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Coding of odorous stimuli has been mostly studied using single isolated stimuli.
However, a single sniff of air in a natural environment is likely to introduce airborne
chemicals emitted by multiple objects into the nose. The olfactory system is therefore
faced with the task of segmenting odor mixtures to identify objects in the presence of
rich and often unpredictable backgrounds. The piriform cortex is thought to be the site
of object recognition and scene segmentation, yet the nature of its responses to odorant
mixtures is largely unknown. In this study, we asked two related questions. (1) How are
mixtures represented in the piriform cortex? And (2) Can the identity of individual mixture
components be read out from mixture representations in the piriform cortex? To answer
these questions, we recorded single unit activity in the piriform cortex of naïve mice while
sequentially presenting single odorants and their mixtures. We find that a normalization
model explains mixture responses well, both at the single neuron, and at the population
level. Additionally, we show that mixture components can be identified from piriform
cortical activity by pooling responses of a small population of neurons—in many cases a
single neuron is sufficient. These results indicate that piriform cortical representations are
well suited to perform figure-background segmentation without the need for learning.
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INTRODUCTION

The odorants emitted by different objects in the environment mix in the air before reaching the
nose. Each of these objects in itself will typically emit tens to thousands of odorants that become
its olfactory signature. Natural inputs into the olfactory system are therefore rich odorant mixtures
that require segmentation in order for useful information to be extracted. The difficulty of mixture
segmentation arises from the overlapping representations of odorants by olfactory sensory neurons
(Malnic et al., 1999; Rubin and Katz, 1999; Araneda et al., 2000; Kajiya et al., 2001; Abaffy et al., 2006;
Grosmaitre et al., 2009; Soucy et al., 2009). Similar to the auditory system (and unlike the visual
system), a single sensory neuron may be simultaneously activated by multiple odorants (Brungart
et al., 2001; McDermott, 2009). Behavioral testing has indeed shown that increased overlap in
odorant representations is related to increased difficulty of scene segmentation (Rokni et al., 2014).

The mechanisms for scene segmentation are not well understood. Piriform cortex, being
the first brain station that combines inputs from multiple receptor channels, is a primary
candidate for performing this task (Davison and Ehlers, 2011; Ghosh et al., 2011; Sosulski
et al., 2011; Haddad et al., 2013). Several factors have been suggested to contribute. First,
if objects are dispersed in space, plume dynamics may provide temporal separation between
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objects (Hopfield, 1995; Brody and Hopfield, 2003; Wilson,
2003; Kadohisa and Wilson, 2006a; Linster et al., 2007;
Szyszka et al., 2012; Vinograd et al., 2017; Erskine et al.,
2019). Second, readout of mixture components can be achieved
by properly combining inputs form multiple receptor channels
(Mathis et al., 2016; Singh et al., 2019). And third, feedback
projections within the olfactory system may provide a flexible
readout for specific mixture components (Li and Hertz, 2000;
Grabska-Barwińska et al., 2017; Singh et al., 2019).

Currently a limiting factor in understanding mixture
segmentation, is our limited knowledge about mixture
coding. Understanding how odor mixtures are represented
in the piriform cortex is a prerequisite for understanding
mixture segmentation. Ultimately we would want to be able
to predict responses to mixtures based on the responses to
single components. Several studies have reported sublinear
mixture responses in olfactory cortex, thereby limiting the
possible response space, however, they have not provided models
to predict mixture responses (Lei et al., 2006; Yoshida and
Mori, 2007; Stettler and Axel, 2009). Sublinearlity of mixture
responses is probably inherited to some extent from the olfactory
epithelium (Kurahashi et al., 1994; Duchamp-Viret et al., 2003;
Oka et al., 2004; Takeuchi et al., 2009; Xu et al., 2020; Zak
et al., 2020), as well as from the olfactory bulb where cross
odorant inhibition may contribute (Yokoi et al., 1995; Urban,
2002; Aungst et al., 2003; McGann et al., 2005; Arevian et al.,
2008; Fantana et al., 2008). The piriform cortex integrates these
non-linear odor representations from the olfactory bulb and
utilizes local recurrent circuitry to generate representations
that presumably support segmentation (Poo and Isaacson,
2009, 2011; Franks et al., 2011; Miura et al., 2012; Suzuki and
Bekkers, 2012; Roland et al., 2017; Bolding and Franks, 2018).
Importantly, piriform cortex is also expected to contribute
to sublinear summation of mixture components due to local
inhibitory circuits. These circuits have been shown to normalize
responses to increasing concentrations of odors (Bolding and
Franks, 2018; Stern et al., 2018). Whether increasing stimulus
intensity by increasing concentration or by adding more odorants
produces equivalent normalization is unknown. Piriform cortex
is typically divided into anterior and posterior regions. The
anterior piriform cortex receives more afferent inputs from the
olfactory bulb and less associational inputs than the posterior
piriform cortex (Hagiwara et al., 2012; Giessel and Datta, 2014).
This connectivity difference suggests that the anterior piriform
cortex may reflect the input itself with greater acuity rather than
its learned associations (Wilson and Sullivan, 2011).

