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Abstract

Bordetella pertussis filamentous hemagglutinin (FHA) is a surface-associated and secreted protein that serves as a crucial
adherence factor, and displays immunomodulatory activity in human peripheral blood mononuclear cells (PBMCs). In order
to appreciate more fully the role of secreted FHA in pathogenesis, we analyzed FHA-induced changes in genome-wide
transcript abundance in human PBMCs. Among the 683 known unique genes with greater than 3-fold change in transcript
abundance following FHA treatment, 125 (18.3%) were identified as interferon (IFN)-regulated. Among the latter group were
genes encoding several members of the IFN type I response, as well as 3 key components of the ISGylation pathway. Using
real-time RT-PCR, we confirmed FHA-associated increases in transcript abundance for the genes encoding ubiquitin-like
protein, ISG15, and its specific protease USP18. Western-blot analysis demonstrated the presence of both, free ISG15 and
several ISGylated conjugates in FHA-stimulated PBMC lysates, but not in unstimulated cells. Intracellular FACS analysis
provided evidence that monocytes and a natural killer-enriched cell population were the primary producers of ISG15 in
PBMCs after FHA stimulation. Our data reveal previously-unrecognized effects of B. pertussis FHA on host IFN and ISGylation
responses, and suggest previously-unsuspected mechanisms by which FHA may alter the outcome of the host-pathogen
interaction.
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Introduction

Bordetella pertussis is a human restricted pathogen and the

causative agent of the acute respiratory disease, pertussis or

whooping cough. Despite the use of an effective vaccine since the

1940s, pertussis remains a major cause of childhood mortality

worldwide and has re-emerged in some highly vaccinated

populations [1,2]. B. pertussis colonizes the upper respiratory tract;

after attachment to the cilia of epithelial cells, it proliferates on the

ciliated mucosal surface, resulting in damage to the mucosa, influx

of inflammatory cells, and the shedding of cells into the lumen of

the respiratory tract. B. pertussis is primarily an extracellular

organism, but it may persist within leukocytes and epithelial cells

[3,4]. The infection process is mediated by several virulence

factors [5], most of which are tightly regulated by a two-

component signal transduction system, BvgAS [6].

A key BvgAS-regulated virulence factor is filamentous hemag-

glutinin (FHA), which plays a crucial role in mediating adherence

to eukaryotic cells [7]. Because of its immunogenicity and

immunoprotective activity, FHA is a component of most acellular

pertussis vaccines. FHA, encoded by fhaB, is synthesized as a

367 kDa precursor, FhaB, which undergoes extensive N- and C-

terminal modifications to form the mature 220 kDa FHA protein.

After transport across the cytoplasmic membrane by a Sec signal

peptide-dependent pathway, FhaB is secreted across the outer

membrane by the two-partner secretion system. During the

translocation process, approximately 130 kDa of the C terminus

is proteolytically cleaved by SphB1. While SphB1 contributes to

FHA release into the extracellular milieu, it is not required, and

the mechanism by which FHA is released from the cell surface

remains unclear [8]. Another important unanswered question

addressed by this work in particular, concerns the role of the

released form of FHA in pathogenesis [8].

In vitro studies have suggested that FHA functions as an adhesin

and several binding domains have been identified: an Arg-Gly-Asp

(RGD) triplet [9], a carbohydrate recognition domain (CRD) for

binding to ciliated respiratory epithelial cells and macrophages [10],

and a lectin-like domain for binding to heparin and other sulphated

carbohydrates on non-epithelial cells [11]. FHA also exhibits several

immunomodulatory properties, including its ability to interfere with

NF-kB activation [12] and to induce the secretion of both pro- and

anti-inflammatory cytokines by macrophages [13,14].
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The role of FHA in vivo has not been entirely elucidated,

primarily because a natural nonhuman host for B. pertussis does not

exist, but also because of the complexity of this molecule and its

associated biological activities. In rabbit and mouse models of B.

pertussis infection, there are conflicting results regarding the role of

FHA in the persistence of bacteria in the lung. However, in a rat

model of natural B. bronchiseptica respiratory infection, FHA was

absolutely necessary, although not sufficient, for tracheal coloni-

zation [15]. The secreted form of FHA might facilitate dispersal of

bacteria from microcolonies and detachment from epithelial

surfaces, and thereby promote bacterial spread [16]. In addition,

B. bronchiseptica FHA may control the repertoire or abundance of

cytokines induced in the lungs of infected mice, as suggested by the

substantial inflammation induced by an fhaB null mutant strain, in

contrast to the mild inflammation induced by wild-type B.

bronchiseptica [17]. Because of the recently demonstrated functional

interchangeability of B. pertussis and B. bronchiseptica FHA [18], the

above findings are likely to apply to B. pertussis FHA as well.

