, the UR5e industrial robot equipped with an RG6 gripper
was used. The robot was bolted to a sturdy metal table. A TV, with a ToF (Kinect) camera on
top, was placed behind. A projector, lighting the scene from above, was used to illuminate
the objects and the metal table for visual feedback. The same cubes, as in the previous WoZ
study, were used. We refer to this cube-related setup as workstation 1 (WS1).

The second workstation (WS2) can be used for registration and questionnaires, featur-
ing a smart screen with a touch function and also a ToF (Kinect) camera. Every workstation
utilizes microphones (from Kinect) and speakers (from TVs). The current setup can be seen
in Figure 4.

Figure 4. A schematic overview of the workstations.

4.2. Middleware

The development of a distributed system consisting of heterogeneous devices from
different manufacturers is a non-trivial task that, among other things, must ensure com-
munication between numerous devices. The Robot Operating System (ROS) is used for
communication between the hardware components as well as the individual software
modules. For communication within the Speech Module, the Message Queuing Teleme-
try Transport (MQTT) protocol was implemented. Using ROS as Middleware grants a
direct machine-to-machine communication interface and allows an easy integration of
additional workstations. Each module can be run as an independent node multiple times
on multiple devices.

For communication between modules, a set of custom ROS messages were made: Body,
Joint, Face, RobotAction, CubeAction, and CubeMessage. The code is open source [31].
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5. Modules
5.1. Scene Module

This module creates a virtual scene that contains all virtual objects and their relations,
enabling the interaction and management of the objects. The scene can be an exact or an
abstract representation of the real environment, or it can create an entirely new one.

The Scene Module also includes the calibration of the system’s input and output devices.
Recognition algorithms can then be used to associate real objects in the virtual world. In
the context of HRI, the Scene Module is also used for collision calculations and as a database
for object positions.

The table on which the experimental setup of WS1 is located serves as the basis for
the scene and calibration. This table is provided with threads at regular intervals of 2.5 cm,
which form a grid. This grid allows for calibration between the robot and scene, as well
as proper alignment of the projector. In this case, the calibration is an adjustment and
scaling of the respective coordinate systems in relation to each other. The point where the
projection of the pixel [0,0] meets the table surface serves as the origin of the coordinate
system in the virtual world. This is scaled according to the grid.

All virtual objects are defined by a point that marks their position in the virtual world
in Cartesian coordinates.

5.1.1. Skeleton

In addition to the cubes, the data of the Kinect skeleton is also converted into virtual
objects, consisting of 26 [x,y,z] points. This allows the user to interact with virtual objects
such as security planes or augmented user interfaces.

5.1.2. Spot

The pointing gesture creates a so-called Spot at the point where the line, through the
elbow and wrist of the Kinect skeleton, intersects the surface of the grid. It contains the
position of the intersection point [x,y,0]. To help the stacking of the cubes, the spot jumps
to the nearest grid position. The Spot can be seen in Figure 5.

Selection in Progress

Selected object

Laser pointer

"Spot" moving on grid

Figure 5. Selection in progress: The borders of the grid rectangle around the laser pointer are
narrowing. In the next step, the selection would be moved from Cube A to the new coordinates.
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5.1.3. Visual Feedback

Through monitors or projection, virtual objects can appear in reality. A selected virtual
cube is illuminated with a green rectangle, and a space on the grid is illuminated with a
white rectangular frame. Transformations are applied to the projection so that the projected
objects visually match the real objects. The exact position of the Spot is projected onto the
table like a laser pointer. The process of selecting an object and the projected laser pointer
can also be seen in Figure 5.

5.1.4. User

The user database includes the ID, names, facial features, and session status of the
subjects. WS1 and WS2 can both access this database to address the user by name, or
to retrieve the last session status for the activated subject. This personalized experience
contributes to the intuitiveness of the system.

5.2. Robot Module

The Robot Module is responsible for path planning and managing robot actions. Path
planning is an important feature of a robot assistant. For this task, the definition of start
and end points, from now called Source and Destination, is crucial.

The Robot Module sends commands, so called RobotActions to the robot. The robot can
move to the discrete position in the virtual grid and grasp real objects. For this purpose,
there are four basic operations within the robot program (see Figure 6). These can be
defined as individual modes for programming the cobot. These sub-routines can be called
directly via Real-Time Data Exchange (RTDE)—a protocol developed by Universal Robots
for fast communication with the robot. A thread observes a particular register and jumps
to the corresponding mode called by the Robot Module. When performing the pick or place
operation, the appropriate mode must be specified, as well as the desired coordinates of
the object. If a cube is to be taken or given, only the mode and position of the hand are
necessary. The four basic operations, require only either a Source or Destination (i.e., object
or hand position), since the respective counterpart, logically results itself as an actuation of
the gripper. These operations execute only a single step. The more complex commands like
picking and placing are further explained in Section 5.3.3. In addition to the four basic modes
of interaction with the cubes, there are five more modes that complete the robot program.