Several questions remain unanswered about mixture
representations. First, how do cortical mixture representations
relate to the representations of their constituent odorants?
In other words, how can one predict cortical responses to
mixtures from the responses to single components? And second,
how is information about the individual mixture components
represented in the piriform cortex and how can it be read by
down-stream regions?

To answer these questions, we systematically characterized
mixture representations in the anterior piriform cortex and
analyzed their ability to convey information about individual

mixture components, at both the single neuron, and population
levels. We focus our analysis on the anterior piriform cortex
because of its tighter link to the stimulus.

MATERIALS AND METHODS

All experimental procedures were performed using approved
protocols in accordance with institutional (Hebrew University
IACUC) and national guidelines.

Data Acquisition
Young adult male c57bl6 mice (10–14 weeks old, Envigo)
were anesthetized (Ketamine/Medetomidine 75 and 1 mg/kg,
respectively), and were restrained in a stereotaxic device (Model
940, David Kopf Instruments). The skin was removed from
the scalp and a small craniotomy was made over the anterior
piriform cortex (1.5 mm anterior and 2.8 mm lateral to bregma).
A metal plate was attached to the skull with dental acrylic
and was used to hold mice at the electrophysiological rig.
Normal body temperature (37 C) was maintained with a heating
pad (Harvard Apparatus). A single tungsten electrode (A-M
systems, 10–12 MOhm) was lowered into the piriform cortex
with a micromanipulator (Sutter Instruments). Signals from
the electrode were band pass filtered (300–5,000 Hz), amplified
(X1000, A-M systems 1800), and sampled at 20 KHz and digitized
with 16-bit precision (National Instruments PCIe-6351). All
analog signals were displayed and saved for offline analysis using
custom-made software in LabVIEW (National Instruments).
Injections of a TRITC-labeled 10Kd dextran (500 nL, Molecular
probes cat#D1817, 10 mg/ml) were used to verify piriform
cortical targeting.

Odors were presented using a custom-made, computer-
controlled, odor presentation machine that maintains constant
flow and allows mixing of odors without mutual dilution (Rokni
et al., 2014). The following 8 odorants were used (all from Sigma
Aldrich, CAS numbers in parentheses): (1) isobutyl propionate
(540-42-1), (2) 2-ethyl hexanal (123-05-7), (3) ethyl valerate (539-
82-2), (4) propyl acetate (109-60-4), (5) isoamyl tiglate (41,519-
18-0), (6) phenethyl tiglate (55,719-85-2), (7) citral (5,392-40-5),
(8) ethyl propionate (105-37-3). All odorants were diluted to 10%
in diethyl phthalate (84-66-2), and then further diluted eightfold
in air. Odors were presented into a mask that fit the mouse’s
snout at a rate of 1 l/min and were cleared from the mask
by vacuum that was set to create an outward flow of 1 l/min
(Figure 1A). A third port of the mask was connected to a mass
flow sensor (Honeywell AWM3300) to monitor respiration. For
each recording session, a set of 4 odorants was chosen (initially
randomly and later fixed to odorants 1, 3, 5, and 7). All 15
combinations of these 4 odorants were then presented with
randomized order (typically repeating ∼30 times each). Odors
were presented for 1.5 s with an inter-trial interval of 20 s.