The analysis of genome-wide host transcriptional responses is

one approach for exploring and further characterizing complex

host-pathogen interactions. During the past decade, this approach

has been successfully employed to study the host response to a

broad range of pathogens and virulence factors [19]. Although

exposure to pathogens induces a broadly conserved host cell

transcriptional program [20,21], specific profiles have been

observed for individual virulence factors, perhaps because different

microbial products are detected by different combinations of

receptors, such as Toll-like receptors (TLRs) [22]. Activation of

TLRs leads to the production of various cytokines and

chemokines, including type I interferons (IFNs). Type I IFNs

(IFN-a, IFN-b, IFN-e, IFN-k, and IFN-v) are potent immunor-

egulators, responsible for activating key components of the innate

and adaptive immune system. IFN-induced activation of the JAK/

STAT pathway triggers the transcription of hundreds of interferon

stimulated genes (ISGs). ISG15, one of the earliest and most

strongly induced ISGs, is the oldest known member of the

ubiquitin-like (UbL) modifier polypeptides and was described

more than 30 years ago [23]. However, it is only recently that

interest has focused on understanding this UbL polypeptide with

the unique properties of acting both as a modifier of protein

function and as a cytokine that modulates immune responses [24].

ISGylation, the process by which ISG15 is conjugated to a target

protein, involves a set of enzymes analogous to the ubiquitin

modification system: the ubiquitin activating enzyme E1-like

(UBE1L), the E2 conjugating enzyme UBC8, the putative ISG15

E3 ligase, and the ISG15 deconjugating enzyme UBP43 (USP18)

[25]. Several hundreds of target proteins have been identified [26–

28]. Recently, a novel role of ISG15 in protecting cells from

infection by several viruses has become evident [29–33]. The role

of ISG15 and the ISGylation pathway in defence against bacterial

infection has not been described in detail but it is of great interest

due to the fact that 1) ISG15 is induced upon contact with bacteria

or bacterial products [20,34,35] and 2) type I IFNs play an

important role in the host response to bacterial infections [36].

The goal of this study was to characterize the effects of purified

B. pertussis FHA on human cells by examining the genome-wide

transcriptional response of human peripheral blood mononuclear

cells (PBMCs). Such an investigation might enhance our

understanding of the contributions of free, soluble FHA in the

pathogenesis of Bordetella infection. One would expect resident

and recruited mucosal mononuclear leukocytes to encounter

secreted forms of FHA during the course of disease. We

demonstrate that FHA is a strong inducer of the IFN response,

including IFN type I. In addition, purified FHA enhances

expression of at least three members of the ISGylation pathway:

ISG15, USP18, and UBE1L. These results suggest new putative

mechanisms by which this key bacterial adhesin modulates the

host immune response, mechanisms that may be relevant both in

the context of natural infection and following administration of

FHA-containing Bordetella vaccines.

Results

Genome-wide responses of human PBMCs to purified B.
pertussis FHA

To gain insight into the effect of cell-free FHA on host

responses, we characterized the genome-wide gene expression

program in human PBMCs stimulated with purified FHA. This

analysis was undertaken with four different FHA preparations,

purified from four different B. pertussis strains (two clinical isolates

and two lab strains), in order to recognize conserved activities

associated with this protein and avoid strain-specific biases. Prior

to FHA preparation, all genes associated with pertussis toxin (PT)

expression were deleted from the strains, so that PT co-

purification would be eliminated. One of the preparations,

FHA-1, had been used previously to study the immunological

properties of FHA [12,13]. While the presence of trace amounts of

non-FHA contaminants in the preparations could not be ruled out,

even after verification of the purity by Coomassie blue staining of

protein-loaded acrylamide gels and Western immunoblot analysis

(Fig. S1), the use of several independent preparations with

presumably different contaminants in different, albeit low

amounts, greatly strengthened the likelihood that the dominant,

conserved activities and responses elicited by these preparations

are attributable to FHA.