• Abort: Motion is aborted;
• Home: Robot goes to initial position;
• Sleep: Robot goes to idling position;
• Toggle gripper: Opens or closes the gripper;
• Greet: Robot performs nodding motion.

To ensure that all commands are registered correctly, the robot changes its state to busy
during an action. When a robot action is finished, the robot changes its mode to Ready and
continues to execute the RobotActions that have queued up.

v

Pick Take Place

v

Give

Figure 6. Basic robot operations: Pick up, take from user, place on table, and give to user.
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5.3. Cubes Module
5.3.1. Physical Cube

The interaction at WS1 is primarily with 5× 5× 5 [cm] cubes, that can be positioned
exactly on the 2.5× 2.5 [cm] grid of the table. The cubes have a letter on each side and are
3D-printed from lightweight and robust Polylactic Acid (PLA), allowing for safe interaction.
The cube model can be downloaded from Thingiverse [32].

Each real cube is represented by a virtual object, which is given the attributes: Letter,
color, and position. The cubes are unique and thus can be identified by one or the combina-
tion of the attributes. In summary, the cube data is stored as an ROS message of type:

CubeMessage { letter [A-Z], color [black/white], position [x,y,z] }.

When a cube is handed over, it is assigned the position [0,0,99] until it is reassigned
a coordinate on the table by an interaction with the robot. If a cube is in the gripper, it is
assigned the coordinates [0,0,-1]. All other possibilities [x,y,z] correspond to a position
on the grid, where x, y, and z take real values.

5.3.2. Cube Detection

For an unconstrained interaction, the robot must be continuously aware of the position
and order of the cubes placed on the desk. A straightforward approach would be the use
a visual tracking method to follow the cube operations and update its current position
accordingly. However, occlusions caused by the robot and cubes that are leaving the field
of vision can heavily harm the tracking state and lead to interaction discontinuities. We
therefore follow the approach of continuous detection and recognition of each cube and
adapt a deep neural network for this purpose.

Figure 7 shows an example image of our cube detector in action. It demonstrates that
even the almost 180° degree rotation of the cube “T” can be detected precisely with a high
confidence (shown as a number next to the letter).

Figure 7. The cube detection in action. It detects also the rotated orientation of the cubes.

As there is no public dataset available that would fit our needs for the cube detection
task, so we generated our own synthetic dataset. We cropped representative cube images
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for each letter and color and randomly placed them on arbitrary image backgrounds.
Additionally, random rotations and scaling as well as different levels of blurring are applied
to further augment the variance of the data. As a result, we received 100,000 randomly
generated training images with corresponding annotation. Beside the ground truth letter
and localization, we also annotated the rotation of the cubes as this information is crucial
for accurate grasping by the robot.

For implementation, we use the Yolov5 networks as a backbone and change the
number of output neurons to the number of letters on the cubes. Instead of regressing the
cubes rotation directly, we found that classifying the angle leads to more stable results.
Therefore, 90 classes are added for each degree of rotation. We used rotated bounding
boxes for calculating the Intersection over Union to further help the network to learn the
rotation. The cube detection network is open source [30].

5.3.3. Cube Logic

The Cube Module is an indispensable additional module that is used to check the
interactions with the cubes, convert them into an RobotAction, and change the virtual cubes
in the scene. Figure 8 shows the build of CubeAction, a ROS Message type consisting of two
CubeMessages describing a source and destination. The task of the Cube Module is to find
the transition from source to destination and convert it to a RobotAction, if the transition is
valid and reasonable according to the Scene Module.

CubeMessage CubeMessage

CubeAction

Valid?

RobotAction

Source Destination

Figure 8. Conversion of CubeAction to RobotAction.

Every CubeAction has a source and destination. If either of the CubeMessages equals the
robot gripper, then this CubeAction corresponds to a basic RobotAction discussed previously
in Section 5.2. It is a single step of the robot moving the cube to or from the gripper.
In the previous WoZ study, the users requested the robot to move the cubes between
positions, disregarding the intermediate steps. Thus, the necessity of complex or combined
instructions became eminent.

Two basic CubeActions can be chained together, if they have the same intermediate
position, i.e., the gripper. Figure 9 depicts this concept.

Valid?

RobotAction(s)

SourceDestination

Gripper

Basic CubeAction Basic CubeAction

Complex CubeAction

Source Destination

Figure 9. CubeAction can be simple or complex, corresponding to multiple RobotActions.
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For the Interaction Module and Speech Module to function correctly and as expected,
it is necessary to consider, identify, and group all possible cube manipulations and their
corresponding RobotActions. Thanks to the complex CubeAction concept, it is possible to list
all possible combinations. Figure 10 shows the four basic robot operations (see Figure 6)
Pick, Take, Place, and Give depicted as either source or destination CubeMessage.