Data Analysis
Action potentials were detected offline using custom-written
code in Matlab, and were then sorted using MClust (David
Redish). Only units that had less than 1 in 1,000 spikes to
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FIGURE 1 | Mixture responses in piriform cortex. (A) Schematic of experimental setup. (B) Odor presentation calibration. The PID signal for mixtures plotted vs. the
linear sum of PID signals for mixture components, indicating that mixture stimuli are a linear sum of the single component stimuli. Dot color indicates mixture size.
(C) A sagittal section of a brain that was injected with a 10 kDa rhodamine at the same coordinates used for recordings. Arrow marks the injection site in the anterior
piriform cortex. Scale bar – 1 mm. (D) Example raw data (respiration and electrophysiology), raster plot, and PSTH in response to a mixture of 2 odorants (od 3–5).
Red line denotes the time of PSTH alignment (first inhalation onset). (E) An example stimulus set. All combinations of 4 odorants. Green-filled and empty squares
denote odor on and off, respectively. PSTHs on the right are the responses of the same cell as in D to all stimuli. Red lines show the time of the first inhalation onset.
(F) Histogram of baseline firing rates. (G) Fraction of spikes as a function of respiratory phase shown for 3 example cells. Red line shows a cosine fit. (H) Histogram
of preferred baseline firing phase. (I) Histogram of change in firing rate in response to odor stimulation. (J) Histogram of response latencies. (K) Tuning width
histograms. Above: Histogram of the number of significant single odorant responses in each cell. Below: Histogram of the number of significant responses to any of
the 15 stimuli in each cell. Only cells that responded to at least one stimulus are shown. (L) Fraction of significant responses as a function of the number of odorants
in the mixture. Error bars show the 95% confidence interval. (M) Observed responses (firing rate) vs. the linear sum of individual odorant responses. Responses of all
cell-mixture pairs are shown. Dashed line is the unity line. (N) Histogram of the differences between observed and linearly predicted mixture responses.
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have occurred within a 3 ms refractory period were considered
as single units and further analyzed. Respiratory signals were
low-pass filtered with a moving average window of 250 ms.
Inhalation onsets were defined as zero crossings with negative
slope. All neural responses were aligned to the first inhalation
onset following odor onset. PSTHs were generated with 1 ms
bins and filtered with a 50 ms window Gaussian moving average.
Response significance was tested by comparing spike rates during
a 3 s response period to the spike rates in a 3 s period with
no odor, using the Wilcoxon ranksum test with a threshold
p-value of 0.01. Response latency was defined as the first bin
in which firing rate deviated from an equivalent non-odor time
bin with a p < 0.01 using the Kolmogorov-Smirnov test. All
responses are shown as baseline-subtracted spike rates. To fit
normalization models, data was fit to equation 1 using the
lsqcurvefit function in Matlab. Fit quality was assessed with the
coefficient of determination (R2).

Receiver operating characteristic (ROC) analysis was
performed using the perfcurve function in Matlab. For each
neuron, ROC analysis was performed separately to test the
detectability of each odorant. The reported performance of
each neuron is the best across the 4 odorants. The performance
reported for each odorant is the best across all neurons. Shuffled
controls were created by shuffling the stimulus labels for all
neurons and obtaining a distribution of 224 auROC values
(4 odorants X 56 neurons). Performance is reported as above
control if the auROC was above all shuffled controls.

For population analysis, we generated a pseudo-population
by pooling neurons from different experiments in which we
used the same 4 odorants (odorants 1, 3, 5, and 7). Principal
component analysis was performed after normalizing each
neuron’s responses to its standard deviation. For modeled
mixture responses we created modeled PSTHs for each neuron.
The linear, mean, and max modeled PSTHs were created by
taking the linear sum, mean, and maximum of the individual
component responses, respectively. The normalization model
PSTHs were created by simultaneously fitting a pair of parameters
to all mixture responses of a neuron (Eq. 1).

Linear classifiers were realized as logistic regressions and were
fit using the fitclinear function in Matlab. The cost function
for the classifier is `[y,f (x)] = log{1+exp[−yf (x)]}, where y
is the data and f(x) if the fit. The fit minimizes this cost
function. Classifiers were cross-validated by creating a test set
that was not used for training. Each test set included one
randomly selected response from each neuron to each of the
15 odor combinations. A training set that did not include the
testing trials was then generated by randomly selecting trials
from each neuron for each odor combination. The training
set included 1,000 trials of each of the 15 stimuli for most
analyses. The reported performance for the classifiers is the
mean over 100 iterations. For assessing the effect of population
size on classification accuracy, we gradually removed inputs
from the classifier by sequentially removing the neuron with
the minimal absolute weight. For the analysis of temporal
resolution, time bins from all neurons were concatenated in
each trial and the training set was increased to 10,000 trials
for each stimulus.