Cultures of 36106 PBMCs were stimulated for 0.5, 2, 4, and

6 hours with 5 mg/ml of each purified B. pertussis FHA

preparation. At that concentration, FHA-1 is known to induce

both pro-inflammatory and pro-apoptotic responses in human

cells [13] and to modulate the NF-kB pathway [12]. Control

PBMC cultures were simultaneously treated with similar volumes

of elution buffers (‘‘Mock-1’’ and ‘‘Mock-2’’), and sampled at the

same time points. A total of 23 samples were analysed,

representing a total of 23 arrays. Among the 25,867 microarray

elements whose hybridization signals were measured with

confidence (Materials & Methods), 1,235 elements exhibited at

least a 3-fold change in transcript abundance relative to the

untreated samples in at least 3 out of 23 arrays. (The microarray

data from the FHA-4 stimulated cells at the 4 h time point were

not included in the analysis because of poor microarray signal

quality.) The 683 known unique genes represented by these 1,235

elements were considered to be FHA-responsive and were

organized by hierarchical clustering (Fig. 1A). All four FHA

preparations induced very similar gene expression profiles,

suggesting minimal functional differences between FHA protein

from different B. pertussis strain backgrounds.

FHA-responsive genes could be assigned to two major classes:

an FHA-activated cluster comprising 817 elements (419 known

unique genes; Table S1) and a FHA-repressed cluster comprising

418 elements (254 known unique genes; Table S2). The genes in

the activation cluster could be further subdivided into three

groups, according to their temporal expression profile (Fig. 1A).

Group I contained genes whose expression was strongly up-

regulated at 0.5 hour, but was lower at subsequent time points.

Group II included genes whose expression was induced at

0.5 hour and remained elevated throughout the experiment. In

Group III, the largest group, up-regulation occurred later, starting

at 2 or 4 hours after FHA treatment.

B. pertussis FHA and IFN Response
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Several transcription factors and regulators of transcription,

including JUN, JUNB, EGR, MAPK9, IRF1, STAT4, and

ATF3, were induced within 30 minutes of FHA exposure.

Members of the NF-kB pathway, including the transcriptional

regulators NFKB1 and NFKB2 and the inhibitor NFKBIA,

were also up-regulated by FHA treatment. As expected, the

expression of several targets of this pathway was also increased,

including genes encoding cytokines (TNF, IL1A, IL1B, IL6,

and LTA), chemokines (IL8, SCYA2/CCL2, and SCYB11/

CCL11), adhesion molecules (ICAM1), pro-inflammatory

enzymes (PTGS2/COX2), and kinases (PRKR/EIF2AK2,

IKBKG, MAP3K8).

Genes encoding cytokines and chemokines were some of the

most strongly FHA-induced loci: among the 20 unique genes up-

regulated at least 16-fold compared to unstimulated cells, 8

encoded proteins that belonged to this category (data not shown).

This result suggested that FHA is a strong pro-inflammatory

stimulus, and was confirmed by measuring the levels of TNF-a,

IL-1b, IL-6, and IL-8 protein in the supernatant of FHA-exposed

PBMCs (Fig. 1B). We stimulated 26106 cells from each of 4

Figure 1. Overview of gene expression and pro-inflammatory cytokine response in FHA-treated PBMCs. (A) PBMCs were stimulated for
0.5, 2, 4, and 6 hrs (time course represented by the triangles) with FHA-1, FHA-2, and FHA-3 at 5 mg/ml, and for 0.5, 2, and 6 hrs with FHA-4 at the
same concentration. As a control, cells were treated with similar volumes of the corresponding elution buffers (‘‘Mock-1’’ and ‘‘Mock-2’’). A total of
1,235 elements displayed a $3-fold change in transcript abundance in at least 3 arrays; they are represented in a hierarchical cluster format. Data
from individual elements or genes are represented as a single row, and different time points in the time courses are shown as columns. Red and
green denote expression levels greater than or less than, respectively, baseline values (average of four untreated samples taken at time zero). The
intensity of the color reflects the magnitude of the change from baseline. Gray color represents missing or excluded data. (B) PBMCs, isolated from
four healthy individuals (donors 1–4), were stimulated with FHA (FHA-1, -2, or -3) at 5 mg/ml or EcLPS at 1 mg/ml, or were untreated. After 8 hrs (IL-8)
and 24 hrs (TNF-a, IL-1b, and IL-6) of exposure, the supernatants were collected and analyzed. Data were obtained from two independent
experiments, one experiment in which cells were treated for 8 hrs and one experiment in which cells were treated for 24 hrs.
doi:10.1371/journal.pone.0027535.g001

B. pertussis FHA and IFN Response
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different healthy donors, with 5 mg/ml FHA (FHA-1, FHA-2, or

FHA-3) or 1 mg/ml E. coli lipopolysaccharide (EcLPS) for 8 or

24 hours. We confirmed increased levels of TNF-a (401682 and

260 pg/ml for FHA-treated [n = 8] and mock-treated [n = 4]

samples, respectively), IL-1b (325674 and 49628 pg/ml for

FHA-treated [n = 8] and mock-treated [n = 4] samples, respec-

tively), IL-8 (26,29266,243 and 1,9486898 pg/ml for FHA-

treated [n = 4] and mock-treated [n = 4] samples, respectively),

and IL-6 (6,6786844 and 119678 pg/ml for FHA-treated [n = 8]

and mock-treated [n = 4] samples, respectively), but noted some

inter-donor variation (results are given as average 6 SEM).

