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Both innate and adaptive immunity is vital for host defense against infections. Dendritic
cells (DCs) are critical for initiating and modulating adaptive immunity, especially for T-cell
responses. Natural killer T (NKT) cells are a small population of innate-like T cells
distributed in multiple organs. Many studies have suggested that the cross-talk
between these two immune cells is critical for immunobiology and host defense
mechanisms. Not only can DCs influence the activation/function of NKT cells, but NKT
cells can feedback on DCs also, thus modulating the phenotype and function of DCs and
DC subsets. This functional feedback of NKT cells on DCs, especially the preferential
promoting effect on CD8a+ and CD103+ DC subsets in lymphoid and non-lymphoid
tissues, significantly impacts the systemic and local adaptive CD4 and CD8 T cell
responses in infections. This review focuses on the two-way interaction between NKT
cells and DCs, emphasizing the importance of NKT cell feedback on DCs in bridging
innate and adaptive immune responses for host defense purposes.
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INTRODUCTION

The immune system comprises two arms of practical responses, innate and adaptive immunity. The
innate immune system is the first line of host defense characterized by rapid responses of NK cells,
NKT cells, macrophage, and DCs, while the adaptive immune system involves the clonal expansion
of antigen-specific T and B cells. Most infections can induce both innate and adaptive immune
responses. For adaptive T cell responses, both CD4 and CD8 T cells participate in protection from
infections and disease. The importance of type 1 and type 2 T cell balance has long been recognized
for determining protection or pathology in infectious diseases. DCs are the most efficient antigen-
presenting cells (APCs) in priming and directing T cells, thus providing a critical linkage between
innate and adaptive immunity. Different DCs modulate the differentiation/function of T cells
differently, depending on their subset, phenotype, maturation, and cytokine patterns. The advances
in modern immunobiology include identifying numerous non-classical, innate-like immune cells,
one of which is the NKT cell. NKT cell is named initially based on their co-expression of receptors
from two different types of immune cells, i.e., T cell receptor (TCR) of T cell and NK cell. NKT cells
originate from the thymus and distribute to different tissues after initial development. The
distribution of NKT cells in various tissues is often related to their expression of surface markers,
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primarily chemokine receptors and integrins involving its
homing to and residing at the particular tissues. The organs
with a relatively heavy residence of NKT cells include the liver,
lung, adipose tissues, and intestine. A striking feature of NKT
cells is that these cells can rapidly secrete large amounts of
cytokines upon activation, thus quickly modulating immune
responses and directly participating in host defenses in the
early stage of infections and harm exposure. Increasing studies
suggest a close cross-talk of NKT with DCs in the lymphoid and
non-lymphoid tissues, and this cross-talk has a significant impact
on CD4 and CD8 T cell responses to infections and the outcome
of infectious diseases (1, 2). This review summarizes and analyzes
the recently reported findings on the reciprocal interaction
between NKT and DC cells and the consequent T cell responses.
CHARACTERISTICS OF NKT CELLS AND
THEIR FUNCTIONAL SUBSETS