RESULTS

We recorded the responses of single neurons in the anterior
piriform cortex of naïve anesthetized mice, to all possible
combinations of 4 odorants (4 single odorants, 6 pairs, 4 triplets,
1 mix of 4, Figures 1A–E). Various sets of 4 odorants were
used. Because the isolation of single-unit activity is critical
for the following analysis, we recorded neural activity using
single tungsten electrodes which provide a much higher signal
to noise ratio than most multi-channel systems and allow
better separation of single-unit spikes. We recorded from 56
well-isolated neurons from 27 mice. 53 neurons responded
significantly to at least one of the 15 stimuli (single odorant
or mixture). Odors were presented using a machine that allows
mixing of odors without mutual dilution, into a mask that fit the
mouse snout and were cleared with constant negative pressure
(Figures 1A,B). The mask was connected to a mass flow sensor
for continuous monitoring of respiration. Dye injections in the
recording coordinates (1.5 mm anterior and 2.8 mm lateral to
Bregma, 4.5 mm ventral), verified targeting of anterior piriform
cortex (Figure 1C). All odor responses were aligned to the first
inhalation onset following odor valve opening, and typically
showed a strong locking to respiration (Figures 1D,E).

The basal firing of cortical neurons was typically very
low (1.9 ± 0.05 Hz, mean ± SEM, Figure 1F), and
both basal firing and odor responses were typically strongly
modulated by respiration (Figures 1E,G,H). Odor responses
were predominantly positive (increases in firing rate) with only
18% showing mild decreases in firing rate (Figure 1I). This
however may be an underestimate of inhibitory inputs as most
neurons had a basal firing rate of less than 1 spike per second,
rendering our analysis less sensitive to inhibition. Response
latency showed a wide range starting from 150 ms (Figure 1J).
Of the responding neurons, most responded significantly to
more than one of the individual odorants (Figure 1K). We first
asked whether adding odorants to a mixture increases overall
responses in the piriform cortex. Analyzing response statistics
across all responsive neurons, we found that the fraction of
significant responses (p < 0.01) was positively correlated with
the number of mixture components (r = 0.98, p = 0.017,
Figure 1L). The simplest model for response integration is a
linear model in which a neuron’s response to a mixture is
equal to the sum of its responses to the mixture components.
To test for linearity of odorant integration, we compared
mixture responses of all neurons to the linear sum of the
responses to individual mixture components. Most mixture
responses were below the linear prediction (Figures 1M,N).
These analyses show that in agreement with previous studies,
the vast majority of piriform cortical responses to odorant
mixtures increase with added mixture components and that this
increase is sublinear (Lei et al., 2006; Yoshida and Mori, 2007;
Stettler and Axel, 2009).

We next asked whether there is any consistent shape to the
relationship between the linear predictions and the observed
responses. We first treated responses as the mean firing rate
within a 3 s response period. We fitted mixture responses with
a logistic function to describe response normalization, similarly
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FIGURE 2 | A normalization model for mixture responses of individual piriform neurons. (A1–4) Examples from 4 cells showing the relationship between the linearly
predicted and observed responses. The size of the symbol indicates the number of odorants in the mixture. Red line shows the fit to Eq. 1. Dashed line is the unity
line. (B) Histogram of the coefficients of determination (R2) of the fits to Eq. 1 obtained from all cells. (C) The coefficients of determination plotted against the slope of
a linear fit between the observed and linearly predicted responses. (D–F) Spike width (D), baseline firing rate (E), and preferred respiratory phase (F), plotted against
the coefficient of determination obtained in the fit to Eq. 1.

to fits used to describe mixture responses in olfactory sensory
neurons (Mathis et al., 2016):

R = Rmax
(

2
1+ e−s·LP

− 1
)

(1)