Following FHA exposure, genes involved in the negative

regulation of the inflammatory response through the JAK/STAT

pathway, such as SSI/SOCS, PIASY/PIAS4, and PTPs, were

induced. Regulation of the inflammatory response by FHA may

also occur through changes in expression of cytokine receptors, as

revealed by down-regulation of genes encoding cytokine receptors

IL13RA1 and IL18RAP and up-regulation of IL1 receptor

antagonist IL1RN.

FHA induces a host response distinct from that induced
by B. pertussis or its LPS

We evaluated the specificity of these gene expression responses

to FHA, and whether some responses might be attributable to

LPS. We compared our data (23 arrays, 1,235 elements) to

previously-published gene expression profiles from human PBMCs

exposed to heat-inactivated B. pertussis (strains BP338 and

Minnesota 1 [BpeMin1], ,1 bacterium per cell) or 1 mg/ml B.

pertussis LPS (BpeLPS) (16 arrays, 920 elements) [20]. The use of

identical strains and microarray platforms facilitated this compar-

ative analysis. A total of 143 elements (64 known unique genes)

with varying transcript abundance were identified in both our

1,235 and Boldrick’s 920 elements; they are represented in Fig. 2,

and organized by hierarchical clustering. Most of these genes were

similarly regulated (both up and down) in all treated samples. The

30 genes in the common activation cluster encode cytokines and

chemokines, adhesion molecules, transcription factors/regulators,

metabolism and signalling proteins, regulators of apoptosis, and

lymphocyte activation proteins. A total of 13 genes were activated

by FHA (‘‘FHA activation cluster’’) and not by heat-killed B.

pertussis and LPS. This cluster was composed primarily (9/13,

69%) of interferon (IFN)-stimulated genes: MX1, MX2, OAS1,

OAS2, OAS3, STAT1, STAF50/TRIM22, SCYB10/CXCL10,

and SSI1/SOCS1.

IFN responses dominate FHA-associated expression
profiles

We compared the 1,235 FHA-responsive elements presenting

$3-fold change in transcript abundance relative to the untreated

samples with lists of known IFN-a-, -b-, and -c-regulated genes

[36–40], in order to obtain a more complete transcript-associated

profile of the FHA-induced IFN response. This approach

identified 282 IFN-regulated elements (Table S3), representing a

total of 125 known unique genes, and suggested that FHA is a

strong inducer of the IFN type I response. FHA stimulated

increased levels of transcripts for genes associated with three well-

characterized IFN-induced antiviral mechanisms: the dsRNA-

activated protein kinase R (PRKR/EIF2AK2), the 29-59-oligoa-

denylate synthases (OAS), and the myxovirus resistance (MX)

proteins [40]. FHA also increased transcript levels for other genes

that encode proteins with potentially important antiviral activities

such as ISG20, guanylate-binding protein 1 (GBP1), promyelo-

Figure 2. FHA induces a distinct response as compared to heat-killed B. pertussis and its purified LPS. Data for the 1,235 FHA-responsive
elements from our 23 arrays were compared to data for the 920 elements previously described by Boldrick et al. from 16 arrays [20], whose expression
in PBMCs displayed a $2.5-fold change from baseline (t = 0) in response to BpLPS (1 mg/ml) or to two heat-killed B. pertussis strains (BP338 and
Minnesota 1 [BpeMin1]). The 143 elements common to both data sets are represented in a hierarchical cluster format. Each time course is represented
by a triangle at the top of the Figure; the times of exposure are 0.5, 2, 4, and 6 hrs for all conditions except for FHA-4, in which the 4 hour time point
is missing. The genes represented by at least two non-identical elements on the arrays are indicated in bold.
doi:10.1371/journal.pone.0027535.g002

B. pertussis FHA and IFN Response
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cytic leukemia protein (PML), RNA-specific adenosine deaminase

1 (ADAR), and the adenosine deaminases (ADA).

FHA activates the host ISGylation pathway
The FHA-induced IFN type I response featured increased

transcript levels for genes encoding three key members of the

ISGylation pathway: ISG15, USP18, and UBE1L. ISG15, a

ubiquitin-like protein, is one of the IFN-stimulated genes (ISGs)

induced most rapidly and strongly by type I IFNs, as well as by

viral infection and LPS [24]. USP18, also known as UBP43, is an

ISG15-specific protease, removing ISG15 from target proteins

[41] and is a newly identified regulator of the IFN response [42].