After nearly three decades of study, significant progress has been
made in clarifying this unique T cell population in terms of
originality, differentiation, migration, activation, and functional
subsets (3–6). Two major types of NKT cells have been identified
based on the diversity of their TCRs. Type 1 NKT, also called
classical NKT or iNKT, expresses a semi-invariant ab TCR while
type 2 NKT cells have diversified TCRs, also called dNKT (7).
The semi-invariant ab TCR used by type 1 NKT (iNKT) cells
express a chain with Va14 (in mice) or Va24 (in humans) and
Ja18. Unlike conventional T cells, NKT cells recognize glycol-
and phospholipids in the context of CD1, a non-classical MHC
class I molecule. Although human CD1molecule has a, b, c and d
isoforms, in both humans and mice, only CD1d is the isoform
recognized by NKT cells. The lipid antigens recognized by NKT
cells include endogenous and exogenous sources. Virtually all
mouse (Va14) and human (Va24) type 1 NKT cells can
recognize a-galactosylceramide (a-GalCer), a molecule
extracted initially from marine sponges (8, 9) in the context of
CD1d. In contrast, the TCRs of type 2 NKT cells are not
responsive to a-GalCer (10). The so far identified lipid
antigens include sphingolipid, glycerolipids, and phospholipids
(11, 12). It is not surprising that the different NKT cells recognize
various lipids considering their difference in TCR diversity.
Studies found that the innate (toll-like receptor, TLR) and
adaptive (TCR) signaling pathways may have influences on the
function of dNKT cells (7). In terms of function, many recent
studies have suggested a trend of the higher likelihood of type 2
NKT cells playing an immune-regulatory role than type 1 NKT
cells in vivo. The type 1 and type 2 NKT cells can also cross-
regulate their function (5). The feature of NKT cells for a quick
response with a large amount of cytokine production (13, 14) to
stimulations and the rich residence in local tissues equips them
the unique capacity to bridge innate and adaptive immunity in
the peripheral locations of infection. The study on type 1 NKT
cells is much more extensive than type 2 NKT cells, largely due to
the availability of two advanced tools for experimental
investigation, i.e., the Ja18 gene knockout (KO) mice and
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lipid-loaded CD1d tetramers. These tools allow the specific
identification and functional characterization of iNKT cells in
in vivo settings. Thus, the type 1 NKT is the primary focus of
this review.

The alterations of NKT cells, more often showing activation
and expansion but sometimes exhibiting reducing number
and function, in the thymus and peripheral tissues have been
observed in settings including infections, cancers, autoimmunity,
and allergic diseases. Recent studies have clearly shown the
significant involvement of NKT cells in the protective immune
responses and sometimes pathological processes. The potential
to use the non-polymorphic nature of CD1d, which presents
lipid antigen to NKT cell, thus avoiding graft-versus-host
diseases after adoptive cell transfer, has significant implications
in cellular cancer immunotherapy (7, 15). The importance of NKT
cells in maintaining tissue homeostasis has also started to be
recognized (16).

Studies using a-GalCer have shown a very dynamic NKT
response following its activation. The process involves a
significant turnover of TCR, surface marker down-regulation,
and even a certain degree of apoptosis, especially in the first 24
hrs (17, 18). Since most of the studies carried out in earlier years
had used anti-TCR and anti-NK1.1 antibodies to identify NKT
cells, it was thought that NKT cells decrease in vivo in the early
stages of activation following stimulation because the NK1.1+ T
cell population appeared to be reduced within the first 24-48 hrs.
This misperception was corrected later when CD1d tetramer
became available. It was later found that although the expression
of NK1.1 marker indeed reduced at the beginning of activation,
NKT cells actually kept expanding in the period of 6-72 hrs after
stimulation when it was examined by lipid-loaded CD1d
tetramer (17, 18). The chemical modification of a-GalCer can
alter NKT cell responses, particularly in cytokine production (19, 20),
suggesting a potential way to manipulate NKT cell function for
disease prevention or therapeutic purposes.

Subsets of NKT cells with different cytokine profiles and
functions have been found in various organ tissues (4, 21–23).
As summarized in Table 1, NKT cell subsets can be grouped into
four major categories mainly based on cytokine patterns, in
many ways like classical CD4 T cell subsets. NKT1, like Th1 cell,
mainly produces IFN-g and expresses T-bet; NKT2, like Th2,
produces IL-4, IL-5, and IL-13 and expresses high PLZF; NKT17,
like Th17, produces IL-17 and IL-22, and expresses RORgt.
Moreover, IL-10-producing NKT (NKT10) cell, similar to the
regulatory T cell, has also been identified (24). Notably, unlike
Th1 cells, NKT1 also produces IL-4, although IFN-g is more
dominate. The dominance of specific NKT cell subsets in
particular organ tissues is often seen, e.g., NKT1 often
dominates the liver while NKT2 dominates adipose tissues
while a mix of different subsets is more often seen in lung
and intestine.