Figure 10. Basic operations Source: {Pick, Take} and Destination: {Place, Give}.

These operations can be combined to form four complex operations, as depicted in
Figure 11. Pick-Place is used to move a cube from one position to another. Take-Place is used
to receive the cube from the user and place it on the table. Pick-Give is used to give a cube
after picking it up. Take-Give action is logically exclusive, since the object does not change
its position from the system’s perspective and thus can be neglected.

a) b)

c) d)
Figure 11. Complex operations: (a) Pick-Place, (b) Take-Place, (c) Pick-Give, and (d) Take-Give.

The source and destination cube may be specified by any combination of the attributes
position, color, and letter. The Cube Module then checks the start and target position by
matching them with the cubes stored in the scene. If no position but color and/or letter was
specified as a start cube, then the corresponding position is retrieved from the scene and
the information is added to the CubeMessage. Contradictory CubeMessages are filtered out.
When a CubeAction is verified, it is converted into one or, in the case of complex operations,
two RobotActions and sent to the Robot Module.
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The four basic operations always include the gripper (position [0,0,-1]) as a source
or destination. An example of a CubeAction for Place, that puts the cube that is currently in
the gripper to position [12,12,1], could look like this:

Src. { letter [], color [], position [0,0,-1] }
Dst. { letter [], color [], position [12,12,1] }.

This message would be then checked by the Scene Module and then converted to a
Robot Action and enqueued by the Robot Module. After the successful movement of the
robot, the Robot Module would report the new position, and the corresponding cube in the
Scene Module would be updated:

CubeMessage { letter "M", color "white", position [12,12,1] }.

All other cube manipulations are executed in the same manner. The remaining chal-
lenge for the Interaction Module is to combine the correct information from the Speech Module
and Gesture Module. A complex Cube Action Pick-Place, for picking a black cube “A” and
placing it on top of cube “B” could look like this:

Src. { letter "A", color "black", position [4,8,1] }
Dst. { letter "B", color [], position [6,10,2] }.

In addition to checking whether a field is already occupied, the fields in the immediate
vicinity are also checked. If these are also occupied, it is possible to place a cube on top
between two cubes, thus stacking a pyramid. If no neighboring cubes are present, a cube
can only be placed directly on another one. Vice versa, whether there is another cube above
the selected one is also checked.

The module is also able to move the cubes back to their initial position. For this
purpose, corresponding Cube Actions are created based on the scene. The order of the
stacked blocks is also taken into account.

5.4. Face Module

The human identification serves both security and personalization of the data pre-
sented. Moreover, face verification is a vital identity authentication technology used in
more and more mobile and embedded applications. Our system benefits from face verifica-
tion to achieve high fidelity and confidence for user authentication and authorization to
control the robot for crucial tasks.

The Face Module is subdivided into two main parts: Face detection and face recognition.
The face detection can detect the location of the face in any input stream (image or video
frames). The output is the bounding box coordinates and facial landmarks of the detected
faces. On the other hand, face recognition is a process that compares multiple faces to
identify which face belongs to the same person. This identification process can be done by
comparing the feature vector of the detected face with the stored face feature vectors.

5.4.1. Detection Part

We used the RetinaFace [25] light-weight model, based on MobileNet-0.25 [33], as
the pre-trained model for face detection, which employs a multi-task learning strategy to
simultaneously predict face score, face box, and five facial landmarks. The network was
pre-trained on a WIDER FACE dataset [34].

5.4.2. Recognition Part

After the detection bounding boxes are obtained, the filtered boxes are fed into the
recognition part. Before the next steps, the Practical Facial Landmark Detector (PFLD) [35]
is used to align the detected faces. The aligned faces are used for both face recognition and
facial expression recognition.
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For face recognition, the deep CNN used was MobileFaceNet [36] which uses less than
1 million parameters and is specifically tailored for high-accuracy real-time face verification
on mobile and embedded devices. This is less accurate than its counterparts, but it is
real-time capable. The network was trained on the refined MS-Celeb-1M dataset using
the loss function Arcface [23]. This loss function produces much better discriminative
features compared to others. The extracted facial features are compared against each other
using cosine similarity. If the faces are similar enough, they are assigned the same ID (see
Figure 12). The IDs in the image section are passed to the Interaction Module along with their
position. Persons who cannot be assigned an ID from the database are assigned the ID −1.

Figure 12. Face detection, face recognition, and facial expression recognition.

5.5. Attention Module

Various features can be used to estimate the user’s intention to interact with the robot
(attention) and the intention breakdown during the interaction (attention breakdown). The
most common features that can be used to estimate engagement and disengagement in HRI
include gaze, head pose, face, posture, speech, and distance [37–41]. Using more features
to estimate user attention could increase the accuracy of the attention algorithm. However,
it will increase the computational cost, which will have a bad impact on the overall system.