Transcript levels for UBE1L, a gene that encodes the ISG15-

activating enzyme [43], increased $2.5-fold over levels in

untreated cells (data not shown).

The increased abundance of ISG15 and USP18 transcripts was

validated by RT-PCR with the same bulk RNA used for the

microarray analysis (data not shown). ISG15 and USP18

expression levels were further validated in an independent

experiment: PBMCs were stimulated for 1, 2, 4, 8, and 20 hrs

with 1,000 units (U)/ml IFN-a, 1 mg/ml EcLPS, 5 mg/ml FHA

(FHA-1 and FHA-2), or 0.1, 1, and 10 mg/ml BpeLPS. At each

time point, the culture supernatant was harvested to assess the

presence of IFN-a by ELISA, and the cells were collected to

perform RT-PCR with primers specific for ISG15 and USP18

(Fig. 3). FHA treatment induced the production of IFN-a as early

as 1 hr after exposure. Peak concentrations of IFN-a after FHA

stimulation were higher than after treatment with 10 mg/ml

BpeLPS (59563 vs. 135682 pg/ml after stimulation with FHA

and BpeLPS respectively) (Fig. 3C). Increased ISG15 transcript

abundance was detected 2 to 4 hrs after FHA treatment

(depending on the FHA preparation), with peak expression at

8 hours post-treatment (Fig. 3A). In cells stimulated with 1,000 U/

ml IFN-a, the increase in ISG15 transcript abundance began

earlier and was measurable (3661 –fold change relative to

untreated cells at time zero) after 1 hr of treatment. Similar

patterns were found for expression of USP18 (Fig. 3B). Compa-

rable results and similar kinetics were reproduced in an

independent experiment using differing concentrations (1, 5, and

10 mg/ml) of FHA (data not shown).

Enhanced ISG15 and USP18 expression might be solely

attributable to FHA-induced IFN-a release. However, our data

suggest that FHA might also stimulate expression of these two

genes through a mechanism independent of IFN-a, similar to the

genotoxic agent, camptothecin which activates ISG15 expression

in a p53-dependent, and IFN- and Jak-Stat-independent manner

[44]. Two arguments support this hypothesis. First, at 8 and 20 hrs

post-treatment, IFN-a concentrations were similar in the super-

natants of FHA- and IFN-a-treated cells (Fig. 3C). However, at the

same time points, relative levels of ISG15 and USP18 transcripts

were $1.8-fold higher in FHA-treated cells than in IFN-a-treated

cells. Similarly, at 4 hrs post-treatment, relative levels of ISG15

and USP18 transcripts were similar in FHA- and IFN-a-treated

cells, even though secreted IFN-a levels were four times lower in

FHA-treated cells. Second, although 5 mg/ml FHA and 10 mg/ml

BpeLPS induced similar levels of IFN-a between 1 and 4 hrs post-

treatment (Fig. 3C), FHA was associated with 4-fold higher levels

of ISG15 and USP18 transcripts (Figs. 3A, 3B). This observation

was confirmed in two other independent experiments (data not

shown). To rule out the possibility that BpeLPS had an inhibitory

effect on ISG15 and USP18 expression, BpeLPS (1 and 10 mg/ml)

was added to 5 mg/ml FHA, with no effect on ISG15 or USP18

expression levels (data not shown).

FHA induces the production of free ISG15 and several
ISGylated conjugates

Up-regulation of the ISGylation pathway, especially in the

context of a bacterial infection, is a relatively recent finding that

has not been well-characterized. We focused on our observation

that B. pertussis FHA affects the transcription of several members of

the ISGylation pathway, and in particular on ISG15, the

component of this pathway that becomes conjugated to cellular

target proteins [26] and that is associated with cytokine-like

immunomodulatory activities [45,46].

We first examined whether the increase in ISG15 transcript

abundance correlated with an increase in ISG15 and ISGylated

protein levels. PBMCs (56107) were stimulated with 1,000 U/ml

IFN-a, 1 mg/ml EcLPS, 10 mg/ml BpeLPS, or 5 mg/ml FHA-2.