Following the initial development of effector subsets in the
thymus, NKT cells, after distributing to different organs, can
further experience post-thymic differentiation and preferential
expansion of particular subsets according to the infection or
disease settings in mice and humans. The post-thymic acquired/
February 2022 | Volume 13 | Article 837767
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enhanced polarization of cytokine patterns and the development
of designated NKT subsets are related to exposure to CD1d in the
periphery with enhanced expression of NK cell markers such as
NK1.1 (mouse) and CD161 (human). It is also suggested that
although relatively mature NKT cells and NKT subsets do exist
in the thymus, the NKT cells that are newly distributed to
peripheral organs are more likely not fully mature, thus relying
on local activation/stimulation for maturation and functional
development. Once arriving at the local tissues, NKT cells usually
become long-term resident, non-circulating cells. Therefore, the
local microenvironment, including infectious agents and
cytokines/chemokines, can significantly impact the fate of the
NKT cells. A recent study using RNA-seq and ATAC-seq
analyses showed that compared to iNKT cells in other organs,
lung iNKT cell subsets exhibit the most distinct location-specific
features, shared with other innate lymphocytes in the lung (25).
The study also shows that iNKT cells undergo chromatin and
transcriptional changes upon activation, leading to two
subpopulations: one is similar to follicular helper T cells while
the other is more NK- or effector- like. The study suggests the
importance of chromatin remodeling in the formation of
NKT subsets.
THE ACTIVATION OF NKT CELLS AND
THE ROLE OF DCs

The activation of NKT cells by infections is initiated with the
presentation of microbial lipid antigens (sometimes endogenous
lipids) by the antigen-presenting cells (APCs), which express
CD1d, the MHC-I-like molecule on the cell surface. The APCs
for NKT include, but are not limited to, macrophages,
conventional DCs, and monocyte-derived inflammatory DCs.
When APCs take up microbial organisms, microbial or
endogenous lipid antigens are released and loaded onto CD1d,
consequently activating NKT cells through TCRs. Compared to
other APCs, DC cells express much richer surface costimulatory
molecules and produce more immunomodulatory cytokines,
thus most powerful in promoting NKT cell activation and
post-thymic polarization. Many experimental studies have
shown the interaction between DCs and NKT cells at the
phase of NKT activation when model antigens and infectious
Frontiers in Immunology | www.frontiersin.org 3
agents are tested. The studies have shown a critical role of DCs in
the activation of NKT cells in various scenarios. In general, three
potential pathways might be involved in DC-mediated NKT cell
activation and polarization following infections (26, 27):1. CD1
molecules can present microbial lipid antigens on DCs, directly
activating NKT cells.2. DCs activated by the microbial ligands for
pattern recognition receptors (PRRs), such as toll-like receptors
(TLRs), can produce immunomodulatory cytokines and
present host endogenous lipid antigens on their surface CD1
molecules, consequently activating NKT cells without the
involvement of microbial lipids.3. The ligands expressed by
microbes can activate DCs through PRRs, leading to the
production of proinflammatory cytokines, which can directly
activate NKT cells without the engagement with TCRs
recognizing lipid antigens.