The direction of a person’s gaze has a regulative function for the interaction taking
place and allows conclusions to be drawn about the willingness to interact [42]. The
direction of gaze can be recognized by the position of the head but also by the pupils. The
latter gives more precise information about the current visual focus. If no fast or small gaze
changes are required (e.g., when reading) and the object viewed is in the middle range of
the visual angle or the person is further away, the orientation of the head offers a possibility
for approximation [43].

Considering attention in the context of a technical system, a POI can be defined.
If a person turns away too far from the POI, the person likely has no longer potential
engagement. If the camera is in the POI and the user’s head is in the center of the frame, a
deviation in the yaw-pitch-roll angle results from the subject turning away, thus breaking
the engagement. However, when the relative position in the image plane is changed, a
transformation must take place to determine whether that person is looking at the POI.

In our algorithm, we fused the head posse features with the gaze features through
a rule-based classifier to estimate the person’s attention while interacting with the robot.
For the head pose features, we used the img2pose method proposed by Albiero et al. [44].
This method outperforms many current state-of-the-art models in terms of accuracy and
real-time capability. The method does not use the elaborate detected bounding boxes and
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landmarks, but uses a Faster-R-CNN-based model that computes the 6-Degrees of Freedom
pose for all faces in the photo (see Figure 13). The model used, was trained using the
WIDER FACE dataset. For the gaze features, we used the gaze360 method proposed by
Kellnhofer et al. [45]. They uniquely take a multi-frame input (to help resolve single frame
ambiguities) and employs a pinball regression loss for error quantile regression to provide
an estimate of gaze uncertainty. This method is trained on 3D gaze in-the-wild dataset,
which make it robust to diverse physically unconstrained scenes.

Figure 13. Head pose detection.

An algorithm converts the resulting head pose and gaze features into a person-based
visual attention score for each person in the scene. We fused these scores together through
our algorithm for outputting a final score for each person in the scene. If the predefined
threshold of visual attention focus is exceeded, the person is recognized as attentive and
can interact with the robot. If the person turns away, the visual attention focus decreases
over time. If a threshold value is undershot, this person is no longer detected as attentive.

5.6. Gesture Module

The pointing gesture uses the skeletal data of the forearm provided by the Kinect in
combination with the “index finger pointing” gesture (Kinect Lasso gesture). According
to the concept of “Laws of Linear HRI” [12], a line is formed from the two joints, elbow,
and wrist, of the recognized human and the intersection with the plane of the table is
determined, the aforementioned spot.

The lack of direct user feedback can be solved by adding a laser pointer feature
that directly corresponds to the pointing position. This way, the user does not have to
wait for the robot to fulfill the task, as in the case of the original implementation by
Williams et al. [46]. Using the spot, the user is currently pointing at, as real-time feedback,
further helps to increase the overall accuracy of the pointing gesture.

The laser spot responds to the objects stored in the Scene Module and wraps around the
object being pointed at. This feedback is intended to simplify the handling of the gesture.
This concept is shown in Figure 14. If the pointing position is not changed and the gesture
is not canceled, the object will be selected after a given time and highlighted in green by
the projector. If the gesture is held further, the selection is sent to the Interaction Module.
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Figure 14. Pointing gesture: User points to cube [S], which is enveloped by the laser pointer.

The grid given by the virtual positions, from the Scene Module, facilitates selection and
positioning. The circle adapts its shape to the grid when the user dwells on a position. The
virtual object corresponding to the highlighted coordinate can now be used as either the
source or destination. The selection done with the spot is saved in the scene.

5.7. Speech Module

The Speech Module, along with the Gesture Module, is an important part of RoSA, that
directly interacts with the user. As shown by Haeb-Umbach et al. [47], most established
speech assistants consist of the modules shown in Figure 15. The individual components
are explained in more detail below.

           Understanding 

           Natural
Wake Word Speech to Text                    Language Text to Speech

Figure 15. Common structure of speech assistants.

5.7.1. Wake-Word Detection

Piccovoice was used to implement wake word detection. This application provides
an online service for training personalized wake words. Furthermore, Piccovoice has a
lower error rate compared to others [26]. The disadvantage of this implementation is that
the software is only partially open-source and the use of the personalized wake words is
limited to a 30-day license at a time.

5.7.2. Voice Activity Detection (VAD)

Voice Activity Detection (VAD) is intended to prevent loud noises or the like from
being interpreted as speech, e.g., after the system has been woken up by using the wake
word [48]. In addition to activating STT, detection can be used as an abort criterion for the
process. If a pause in speech exceeds a certain period of time, the sentence is terminated.
We utilize a VAD developed by Google as part of the WebRTC project [28], which was
intended to provide new standards for real-time communications with video, voice, and
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generic data support. It uses multiple frequency band features with a pre-trained Gaussian
mixture model classifier.