In this model, R is the neuron’s response to a mixture,
LP is the linear sum of the individual component responses,
Rmax is the neuron’s maximal response, and s is a parameter
that sets the initial slope of the function (at LP = 0).
Rmax and s are the two fitted parameters. We found that
this model explains mixture responses well for most neurons
(Figures 2A1–3). Some neurons however, could not be properly

fit (Figure 2A4). The normalization model could account
for most of the variance (R2 above 0.5) in 30/53 (57%) of
the cells (Figure 2B). The neurons that could not be well
explained with this model (low R2) showed little increase in
their responses as mixture components were added as assessed
by the slope of a linear fit between the linear prediction and
the observed responses (Figure 2C). Whether these neurons
represent a separate neuronal subtype is unclear, yet the
quality of the normalization fit was not correlated with spike
waveform, basal firing rate or preferred respiratory phase of firing
(Figures 2D–F). These results indicate that mixture responses of
individual piriform neurons can often be explained by a simple
normalization model.
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To assess how the variable fit quality across cells affects
population coding in piriform cortex, and how these responses
evolve in time, we analyzed response trajectories of 37 neurons
that were recorded using the same odorant set (odors 1, 3, 5, and
7). We used principal component analysis to visualize response
trajectories (Figure 3). Mixture responses typically occupied the
space between the component responses (Figure 3A). To test
how well the normalization model explains population responses,
we created normalized PSTHs for each mixture and projected
them onto PCA space (Figure 3B). Normalized PSTHs were
created by simultaneously fitting a single pair of parameters
to all mixture responses of each neuron. We tested 3 other
models for comparison: (1) a linear model in which the predicted
mixture response is the sum of the component responses. (2)
a mean model in which the mixture response is predicted to
be the average of the component responses. And (3) a max
model in which the predicted mixture response is the maximum
of the component responses (Figures 3B,C). We compared
the errors produced by the four models by measuring the
Euclidean distance between the modeled PSTHs and the actual
observed responses. Overall the normalization model was the
most accurate with the lowest distance for 9 out of the 11
mixtures (Figures 3G,H, p = 0.005 vs. mean, p = 0.001 vs. max,
p = 0.001 vs. linear, Wilcoxon signed rank test). To assess the
accuracy of the normalization model, we compared its errors
to the distances between the 15 different presented stimuli. The
model errors were significantly lower than the inter-stimulus
distances, despite the fact that our stimuli have many shared
odorants (Figure 3I). These results indicate that population
coding of mixtures in piriform cortex can be explained by a
normalization model.

One of the suggested tasks that the piriform cortex is
presumed to solve is figure-background segmentation. It was
recently suggested that individual piriform neurons may be able
to detect target odors in a background-invariant manner by
pooling inputs from multiple glomeruli (Mathis et al., 2016;
Grabska-Barwińska et al., 2017; Singh et al., 2019). We therefore
asked whether the presence of individual odorants in mixtures
can be extracted from the activity of individual piriform neurons.
We used receiver operator characteristic (ROC) analysis to test
whether the responses to mixtures that contain a specific target
odorant are discriminable from responses to mixtures that do
not contain the target odorant (Figure 4; Green and Swets,
1966). For each neuron, we assessed discriminability for all 4
odorants in the experiment and used the best discriminated
odorant as target. We quantified discriminability with the area
under the ROC curve (auROC, Figures 4A,B). Many neurons
yielded high levels of discriminability with 54/56 (96%) neurons
performing better than shuffled-labels controls, and 11/56 (20%)
cells having an auROC of above 0.8. The discriminability for each
odorant based on its single best neuron ranged from auROC
of 57–99.7 and averaged at 79 (Figure 4C). Mice detect target
odorants from background mixtures in about 500 ms (Rokni
et al., 2014). We therefore analyzed how single neuron target
detection is affected by the time window over which responses
are integrated. Responses integrated within a window of less
than 200 ms from stimulus onset were not informative about

target odorants and the auROC curve plateaued for most neurons
between 800 and 1,600 ms (Figure 4D). The longer integration
windows are presumably more informative about target odorants
due to increased spike counts and signal to noise ratio, but
they may also be more informative because they cover the right
epoch in which action potentials carry the most information
about the presence of the target odorant. To analyze for the
latter, we repeated the ROC analysis with 200 ms windows that
were shifted in time (Figure 4E). 12/56 neurons had at least
one 200 ms epoch for which the auROC was above 0.8. The
auROC as a function of time for these 12 neurons was highly
correlated with the shape of their PSTHs in response to the
target odorants. These analyses indicate that single piriform
neurons are highly informative about the presence of a target
odorant within a mixture, and that detection can be performed
in time scales that match previous behavioral measurements.
Nevertheless, since olfactory responses are often sharpened when
analyzed with respect to sniff phase rather than absolute time
(Shusterman et al., 2011; Ackels et al., 2020), we repeated
the ROC analysis using sniff warped trials. Sniff warped and
sniff aligned analyses obtained almost identical results due to
the low variability of sniff rates in the anesthetized condition
(Supplementary Figure S1).