Numerous microbial lipid antigens have been identified for
their capacity to trigger type 1 or type 2 NKT responses (6, 28).
Sphingomonas spp are probably the first group of Gram-negative
bacteria colonizing the mucosal surface of mice and humans to
be found to express cell wall lipid antigens that can activate NKT
cells. It was reported that these bacteria abundantly express
glycosphingolipids (GSLs) which have high similarity in
structures to a-GalCer. Our group studied the role of NKT
cells in host defense against Chlamydiae, an intracellular
bacterial pathogen that poses a threat to public health
worldwide (29, 30). We found that chlamydial glycolipid
exoantigen (GLXA), a glycolipid antigen derived from
Chlamydia muridarum, can activate iNKT cells at in vitro and
in vivo settings. We showed that GLXA specifically stimulated
iNKT1.4 hybridoma cells to produce IL-2 and activated primary
iNKT cells to produce various cytokines in a CD1d-dependent
manner (31). Diacylglycerols (DAGs) are another type of bacterial
antigens that can activate NKT cells. DAGs are found in Borrelia
burgdorferi, Streptococcus pneumonia, Corynebacterium
glutamicum, Mycobacterium tuberculosis, Listeria monocytogenes,
andMycobacterium smegmatis (6).

In addition to bacteria, lipid antigens from fungus and
protozoan parasites were also reported to induce NKT responses
(32), but no virus lipid antigen has been found, although the
activation of NKT cells are well documented in viral infections
(33, 34). Moreover, in the condition of bacterial infections,
endogenous lipid antigens such as isoglobotrihexosylceramide
TABLE 1 | Subsets of NKT cells with different cytokine profile and function.

NKT1 NKT2 NKT17 NKT10

Cytokine profile IFN (IL-4) IL-4, IL-5 IL-17 IL-10
IL-9, IL-13 IL-21
IL-10, IL-22

Transcriptional factors T-bet PLZF RORgt.
PLZF GATA3 PLZF
GATA3 GATA3

Resident tissues Liver, lung Adipose tissue Lung
Spleen Lung Skin

Intestine Lymph nodes
February 2022 | Volume 13 | Article
NKT cell subsets can be grouped into four categories mainly based on their cytokine patterns and function, similarly like classical CD4 T cell subsets. NKT1, like Th1 cell, mainly produces
IFN-g and express T-bet; NKT2, like Th2, produces IL-4, IL-9 and IL-13 and express high PLZF; NKT17, like Th17, produces IL-17 and IL-22 and express RORgt, and NKT10, like
regulatory T cell produce IL-10. Unlike Th1 cell, NKT1 also produces IL-4, although IFN-g is more dominate. The dominance of certain NKT cell subsets in particular organ tissues is often
seen, e.g. NKT1 often dominates the liver while NKT2 dominates adipose tissues while a mix of different subsets is often seen in lung and intestine.
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(iGb3) and b-glucosylceramide could also possibly participate in
the activation and regulation of NKT response (35). On the other
hand, the microbial lipids antigens recognized by type 2 NKT cells,
which exhibit diversified TCRs, appear different from those
recognized by type 1 NKT cells (5). These type 2 NKT cells
preferably recognize lipid antigens of phosphatidyglycerol
(PG), diphosphatidyglycerol (DPG) and phosphatidylinositol
lipids (36, 37). Although either innate signaling such as TLR
activation and adaptive TCR signaling through APCs, especially
DCs, can activate NKT cells, it is likely that, in most
circumstances, both signaling pathways are involved.
MODULATION OF DC AND DC SUBSETS
BY NKT CELLS

The interaction of NKT cell and DC is reciprocal. More and
more studies suggest that NKT cells receive activation signals
from DCs and often feedback on DCs. The earlier studies mainly
used model antigens to test the influence of NKT cells on the
function of DCs (38–43). Fuji et al. showed that a single i.v.
injection of a-GalCer promoted the maturation of splenic DCs,
leading to a marked increase in the surface expression of
costimulatory and MHC Class II molecules with enhanced
antigen presentation function (39). They saw that a-GalCer
did not directly influence DCs; rather, it did it through
activation of NKT cells. Also using a-GalCer as an NKT
stimulator, Stober et al. found that NKT cells could help DCs
initiate antiviral cytotoxic T cell (CTL) responses in an MHC
Class I-dependent manner (38). An interesting finding in the
study was that, for the DCs to obtain help from NKT cells for
activation of CTL, the same DCs had to present different antigens
(glycolipid and peptide), respectively, for NKT and CTL cells.
Notably, the study on the adjuvant effect of NKT or NKT
activating lipid antigens to promote DC function represents a
significant effort to improve vaccine efficacy