5.7.3. Speech-to-Text (STT)

For privacy reasons, an offline service based on Mozilla’s Deepspeech [49] is used.
This open-source STT engine uses methods from Baidu’s research [27]. We used Deep-
speech German, a pretrained network by Agarwal et al. [50]. The training data is based on
Common Voice, a project started by Mozilla to collect speech data. It is also an open-source
project that people donate their voice to, reading out sentences or validating audio tran-
scripts. Since incorrect recognition of the STT can lead to difficulties in further processing,
the vocabulary is adapted to that of the Natural Language Understanding (NLU) module.

To improve user experience and system accuracy, we introduced a visual feedback
that displays the recognized spoken words to the user in real time. As suggested by
Schurick et al. [51] this approach can greatly reduce the necessary time for speech input by
a factor of three.

5.7.4. Natural Language Understanding (NLU)

The system uses the open-source RASA solution to extract intent from text provided
by the STT. RASA [29] consists of loosely coupled modules that combine a set of natural
language processing and machine learning libraries into a unified API. It strives to balance
adaptability and usability [52]. Braun et al. [53] show that the performance of Rasa NLU is
compelling compared to several closed-source solutions. The NLU pipeline used consists of
the SpacyNLP with the German language corpus, Tokenizer Featurizer, and EntityExtractor.
First, the text is segmented by the Tokenizer, the Featurizer generates features for entity
extraction and intention classification, and the EntityExtractor extracts information objects.
The DIETClassifier is used to classify the intention. The classified intention and extracted
information objects are sent to the Interaction Module as Cube Action.

Interaction with the robot works using Cube Actions (see Section 5.3.3). These can
be categorized into the already mentioned, four basic and three complex operations. For
each of these commands, there is a voice command. For example, the command “give me
the white block with the letter A” combines the operations pick and give. The Cube Action
passed through ROS looks like this:

Src. { letter "A", color "white" position [] }
Dst. { letter [], color [], position [0,0,99] }.

In addition to voice-only commands, there is also the option of combining voice and
gesture. The user uses the pointing gesture, selects a position and simultaneously specifies
the desired block. “Place the black cube A here”. The CubeAction would look like this:

Src. { letter "A", color "black", position [] }
Dst. { letter "spot", color [], position [] }.

Since the Speech Module has no information about user’s gesture input, the Interaction
Module has to fill in the gaps and update the information using the Gesture Module and
Scene Module.

By combining speech and gestures, ambiguous cases such as this can arise: “Give me
the block”, which can mean handing over a block that has already been grabbed, but also
pick up and hand over the block that is currently pointed to. The CubeAction passed via ROS
nonetheless looks like this:

Src. { letter "spot", color [], position [] }
Dst. { letter [], color [], position [0,0,99] }.

At this point, the Interaction Module must decide according to the Scene Module and
Cube Module which action to perform.
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From the four basic and three more complex operations, explained in Section 5.3.3,
there is a set of 14 possible operations for manipulating the cubes using speech or speech
and gesture combined. Since as many variations of the speech commands as possible are
to be covered (e.g., instead of “cube”, “block”, or “square block”), the file generated from
example sentences for training the NLU comprises 60,000 lines.

5.7.5. Text-to-Speech (TTS)

The Windows Speech Application Programming Interface [54] is used for text to
speech synthesis. This interface allows the user to make speaker variations such as:

• Audio Pitch: Determines the pitch (relative height or depth) of the speech synthesis.
• Include sentence boundary metadata: Determines whether sentence boundary meta-

data is added to a SpeechSynthesisStream object.
• Punctuation silence: Length of silence added after punctuation in SpeechSynthesis

before another utterance begins.
• Speech rate: Sets the tempo, including pauses of the speech synthesis.

An advantage of this TTS system is that it is already integrated into Microsoft operating
systems and is freely accessible since Windows Vista.

5.8. Interaction Module

The Interaction Module is adapted to the framework conditions of the individual
workstations, since they require different user inputs and are to act independently of each
other. At the beginning, the readiness for interaction is evaluated with features from the
Attention Module and Kinect-stream. If a person is attentive, the corresponding workstation
is activated and visual feedback is shown. Users identified by face recognition are signed
in. The user-interface changes accordingly to the currently active user, settings, and last
state of the workstation are restored. Users are signed in as long as they are attentive and
recognized by the system. Identities assigned by the Face Module are applied to the Kinect
skeleton with the largest intersection over union using the bounding box provided. Now,
the user has a workstation bound Active Session until the user logs out (see Figure 16). This
process is active on all workstations.