Despite the overall good performance of target odorant
detection form the activity of single neurons, some odorants
could not be accurately detected (see odors 3 and 7 in Figure 4C).
We therefore next analyzed the ability to detect target odorants
from the activity of neuronal populations. We pooled data from
all cells stimulated with a specific set of 4 odorants (odorants
1, 3, 5, and 7, 37 cells) to create a pseudo-population. We
then trained linear classifiers (realized as logistic regressions)
to classify trials according to the presence of each individual
odorant. Classifiers were cross-validated by constructing a test
set that included a single response from each neuron to each of
the 15 odor combinations. Test set responses were not included
in the training set. The mean classification accuracy across target
odorants was 88% correct (99% for odorant 1, 88% for odorant
3, 86% for odorant 5, and 78% for odorant 7), showing a
significant improvement for the odorants that were not well
detected with single neurons. The performance of the classifiers
typically decreased for richer mixtures, starting from an average
performance of 94 ± 2% for single odorants and decreasing to
82 ± 6% for mixtures with 4 components (Figure 5A). To assess
the number of neurons required to detect individual odorants
from mixtures, we trained classifiers using sub-populations
(Figure 5B). We started with the entire population and gradually
removed the neuron with the minimal absolute weight. On
average across odors, 6 neurons were sufficient to reach a
performance level above 90% of the level achieved with the
entire population (1 neuron for odorant 1, 8 for odorant 2, 7
for odorant 3, and 6 for odorant 4). We next asked whether
target odorants can be detected within behavioral time scales.
To that end, we analyzed how classifier performance depends on
the response integration time (Figure 5C). Classifier performance
degraded only for one target odorant when decreasing the
integration time from 3 to 1 s, but degraded sharply for all
target odorants when decreasing the integration window below
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FIGURE 3 | Population coding of mixture responses. (A) Projections of single odorant (colored) and respective mixture responses (black) onto the first 2 principal
components explaining 19 and 11 percent of the variance, respectively. Shown are examples for mixtures of 2, 3, and 4 odorants. (B) PCA projections of the same
mixture responses as in (A) (black) and 3 corresponding predicted responses. Blue—max, Green—mean, Red—normalization. (C–F) PCA projections of all 11
mixture responses (black) and their corresponding predicted responses (colored). (C) Linear prediction. (D) Max prediction. (E) Mean prediction. (F) Normalization
prediction. (G) Model errors, calculated as the Euclidean distance between the observed and predicted mixture responses as a function of time. Colors as in (B–F)
shown are mean ± SEM. (H) Mean model error distance during odor presentation for all model-mixture pairs. Dots representing the same mixture are connected
with lines. Colored dots show the mean. Asterisks reflect statistical significance (p < 0.01). (I) Normalization model error for the 11 mixtures (red), and all pairwise
inter-stimulus distances (gray). *Denote p < 0.01 Wilcoxon signed rank test.
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FIGURE 4 | Detection of target odorants with single neurons. (A) The ROC analysis of 4 example cells. Firing rate histograms are shown on left (blue—all mixtures
including a particular odorant, orange—all mixtures excluding the odorant). Panels on the right show hit rate (HitR) vs. false alarm rate (FAR) as the decision boundary
is shifted (numbers indicate the area under the curve). (B) Histogram of the area under the ROC curve. The highest value for each neuron (across the 4 odorants) is
included. (C) The maximal area under the curve obtained for each odorant. The number of neurons tested with each odorant is indicated. (D) The area under the
ROC curve for each cell is plotted against the number of single odors that elicited a significant response. The area under the curve is shown for the best
discriminated odor. (E) The area under the curve for each cell (with its best odor) as a function of the duration of response integration. Low performing cells (never
reaching performance of 0.8) are shown in gray, high performing cells are shown in red. (F) The area under the curve using a sliding 200 ms integration window as a
function of the time of integration along the response (red) superimposed with the PSTH in response to the detected odorant (black). Twelve high performing neurons
are shown. *Denote p < 0.01 Wilcoxon signed rank test.
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FIGURE 5 | Detection of target odorants with pseudo-populations. In all panels black lines show the average performance for each odorant, and the color-shaded
areas show the standard error of the mean. The different colors represent the four different odorants (blue—od1, red—od3, yellow—od5, purple—od7).
(A) Performance of the linear classifiers as a function of the number of odorants in the mixture. (B) Performance of the classifiers as a function of the number of
neurons used as input. (C) Performance of the classifiers as a function of the duration of the response integration window. (D) Performance of the classifiers as a
function of temporal resolution.