Over the past decade, we did a series of studies on NKT cell
responses in respiratory tract Chlamydia muridarum and
Chlamydia pneumoniae infections, particularly on the feedback
of NKT cells on DC function (29, 44–48). NKT cell responses in
human chlamydial diseases have also been reported (49). We
have demonstrated that NKT cells, particularly type 1 NKT
(iNKT) cells, play a crucial role in host defense against
chlamydial infections, especially in C. pneumoniae-caused
infection. Variation in iNKT cells for cytokine production was
also observed in infections of different strains of Chlamydiae
(50). iNKT cells can promote protective type-1 immune
responses to C. pneumoniae by inducing enhanced IFN-g-
producing Th1/Tc1 type CD4+/CD8+ T cells and IL-17-
producing Th17 cells in the spleen and the local tissues in the
lung (45). Our study has used various experimental approaches,
including comparing wild-type (WT) and NKT cell-deficient,
Ja18 gene knockout (KO) mice, the adoptive transfer of purified
NKT cells to NKT deficient mice, and the enhancement of NKT
activation by a-GalCer. We demonstrated that NKT cells could
significantly influence splenic and pulmonary DCs in their
Frontiers in Immunology | www.frontiersin.org 4
phenotype, cytokine pattern, subsets, and function for
modulating CD4 and CD8 T cell responses and the isotypes of
antibody (44, 45, 47). Targeted analysis of NKT cell cytokine
patterns using lipid-loaded CD1d tetramer and intracellular
cytokine staining showed that the NKT cells activated by
respiratory tract C. pneumoniae infection predominantly
produced IFN-g, which correlated well with the enhanced type-
1 responses of both CD8+ and CD4+ T cells (50). In vitro co-
culture of splenic DCs with NKT cells enhanced bioactive IL-
12p70 production by DCs in a CD40L, IFN-g, and cell-cell
contact-dependent manner. Furthermore, DCs isolated from
infected wild-type (WT) and iNKT deficient mice induced
type-1 and type-2 T cell responses, respectively, when the DCs
were co-cultured with T cells in vitro or adoptively transferred to
naïve mice in vivo. Studies on lung DCs also showed significantly
altered number, phenotype, and cytokine profile of lung DCs in
iNKT deficient mice following C. pneumoniae infection. The
lung DCs from infected iNKT deficient mice failed to promote
type 1 T cells in vitro and in vivo, which was associated with
failure in inducing protection to challenge infection (47). The
finding of modulating effect of NKT cells on the function of DCs
in local tissues provides more relevant insight into the interaction
of NKT and DC cells in infection. The results provide direct
evidence on the functional modulation of NKT cells on systemic
and local DCs in infections.