After 20 hrs incubation, intracellular ISGylated proteins (Fig. 4A)

and free ISG15 (Fig. 4B) were detected by Western immunoblot

analysis using rabbit polyclonal and mouse monoclonal antibod-

ies, respectively. Compared to untreated cells, FHA-treated

cells produced larger quantities of ISGylated protein and free

ISG15, and similar quantities to those found in IFN- and EcLPS-

treated cells. No free ISG15 was detected in cells stimulated

with BpeLPS, although we cannot rule out the possibility that

some ISG15 protein might be expressed in both unstimulated

and BpeLPS-stimulated cells and would have been detected

with additional amounts of loaded protein. FHA-treated cells

contained an additional ISGylated protein, of ,130 kDa, not

detected in cells treated with LPS or IFN-a (Fig. 4A, arrow).

This result was reproduced in PBMCs isolated from two

different healthy donors in two independent experiments (data

not shown). Efforts to identify this ,130 kDa ISGylated

protein(s) using mass spectrometry failed to provide a specific

result (data not shown).

Monocytes and NK-enriched cell populations are the
major producers of ISG15 after FHA stimulation of PBMCs

Next, to identify the PBMC subset type(s) that produced ISG15

in response to FHA, PBMCs were separated into monocytes,

lymphocytes, and natural-killer (NK) cells. From each purified or

enriched cell population, 26106 cells were stimulated with

1,000 U/ml IFN-a or 5 mg/ml FHA-2. ISG15 mRNA abundance

was determined by real-time RT-PCR after 4, 8, and 20 hrs

(Fig. 5A); intracellular levels of ISG15 protein were evaluated by

FACS analysis after 4 hrs of stimulation (Fig. 5B).

As shown in Fig. 5A, IFN-a produced roughly comparable

levels of ISG15 transcript in PBMCs and NK-enriched cells, with

peak expression (8563 and 7365-fold respectively) at 4 hrs of

treatment. Monocytes exhibited similar expression kinetics, but at

a lower magnitude (3261-fold after 4 hrs of treatment). Lympho-

cytes were the least responsive cells with a maximum of 561-fold

change. The responsiveness to FHA treatment by the different cell

types showed the same profile. As previously observed (Fig. 3),

peak transcript levels of ISG15 were reached at 8 hrs post-

treatment, instead of 4 hrs as observed in IFN-a-treated cells.

Thus, among the mixed PBMC population, NK-enriched cells

and monocytes, but not lymphocytes, induced expression of ISG15

in response to IFN-a and FHA stimulation. ISG15 expression was

not induced in untreated cells during this experiment. Expression

of intracellular ISG15 protein followed a similar pattern (Fig. 5B):

after IFN-a stimulation, the fraction of ISG15-positive monocytes

increased from 2.3% to 36% and NK cells from 2.2% to 29.5%,

representing 15.6- and a 13.4-fold increases in ISG15-positive

cells, respectively. The fraction of ISG15-positive lymphocytes was

not affected by IFN-a treatment. Similarly, after 4 hrs of FHA

B. pertussis FHA and IFN Response
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treatment, 12.5% and 5.5% of the monocytes and NK cells,

respectively, produced ISG15, while only 2.3% and 2.2% of the

corresponding untreated cells expressed ISG15. The fraction of

ISG15-positive lymphocytes remained unchanged. These results

suggested that monocytes and NK cells are the major producers of

ISG15 upon exposure of PBMCs to FHA.

Figure 3. ISG15 and USP18 transcript abundance and levels of secreted IFN-a protein in PBMCs. PBMCs were stimulated with IFN-a at
1,000 U/ml, EcLPS at 1 mg/ml, FHA-1 and FHA-2 at 5 mg/ml, or BpeLPS at 0.1, 1, or 10 mg/ml for 1, 2, 4, 8, and 20 hrs (1 well/condition except for
untreated cells at time 0 for which 3 wells were used). After each time point, total RNA was collected and analyzed with RT-PCR using primers specific
for ISG15 (A) or USP18 (B). The fold transcript abundance change is calculated relative to levels occurring in untreated cells at the beginning of the
time course, and the average and range of fold change are displayed. The cell supernatants were collected and evaluated for the presence of IFN-a
protein using ELISA (C). IFN-a concentration was measured in pg/ml (left scale bar) and converted to U/ml (right scale bar) using the conversion factor
of ,4 pg/unit, according to the manufacturer’s instructions. Each sample was assayed twice, and the standard deviation was calculated based on the
average value of the two independent measurements.
doi:10.1371/journal.pone.0027535.g003

B. pertussis FHA and IFN Response
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Discussion

Microbial adherence factors sometimes provoke complex

signalling events and downstream biological processes in host cells

following initial attachment to their target. This appears to be the

case for the dominant B. pertussis adhesin, FHA, which is secreted

in substantial quantities by this respiratory pathogen and which

appears to express a variety of immunomodulatory activities [12–

14,17]. In this study, we analyzed the genome-wide gene

expression responses of human PBMCs to purified FHA, in an

effort to appreciate better the range of activities associated with

this protein. PBMCs were selected because they encompass a

diverse repertoire of both innate and adaptive immune functions

and because of their roles in surveillance for infectious threats,

both directly, through contact with infectious agents, and

indirectly, through interactions with infected cells and tissues by

means of secreted signalling molecules [47]. Moreover, a previous

study investigated the effect of heat-killed B. pertussis on human

PBMCs at the genome wide level [20]. Our data highlight the

broad range of transcripts whose expression is affected by this

bacterial adhesin. Of interest, our study revealed significant

changes in the expression of several IFN-regulated genes,

including those associated with the type I IFN response and with

ISGylation.