Screen on

UserLogin

Attentive

User Log outActive Session

Screen off

Attentive

Screen on

Figure 16. Active Session flow diagram.

5.8.1. WS1: Cubes and Cobot

If the WS is activated by the Attention Module, the user is informed via the screen that
the authentication process is running, as long as no ID is available. If the user is still an
unknown person, they will be prompted to register at WS2. Registered users are greeted
with their stored name and a nod (quick up and down motions of the gripper) of the robot.
At the first log-in, RoSA introduces itself to the user and runs through a basic tutorial.
Once an Active Session is started at the workstation, the system can be interacted with.
To issue a voice command, the wake word must be used. This activates the STT and the
screen displays an icon of an earpiece to show the user that the system is now listening.
The transcribed text is shown on the screen. Another icon indicates whether the use of
a pointing gesture is possible. The gesture input is paused when the robot is already in
motion so as to avoid problems with occlusion by the robot. Input via the pointing gesture
results from holding the gesture in one position for a short time. The currently selected
cube is also displayed on the screen.
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5.8.2. WS2: Registration

The interface of WS2 is based on ROS-QT (RQT), a development environment for
visualization. The user is provided with an interface for registration. The data collected
includes a name, preferred hand, and face recording. To record the face, the subject is asked
to look first frontally and then once to the right and once to the left. The recorded data is
stored in the database. Once this process is complete, an Active Session is started and the
first part of the survey can begin. Upon successful completion of the first survey, a brief
tutorial on RoSA and the tasks are presented. The user is prompted to perform the tasks
on WS1. Finally, the second part of the questionnaire can be completed. When using WS2,
the current progress of each user’s survey and tasks is saved. When logging in again, the
display jumps to the last session. The user input comes from touch screen or a keyboard.

6. Experimental Studies

In order to prove the concept and to gather insight about necessary improvements for
the system, a pilot study was conducted in the same manner as the previous WoZ study.
During the study, data were collected from 11 subjects (2 ♀ | 9 ♂) aged between 20 and
34 years. Five of these subjects had already participated in the previous RoSA study. The
procedure of the study is as follows:

• Informed consent;
• WS2: Registration and collection of sociodemographic data;
• WS1: Collaborative tasks with robot;

1. Have RoSA give you a block.
2. Spell a specific word with alternating color of blocks.
3. Build a 3-2-1-Pyramid with black-white-black layers.

• WS2: Questionnaires;
• WS1: Benchmark: Data collection for module assessment.

7. Results

Within the scope of this work, a functional robot system assistant is created. The
system includes eight modules that communicate with each other. The system is activated
by the Attention Module when a user shows enough willingness to interact. The Face
Module allows a personalized user experience. The user is addressed personally and is
shown personalized content. Both the voice and Gesture Modules can be used for intuitive
operation of the robot. With the Cube Module and Scene Module, the system can interact with
its environment. In addition, RoSA provides the user with auditory and visual feedback.
The individual functions are explained to the user in a short tutorial, in the form of a
self-introduction by RoSA, to start a natural dialogue.

7.1. Time

Table 2 summarizes the time needed for the completion of the collaborative tasks.
Time was started as soon as the task was known and the user gave the first command, and
stopped as soon as the task was declared complete by the experimenter.

Table 2. Time needed to accomplish the tasks.

Variables Fastest Slowest Mean

Task 1 00:00:16 00:04:30 00:01:21
Task 2 00:02:51 00:26:36 00:12:56
Task 3 00:02:36 00:36:39 00:11:06

Total 00:06:07 01:07:24 00:25:20

All subjects were able to solve the tasks in collaboration with the robot in under
two hours.
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7.2. Questionnaires

The questionnaires (SUS [55], UMUX [56], PSSUQ [57], and ASQ [58]) were completed
after the experiment. A module-specific questionnaire was then taken to additionally
evaluate each module.

The summary of the user satisfaction questionnaires is presented in Table 3. The
questionnaires were evaluated using the methods described in the literature for each
individual. This mostly consisted of an alternating weighting of the questions, from which
the mean value was calculated. To make the questionnaires comparable with each other,
the scores were normalized by bringing them to the same scoring range of [0–100].

Table 3. Results of usability questionnaires.

Variablen SUS [55] UMUX [56] PSSUQ [57] ASQ [58]

Answer Range 1–5 1–7 1–7, NA 1–7, NA
Score Range 0–100 0–100 1–7 1–7

No. of Questions 10 4 16 3
Normalized Score 72.27 57.57 62.90 64.06

Total Avg. Score: 64.2

7.3. Modules

Users were also asked to rate each module according to their personal satisfaction on
a scale of one, very dissatisfied, to seven, very satisfied (see Figure 17).

very
satisfied

5

4.82

3.45

5.18

5.63

1 2 3 4 5 6 7

Registration

Gesture

Speech

Face

Attention

Module Evaluationvery
dissatisfied

Figure 17. User rating of individual modules.