500 ms. The average performance across odors with 500 ms
integration time was 77 ± 5%, indicating that much of the
information for classification is available within the behavioral
time limits. Lastly, we tested whether spike timing carries any
information beyond what is carried by the mean firing rates.
We trained classifiers with temporal inputs at varying temporal
resolution (Figure 5D). Decreasing time bins below 500 ms
yielded over-fitted models that performed badly on test trials.
Even when the total response duration was lowered to 1 s and the
number of training trials was increased 100-fold, time bins below
500 ms yielded over-fitted models. As with the ROC analysis, we
repeated the classifier analysis using sniff phase instead of time
and obtained very similar results (Supplementary Figure S1).
This indicates that the anterior piriform cortex uses a rate
code to convey information about the presence of target odors

embedded in background mixtures. Together, these analyses
show that the detection of target odorants against background
mixtures can be reliably achieved with a small number of
piriform neurons.

DISCUSSION

We recorded from single neurons in the anterior piriform
cortex of naïve anesthetized mice and describe their responses
to odorant mixtures. We used receiver operator characteristic
(ROC) analysis, and linear classifiers to describe the availability
of information regarding mixture components in single neuron,
and population activity, respectively. Our main findings are that
(i) piriform responses can be described with a normalization
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model that relates mixture responses to the linear sum of
individual component responses, and previous analyses of
mixture representations in the piriform cortex have found that
sub-linear summation of odorant responses is the common case,
although examples of supra-linear summation have also been
demonstrated (Yoshida and Mori, 2007; Stettler and Axel, 2009).
Similar variability in odorant summation has also been found
in the anterior olfactory nucleus (Lei et al., 2006). Our analysis
shows that combining multiple mixture responses of individual
neurons uncovers a mathematical relationship between them.
The normalization model may explain some of the variability
in previous studies as responses far below the saturation level
(Rmax in eq. 1) may appear linear while greater responses will
be sublinear. Normalization has been found in many cortical
regions and has been proposed as a canonical computation
performed by cortical circuits that allows them to encode
variables monotonically without saturating (Carandini and
Heeger, 2012). Our finding of mixture response normalization
is in line with studies that demonstrated normalization of
responses to increasing concentrations of odorants (Bolding and
Franks, 2017, 2018; Stern et al., 2018). Several mechanisms may
contribute to the sublinear summation of odorant responses.
These include interactions between odorants at the olfactory
epithelium (Kurahashi et al., 1994; Duchamp-Viret et al., 2003;
Oka et al., 2004; Grossman et al., 2008; Takeuchi et al.,
2009; Reddy et al., 2018; Xu et al., 2019; Zak et al., 2019),
processing in the olfactory bulb (Giraudet et al., 2002; Linster
and Cleland, 2004; Tabor et al., 2004; Lin et al., 2006), and
further normalization within piriform cortex, implemented by
local inhibition. Inhibitory circuits within the piriform cortex
have indeed been shown to play a major role in shaping piriform
representations (Poo and Isaacson, 2009, 2011; Franks et al., 2011;
Bolding and Franks, 2018).

Our findings complement recent studies describing
normalization of piriform cortical responses to increasing
concentrations (Bolding and Franks, 2017, 2018). Normalization
of increasing concentrations is suggested to curtail responses
to late activating glomeruli and thereby create concentration
invariant representations due to a concentration invariant order
of activation of receptors (Wilson et al., 2017; Chong et al.,
2020). It is not clear how curtailing responses to late activating
glomeruli may serve mixture coding. Adding odorants to a
mixture is likely to change the order of activated glomeruli.