The studies on DC function have led to the identification and
characterization of different DC subsets, which, by nature or
through post-thymic development in the microenvironments,
express variable surface makers and produce different cytokines
related to DC migration and cell interaction and function. Many
DC subsets have been reported in humans and mice.
Conventional DCs (myeloid and lymphoid), abbreviated as
cDC and plasmacytoid DCs (pDCs) are the two large groups
of DC subsets. CD11c is the most often used marker for mouse
conventional DC cells. CD8a+ and CD8a- DC subsets are a
common grouping in studying conventional splenic DCs with
implications in functional differences (51). Indeed, many studies
have suggested the distinction of the CD8a+ and CD8a- DC
subsets in function although inconsistent data were also reported
(52, 53). The difference in costimulatory surface markers and
cytokine patterns is often related to the functional distinction
(54–57). Notably, DC subsets in peripheral tissues with different
surface markers have been better characterized due to improved
technology, especially the advances in multi-color flow
cytometry of small cell populations (58–60). Based on the
differential expression of CD11b and CD103 molecules, mouse
pulmonary DC can be sub-grouped into CD11bhighCD103- and
CD11b-/lowCD103+ DC subsets (59, 60). Interestingly, CD103+
DCs in the non-lymphoid organs, such as the lung, gut, and skin,
form a unified subset that is developmentally related to the CD8+
cDC in lymphoid organs (61). This correlation is demonstrated
by their shared dependence on certain transcriptional factors
such as Batf3 and Irf8 and functional characteristics of antigen
cross-presentation. This close linkage of CD8+DC and CD103
+DC was further strengthened by the reports showing these DC
subsets’ unique common expression of XCR1, a chemokine
February 2022 | Volume 13 | Article 837767
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receptor (62, 63). Since both human BDCA3+ DCs and sheep
CD26+ DCs, which are the equivalents of mouse CD8+ DCs, also
express XCR1, it is suggested by the researchers to name “XCR1
+DCs” to designate the “CD8+ type DCs” in both lymphoid and
peripheral tissues across all mammalian species and tissues.
Functionally, the similar difference of CD103+ and CD103-
pulmonary DC subsets and CD8a+ and CD8a- splenic DC
subsets, in cross-presentation of exogenous antigens has been
found (60). Our study on splenic DCs has demonstrated
significantly stronger capacity for splenic CD8a+ DCs and
pulmonary CD103+DCs in inducing protective immunity
against chlamydial lung infections (64, 65). When the effect of
NKT cell on splenic and pulmonary DCs was examined, we
found a strong promoting effect of NKT cell on the DC1-like
DCs and a preferential modulating effect of NKT cells on CD8a+
DCs in number and function (44, 47). We showed that
CD8a+ DCs in the NKT deficient mice expressed lower CD40
and produced less IL-12. Functionally, co-cultured naïve
CD8a+DCs with NKT cells from chlamydial infected mice
promoted IL-12p70 production by this DC subset in a CD40:
CD40L interaction-dependent manner. Consistently, CD8a+
DC from Ja18 KO mice showed significantly reduced ability to
induce type 1 T cell immunity and protection in vivo, compared
with those fromWTmice. The modulating effect of NKT cells on
DCs was also confirmed by the adoptive transfer of NKT cells to
Ja18 KO NKT deficient mice. A similar preferential modulating
effect of NKT cells on CD8a+ DC subset was also found in
leishmanial infection (44).

Besides its direct effect on DCs, NKT cells can also
influence DC function through other types of innate
immune cells, such as NK cells. We reported a decade ago
that NKT cells, following chlamydial infection, can influence
the function of NK cells and NK subsets (46). In addition, we
found then that NK cells could influence DC function for the
induction of Th1 cells in chlamydial infection (66). Our recent
work showed that NK cells could significantly modulate DC
function in the induction of type 1 T cell development and the
inhibition of regulatory T cells (67). We showed that pre-
depleting NK cells significantly impaired type 1 T cell
responses to the infection, but contrarily enhanced FOXP3+
Treg cells and IL-10-producing CD4 T cells, leading to
enhanced disease severity and chlamydial growth in the lung
(68). NK cell-depleted mice showed decreased Th1 and Th17
cells, which was correlated with reduced IFN-g, IL-12, IL-17,
and IL-22 production, as well as T-bet and RORgt expression.
NK cells can modulate the surface molecule expression and
cytokine production profile. The adoptive transfer of DCs
from NK cell-depleted mice showed reduced induction of
type 1 CD4 and CD8 T cells but enhanced FOXP3+ Treg
cells and IL-10-producing CD4 T cells. Consistently, the
recipients of DCs from NK cell-depleted mice failed to be
protected against chlamydial lung infection. Mechanistically,
we found that NK activating receptors, surface costimulatory
molecules, and cytokines produced by NK cells play a
significant role in the modulating effect of NK on DC
function (69). In the NK cell and lung DC co-culture
Frontiers in Immunology | www.frontiersin.org 5
experiments, we found the blockade of the NKG2D receptor
reduced the production of IL-12p70, IL-6, and IL-23 by DCs.
The neutralization of IFN-g decreased the production of IL-
12p70 by lung DCs, whereas the blockade of TNF-a resulted in
diminished IL-6 production. Considering the much large
population of NK cells in local tissues, including the lung,
the NK promoting/modulating effect of NKT cells could
indirectly amplify their impact on DC function. Therefore,
the coordination of NKT and NK cells may have a broader
impact on other immune cells, which involve the link between
innate and adaptive immunity in infections.