We employed FHA preparations, purified using two different

methods from four B. pertussis strains, in order to recognize

conserved features of this protein and avoid strain-specific biases.

The four strains were chosen to represent both recent clinical

isolates and laboratory-adapted strains. One of the FHA

preparations has been previously used to demonstrate FHA pro-

inflammatory and pro-apoptotic activities, as well as its ability to

modulate the NF-kB pathway [12,13]. In addition, we reasonably

postulated that, if contaminants should be co-purified with FHA,

they would very likely be different and be present in different

amounts in the various preparations, leading to a heterogenous

response. Thus, our use of different preparations of FHA and the

finding of similar, if not identical, gene expression patterns

induced by them in host cells provides evidence of biological

reproducibility in the data and suggests functional homogeneity

among FHA preparations.

FHA altered the expression of 1,235 elements, representing 683

known unique genes. For most of these genes (419/683), their

expression was up-regulated, suggesting that FHA more often

activates than represses the host cell processes at the transcrip-

tional level. All but one of the 12 genes that were part of a

‘‘common host-transcriptional response’’ to bacteria mediating

inflammation [21] were also up-regulated in our data set; this

finding highlights the important contribution of cell-free FHA to

the inflammatory process associated with B. pertussis and with

whooping cough [48] since a single virulence factor can induce a

specific set of genes often reported as up-regulated by whole

bacteria, viruses, yeast, protozoa, and helminths.

The cytokines induced by FHA might indirectly promote B.

pertussis binding to host cells; IL-8, SCYA2/CCL2, GRO1/

CXCL1, TNF-a, and IFN-c, all induced at least at the

transcriptional level by FHA (and in some cases, shown at the

level of secreted protein), are known to promote expression of

CD11b/CD18 (CR3) [49–51] which may serve as a receptor for

FHA at the surface of neutrophils and monocytes [9,52]. FHA

might also influence host cell-cell interactions by up-regulating

ICAM1 at the surface of PBMCs, similar to the process that has

been observed with Mycobacterium tuberculosis [53] and Streptococcus

pneumoniae pneumolysin [54]. Taken together, these results suggest

that, in addition to acting as an adhesin, FHA influences host cell-

cell interactions and inflammatory responses. B. pertussis FHA also

affects the nature and the magnitude of the immune response that

develops during Bordetella infection, similar to the effects reported

for B. bronchiseptica FHA [17].

In addition to activating a common host transcriptional

response, FHA also induced a more specific transcriptional

program, not seen previously with heat-killed B. pertussis or B.