The test subjects were less satisfied with the Gesture Module and especially with the
Speech Module. This is why we decided to evaluate these modules were tested independently
of each other and outside the experiment to avoid external sources of error. The evaluation
is based on the data that was collected during the benchmark phase at the end of the initial
experiment with the cubes. The benchmark was run after the user had completed the
questionnaires and already rated the system in so as to not bias the test subject.

7.4. Speech Module Evaluation

To evaluate the Speech Module the test subjects were asked to read out sentences
displayed. For example: “Give me the white block with an A”.

The performance of a speech recognition system is measured by the Word Error
Rate (WER):

WER =
S + I + D

N
(1)
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where S is the number of words incorrectly replaced, I represents the number of additional
words inserted, D is the number of words deleted, and N is the number of words correctly
transcribed [59]. During the interaction, it was often the case that RoSA did not understand
or misunderstood the subject. The error rate of the wake word detection was 33%.

The STT worked well overall. However, in some cases, words could not be detected
because they were not part of the previously defined vocabulary. Short words like “yes”
or single letters were often not recognized. Within the benchmark, the STT had a WER of
28.6%. The NLU module had an intent error rate of 27.3% and an entity error rate of 47.7%

7.5. Gesture Module Evaluation

For the evaluation of the pointing gestures, users were asked to point at targets
highlighted on the screen in front of them, without any additional pointing feedback. The
participants were asked to hold the gesture for two seconds. A 13-dot calibration pattern,
as commonly used for eye-trackers, was used.

To estimate the pointing position, an intersection of a line, formed by two joints and
a plane 2.5 m in front of the participant, was used. For each target, the timespan of one
second, or equivalently 30 frames were evaluated and the resulting intersection points
calculated. The spread, or the overall deviation of the positions from the calculated mean
for each target, can be used as an estimation of the pointing quality.

As implied by the Laws of Linear HRI [12], any two joints can be used. The resulting
intersection POIs that were calculated using joint pairs “Elbow Right—Hand Tip Right”
as implemented in the experiment and “Shoulder Right—Hand Tip Right”, an alternative
pointing method using the same skeletal data, can be seen in Figure 18.

The overall mean average of the position deviations is 3.88 cm for Elbow–Hand and
0.66 cm for Shoulder–Hand showing a possible way of decreasing the spread between the
consecutively calculated pointing positions.
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Figure 18. Evaluation of the spread of the resulting Points of Interest (POIs) at a 2.5-m distance.
Calculated mean positions are depicted as red circle crosses.
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8. Discussion

In order to put the user data in perspective, they are compared with those of the WoZ
study (see RoSA study [6]). It is important to note that the WoZ experiment was conducted
under idealized conditions, demonstrating a close to flawless system adapting directly to
the user’s preferred method of interaction.

Almost half of the participants in this study had already taken part in the WoZ study.
Although the operating concepts could be individualized and freely chosen by the users
and thus differed from the current scenario, an influence of the previous study cannot be
ruled out.

Nonetheless, the participants were invited to aid in the discussion and evaluation of
the system. Unfortunately, the sample size is still too small and the group of test subjects
too homogeneous to be able to draw generally valid conclusions. However, qualitative
statements can already be made about the system.

8.1. Efficiency

The system’s efficiency can be assessed by the time needed for the tasks. Table 4
shows the comparison to the WoZ study. It should be noted that during the WoZ study, the
pyramid had to be built twice in the third task. However, across all tasks, the subjects in
the WoZ study were faster.

Table 4. Comparison efficiency.

Variables Task 1 Task 2 Task 3 Total

Results 00:01:21 00:12:56 00:11:06 00:25:20
WoZ study [6] 00:01:46 00:07:57 00:09:52 00:19:35

Deviation 00:00:25 −00:04:59 −00:01:08 −00:05:45

The results in Table 2 show a large variance. The fastest user only needed one-sixth of
the time for each task compared to the average user. Different times are required depending
on the modality used. Since the pointing gesture can only express basic operations, hybrid
or speech-based solution approaches are faster in theory. This is also true for the first task.
The fastest person completed the task, using a voice command, within 16 s.

However, the more complex tasks showed that the error-proneness of the voice assis-
tant caused severe delays. The person who completed the entire experiment the fastest
used pointing gestures exclusively.

As explained earlier, errors occurred more frequently during the execution of the
experiment. These negatively influenced the time needed for a task.

8.2. Usability

These aspects are also reflected in the user experience. The overall user satisfaction of
the system turns out to be “satisfactory”. RoSA, in the current state, has visible deficiencies
in the area of language that should be addressed.

Putting this study in context with the WoZ experiment, we find that the assessment is
consistently unfavorable (see Table 5). This can be attributed to the lack of learning ability,
higher susceptibility to errors, lower range of functions, and lack of personalization.