To examine the interaction of NKT, NK, and DC cells more
directly, we recently investigated the influence and mechanism of
iNKT cells on the differentiation and function of NK cells in
chlamydial lung infection and the role of DCs in this process
(46). We found that the quick expansion of IFN-g-producing NK
cells following chlamydial infections did not happen in iNKT
deficient mice. The expression of activation markers and the
production of IFN-g by different NK subsets were significantly
lower in the iNKT deficient mice. We further found that the
activation of NK cells was delayed when they were co-cultured
with DCs from iNKT deficient mice, and the adoptive transfer of
DCs from the deficient mice induced lower NK cell activation
and less IFN-g production by T cells. The results provide
evidence on the critical role played by DCs in the modulating
effect of iNKT cells on NK cell function. Not only influencing
primary T cell responses but NK cells were also found to
influence memory T cell responses (70). Based on the reports
showing the modulating effect of NK on DCs (66, 67, 69), the
findings also suggest a reciprocal influence between DC and NK
cells. In addition, considering the massive evidence of NK-
mediated promotion/activation of DCs, the enhanced NK cell
function can further promote DC function, forming a positive
feedback circle. Notably, the influence of NK cells could reach
multiple cell types. For example, we recently found NK cells can
influence macrophage polarization in the lung following
chlamydial infection (71). Similarly, the newly reported
molecules such as SND1 and Sema3E, which modulate DC
functions in infections (72, 73), would be an area for exploring
the molecular mechanisms related to the modulating effect of
NKT and NK cells on DC function infections. The data suggest
the complexity of multiple innate and adaptive immune cell
interaction levels in infections.