Most neurons in our data set were well fit by the
normalization model, however, it is important to note that
some neurons were not. These cells were mostly cells that
did not increase their activity when mixture components
were added, and it is possible that we only probed them
with stimuli that push them to their saturated response
levels. Although the quality of fit to the normalization model
was not correlated with any electrophysiological signature
(baseline firing, phase preference, and spike waveform),
we cannot rule out the possibility that different neuronal
populations integrate mixture components differently.
Indeed principal neurons in the piriform cortex include
subpopulations that differ in their localization across layers,
biophysical properties, projection targets, and possibly tuning

width (Suzuki and Bekkers, 2006, 2011; Zhan and Luo, 2010;
Diodato et al., 2016).

The finding that single piriform neurons may be sufficient
to detect target odorants against background mixtures is in
line with recently proposed models for target odorant detection
from mixtures (Mathis et al., 2016; Singh et al., 2019). In
these models, individual glomeruli are not informative about
the presence of any specific odorant, but pooling information
from a population of glomeruli, supports accurate classification.
As piriform neurons receive inputs from multiple receptor
channels, they are poised to be suitable for this classification.
Importantly, however, these studies suggest that the synaptic
connections between the olfactory bulb and piriform cortex
must be learned for proper classification. Here we show that
individual neurons perform this classification in naïve mice.
Learning and synaptic plasticity may still improve classification
accuracy as suggested by the models. Specific responses to
mixture components have also been observed in the insect
equivalent of the piriform cortex (but not in the antennal
lobe) (Shen et al., 2013). Using linear classifiers, we showed
that target odorant detection can be improved beyond what
is achieved with single neurons by pooling inputs from a
small population of neurons. Providing classifiers with temporal
inputs yielded over-fitted models indicating that the anterior
piriform cortex probably does not use a temporal code to
represent odorants embedded in mixtures. This is in line with
previous work indicating that the anterior piriform cortex
primarily employs a rate code to project odor information
(Miura et al., 2012; Haddad et al., 2013). The inputs for
the classifiers were pseudo-populations pooled from multiple
experiments. Pooling responses from multiple experiments
removes noise-correlations and therefore is expected to improve
classifier performance (Zohary et al., 1994). It should be noted,
however, that previous measurements have found very little
noise correlations in the piriform cortex during odor sampling
(Miura et al., 2012).

In this study we recorded neuronal activity in anesthetized
mice, however, signal to noise ratio of odor responses may be
reduced in awake animals (Rinberg et al., 2006) and may also be
modified during segmentation tasks either due to learning or to
modulation by top-down inputs. It will therefore be interesting
in the future to study how mixture coding and segmentation
depend on the animal’s state. Furthermore we focused on
the ability to detect mixture components, yet, mixtures of
odorants that are emitted from individual objects can create
a unified percept in which the individual components are not
identified (Jinks and Laing, 2001; Kadohisa and Wilson, 2006b;
Barnes et al., 2008; Gottfried, 2010; Wilson and Sullivan, 2011;
Howard and Gottfried, 2014). It will be interesting to investigate
how normalization of mixture representations supports unified
object percepts.
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Supplementary Figure 1 | Decoding analysis using sniff warped spike times. (A)
Histogram of mean sniff duration all experiments. (B) Histogram of the coefficient
of variation of sniff duration for all experiments. Dashed red line shows the median
CV. (C) PSTH peak obtained in sniff aligned analysis vs. PSTH peak obtained in
sniff warped analysis. Each dot represents one cell-stimulus pair. Dashed line is
the unity line. (D) The area under the curve for each cell (with its best odor) as a
function of the duration of response integration (in sniff cycles). Low performing
cells (never reaching performance of 0.75) are shown in gray, high performing cells
are shown in red. (E) The area under the curve using a sliding integration window
of 0.8 π (∼200 ms) as a function of the time of integration along the response (red)
superimposed with the PSTH in response to the detected odorant (black). Twelve
high performing neurons are shown. (F) Performance of linear classifiers as a
function of the duration of the response integration window (in sniff cycles). (G)
Performance of the classifiers as a function of temporal resolution (in sniff cycles).
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