Table 5. Comparison usability.

Variables SUS [55] UMUX [56] PSSUQ [57] ASQ [58]

Results 72.27 57.57 62.90 64.06
WoZ study [6] 79.24 71.53 73.70 71.60

Deviation 6.97 13.96 10.8 7.54

Avg. deviation: 9.82
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8.3. Modules

The connection of the individual components via middleware has weaknesses. Espe-
cially with large amounts of data such as video or audio data, high latency times can occur
in the system. These lead to errors in modules that operate in a time-critical manner, such
as attention monitoring.

The head pose recognition is insufficient to determine gaze direction and derive the
user’s attention in certain scenarios. In addition to gaze direction, aspects such as proxemics
and linguistic interaction should play a more important role. Drawing on more modalities
increases the system’s robustness against failures such as loss of face detection.

Users were generally satisfied to very satisfied with attention detection. This module,
in isolation, was one of the most robust. However, it is dependent on face recognition.

The face recognition faced problems with lighting conditions, covering of the face, and
significant deviation of the angles. This would sometimes lead to loss of tracking and active
session. The majority of subjects were satisfied with the registration process, while two
subjects were rather dissatisfied. Both subjects had problems with the registration process
because they were logged in as another user even before registration. The registration
process was thus skipped and had to be initiated manually. The described classification
error can be reduced by an improved initial recording of facial features; thus, different faces
can be better differentiated.

As the first module in the speech processing pipeline, robust wake word detection is
important. Experiments have shown that one third of the activations were not detected.
Therefore, Wake-word activation needs to be improved by training on audio data. These
problems might also be caused by the fact that for a system to accept the Wake-word, the
user has to be logged in and attentive. In retrospect, this feature hinders the system’s
intuitiveness, as the use of the Wake-word implies readiness for interaction. The inaccuracy
of the STT is due to the reduction of the vocabulary by the known words. Likewise, the
VAD sometimes causes very short words such as “yes” or single letters to be truncated. The
benchmark results show that the NLU was partially able to compensate for STT errors by
classifying the correct intent. However, due to the fact that the extraction of the entities had
a high error rate and the created Action thus also contained errors, the commands could
not be executed. The speech module is functional, but needs to be revised in its structure
and handling to achieve good to very good results.

All users used the pointing gesture. This was necessary because stacking the pyramid
was not possible using voice commands. However, this may also be due to the low error-
proneness of the module. The support of the pointing gesture by the “laser pointer” was
consistently seen as a relief. Users asked for the specification of two endpoints (start and
end position) as a feature of the pointing gesture. Additionally, it was noted that when
cubes were stacked on top of each other, the selection had to be made using the lowest
position. One user described the laser pointer feedback as “shaky”. This refers to the
pointer jumping back and forth between two grid positions. This user mainly used the
wrist and index finger line for pointing. However, the implemented pointing gesture uses
the elbow and wrist. Thus, the resulting line is inaccurate and leads to a more difficult
selection. This is also shown by the data plots of the pointing gesture, showing that the
pointing estimation using the shoulder leads to far better results. It could be possible to
use an alternative algorithm using multiple joins (head, shoulder, elbow, hand, fingertip)
instead of only two, to further increase the pointing estimation.

For more intuitive interaction, the dialog guidance should be further deepened. Cur-
rently, the system cannot fill in missing information on its own. For example, the dialog
terminates if a command is not understood or only partially understood. Feedback is given
to the user: “I didn’t understand that”. One solution would be for the system to output the
specific error message. More intuitively, the missing information could be rephrased into
a question.
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9. Conclusions and Future Work

The presented implementation of the RoSA system is the first step from a simulated
concept towards a real and functioning system.

The developed system meets the requirements for intuitiveness, which is confirmed
by the study conducted. However, due to the limited number of participants, this study
is only suitable as a pilot study to find errors in the system and optimize it. Furthermore,
it shows how and what kind of data and streams could be gathered in future studies to
further improve the system. The data from the benchmark was used to evaluate the system
in its current state, but could be used to develop and test new methods. For example, the
pointing gesture data could be used for a complex algorithm using multiple joints or for
machine learning. Furthermore, the attention module could be enhanced by adding new
features like body posture and distance.

The next upcoming studies and the updated RoSA system will include mobile robotics
as additional non-stationary workstations to allow a higher adaptability of the system to
real life scenarios and to improve the overall natural communication. For this, the system
will be extended by the mobile robots Tiago (WS3) and Ari (WS4). These were developed
by PAL-Robotics and can be seamlessly integrated through the ROS middleware.

For the future development of natural and collaborative human-robot interaction,
a system is needed that can be further developed in a modular fashion and iteratively
improved through ongoing studies and regular evaluations.

With RoSA, such a system has been created.
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