On the other hand, a negative modulatory role of NKT cells on
DC function was also reported in multiple physiological and
pathological settings, especially for dNKT cells (5, 74, 75). In
some circumstances of tumors, autoimmune diseases, and
infections, the role of iNKT and dNKT appears opposite to the
disease process in which dNKT cells are more likely showing an
effect of immune suppression, althoughmany exceptions have also
been reported (5). In autoimmune diseases, dNKT cells more
likely play a protective role due to the tolerogenic nature of the
cell. For example, sulfatide reactive dNKT cells in experimental
autoimmune encephalomyelitis (EAE) can induce tolerized DCs
leading to anergy of type 1 NKT cells and inhibition of pathogenic
autoreactive CD4 T cells (76, 77). However, the regulatory role of
February 2022 | Volume 13 | Article 837767
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iNKT ce l l s on DCs is a l so documented , and the
microenvironments, especially cytokines, have a significant
impact on the iNKT function. For example, Bochtler et al.
reported that the competence of DCs to prime proinflammatory
CD8 T cell responses was impaired by iNKT cells only in the
presence of type 1 IFN (74). In addition, Caielli et al. found
that the same iNKT cell could be a positive or negative
regulator of myeloid DCs depending on the presence or
absence of specific molecules which simultaneously acted on
the DCs (75). In the absence of TLR4 co-stimulation, NKT
cells triggered immature DC to become tolerogenic DC,
consequently inducing regulatory T cells to prevent
autoimmune diabetes, while in the presence of TLR4 co-
stimulation, this tolerogenic effect was not observed. Not
surprisingly, the positive and negative modulating effects of
NKT cells were mediated through distinct signaling pathways.
For the induction of tolerogenic DCs, the ERK1/2 pathway was
taken, while for proinflammatory DCs, the NF-kB pathway
was activated (75). Therefore, although dNKT appears to have
a higher chance to play an immune-regulatory role, the
function of different NKT cell types in disease settings is
more likely determined by multiple factors including, but
not limited to, their current molecular expression,
maturation stage, and cytokine microenvironments.
Frontiers in Immunology | www.frontiersin.org 6
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Since its relatively-new identification about two decades ago,
NKT cell is gradually recognized as a small but critical innate-like
T cell component in the central and peripheral immune systems,
playing an essential role in host defense and immune regulation.
Recent studies show that NKT cells can significantly influence
the phenotype, subsets, and function of systemic and local DCs
(Figure 1). Through its modulating effect on DCs, NKT cells play
a critical role in bridging innate and adaptive immunity,
especially for T responses. Reported studies, especially those in
real disease animal models and humans, have documented either
positive or negative modulating effects of NKT cells on DC
function, but more studies showed positive effects, especially in
infectious diseases. NKT cells not only receive DC’s help for their
initial activation but also feedback on DCs later for their
functional maturation and subset development/expansion,
especially for systemic CD8a+ and peripheral CD103+ DCs.
The DCs modulated by NKT cells can further influence the
activation/differentiation of conventional CD4+ and CD8+ T
cells, which are critical for host defense mechanisms. In addition,
NKT cells can promote the function of NK cells, which directly
play a protective role in infections and boost the function of DCs,
leading to amplified positive feedback effects on DCs.
FIGURE 1 | Reciprocal interaction of natural kill T (NKT) cells and dendritic cells (DCs) and its impact on T cell responses against infections. The entered bacterial or
some other infectious agents are taken by immature DCs and their microbial lipid antigens are presented through CD1d to activate NKT cells. The activated NKT
cells can feedback on the DCs promoting their maturation and preferential differentiation to CD8a+ DCs, systemically, and CD103+ DCs in local tissues. Possible
molecular and functional link between CD8a+ and CD103+ DC subsets has been suggested. The preferentially-promoted DC subsets can direct the differentiation of
conventional CD4+ or CD8+ naïve T cells into functional Th1- or Tc1-like peptide antigen-specific T cells, respectively, due to their predominant expression of co-
stimulatory surface markers and production of cytokines for type 1 T cell responses. The activated antigen-specific CD4+ Th1 and CD8+ Tc1 T cells can inhibit the
infectious agents locally and systemically. In addition, the feedback of NKT cells on immature DCs can lead to enhanced activation of NK cells, which also have
positive feedback effect on DCs for their function to promote type 1 T cell responses. This indirect interaction of NKT and NK cells through DCs can amply the
positive feedback of NKT cells on DC function. Moreover, the activated NKT and NK cells can promote the function of local monocytes and macrophages to inhibit
the infection. Symbols and abbreviations: ⊕, promote; ⊝, inhibit; imDC, immature DC; naïve T, naïve T cell; Th1, CD4+ type 1 T cell; Tc1, CD8+ type 1 T cell.
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Considering the extreme importance of DCs in directing T cell
immune responses, it would be necessary in future studies to
focus on the interaction between NKT cells and DCs in the
phases of both NKT-DC and DC-T interactions, especially the
involved surface and intracellular molecules and signaling
pathways by which NKT cells modulate DC/DC subset
function. This knowledge is beneficial not only for a better
understanding of immune regulation mechanisms, including
the immunobiology of NKT and DC cells but also beneficial
for rational development of vaccines through selective targeting
and manipulating NKT and DC subsets to promote the
protection and reduce potential immunopathology, particularly
in infectious diseases and broadly in other diseases including
autoimmunity and cancer.
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