pertussis LPS treatment (FHA-activation cluster). There are at least

three reasons why this response may be specific to FHA and not

due to LPS contamination. First, all four FHA preparations,

independent of strain background, method of purification, and

amount of contaminating LPS (,0.2–0.45 mg/ml), induced

reproducible and consistent gene expression profiles. Second, by

comparison with Boldrick’s data set [20], we identified distinct

gene expression profiles associated with BpeLPS that were not

associated with FHA in our experiments. Third, LPS with

endotoxin activity equal to that observed in our FHA preparations

has been shown to induce a different TNF-a response [13]. We do

not believe that the trace amount of adenylate cyclase (AC) toxin

present in each FHA preparation (#0.0135 pmol/ml, correspond-

ing to approximately 2.4 ng/ml) plays any role in this observed

host response. Indeed, only high concentrations (20 ng/ml) were

recently used by Cheung et al. to evaluate the transcriptional

responses of murine macrophages to B. pertussis AC toxin [55] and

none of the genes present in our ‘‘FHA-activation cluster’’ showed

any response in the Cheung study. In addition, the concentrations

of LPS found in our FHA preparations are below the amount

Figure 4. Expression of ISG15 and ISGylated proteins in
PBMCs. PBMCs were stimulated with IFN-a (IFN) at 1,000 U/ml, EcLPS
at 1 mg/ml, BpeLPS at 10 mg/ml, or FHA-2 (FHA) at 5 mg/ml or remained
untreated for 20 hrs. Cell lysates were prepared as described in
Materials & Methods, and 90 mg of total protein was resolved with 10%
or 15% SDS-PAGE under reducing conditions. Immunoblotting was
performed with rabbit polyclonal anti-ISG15 to reveal ISG15 conjugates
(A, 10% SDS-PAGE gel) and mouse monoclonal anti-ISG15 clone 2.1 to
reveal free ISG15 (B, 15% SDS-PAGE gel). The latter membrane was re-
probed with anti-actin antibody to assess protein loading (C). Where
indicated, 20 ng purified ISG15 was resolved. Relative mobility of
molecular weight markers is indicated to the left of the figure. The
arrow points to an ISGylated protein of ,130 kDa in FHA-treated cells.
doi:10.1371/journal.pone.0027535.g004
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needed for intracellular calcium rise in J774A.1 and CHO cells

[56], for proliferation/IL-2 secretion from peripheral blood

lymphocytes [57], for inducing cytotoxicity in J774 cells, and for

increased cAMP production in J774 cells [58]. The reason for

obtaining a FHA-specific transcriptional program not observed

after treatment with heat-killed B. pertussis, might simply be

explained by the fact that, in our study, the amount of FHA used

to treat the cells is higher than the amount of FHA present in a

bacterial suspension. Alternatively, FHA might have been affected

by the heat treatment, supported by the fact that heat-inactivation

of FHA suppress its ability to agglutinate red blood cells. A third

explanation could be that, in the presence of other bacterial

components (such as those in a bacterial suspension), the

transcriptional changes induced by FHA might be diminished by

other bacterial components.

The most notable feature of this FHA-specific activation cluster

was that 69% (9/13) of the identified genes are known to be

regulated by IFN. Moreover, 18.3% (125 of 683 known unique

genes) of all FHA-responsive genes are IFN-regulated. Among

these were the genes encoding the major antiviral proteins PKR,

Figure 5. ISG15 mRNA expression and intracellular protein production in PBMCs and cell subsets. PBMCs were separated into
monocytes (Mono), lymphocytes (Lympho), and an NK-enriched cell population (NK), using magnetic beads. (A) For ISG15 mRNA expression, 26106

cells/ml were cultured for 4, 8, and 20 hrs in the presence of IFN-a (IFN-a-treated cells) at 1,000 U/ml or FHA-2 (FHA-treated cells) at 5 mg/ml or
without treatment. At each time point, total RNA was extracted and analyzed by RT-PCR. The fold expression change shown in the Figure is relative to
levels in untreated cells at the beginning of the time course; the standard deviations for duplicate measurements are displayed. (B) For intracellular
detection of ISG15, monocytes, NK-enriched cells, and lymphocytes were stimulated for 4 hrs with IFN-a (IFN-a-treated cells) at 1,000 U/ml or FHA-2
(FHA-treated cells) at 5 mg/ml or without treatment. Cells were then stained for intracellular ISG15 using the mouse monoclonal anti-ISG15 clone 4.1
labeled with AlexaFluor 647 (AF647). The number in the upper left corner of each graph represents the percentage of total cells testing positive for
ISG15.
doi:10.1371/journal.pone.0027535.g005
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OAS, MXl, MX2, ISG20, GBP1, PML, ADAR1, and ADA; this

finding suggested that FHA activates a host IFN type I response.

In fact, FHA induces IFN-a secretion by PBMCs. While B. pertussis

is known to induce the production of IFN-c [59], the expression of

a type I IFN (IFN-b) has only recently been reported, in human

monocyte-derived dendritic cells infected with an adenylate

cyclase-deficient B. pertussis strain [60]. To our knowledge, our

work is the first to reveal induction of a strong IFN and IFN type I

response by FHA, and one of the first to report a type I IFN

response to a secreted bacterial virulence factor.

Type I IFNs are potent antiviral immunoregulators that also

play a fundamental role in the host response to bacterial infections

[36]. Several bacteria induce production of type I IFNs by infected

cells or in infected mice; in the case of L. monocytogenes, activation of

type I IFN signaling induces apoptosis of splenic cells, which

contributes to the virulence of the infection. Because FHA-induced

apoptosis in human cells is only partly dependent on the

production of TNF-a [13], we hypothesize that the FHA-induced

type I IFN response might contribute to cell death. It might thus

represent an additional mechanism for rendering the host more

susceptible to infection.

An intriguing feature of the FHA-induced IFN type I response

is the upregulation of several members of the ISGylation

pathway: the ubiquitin-like protein ISG15, its specific isopepti-

dase USP18, and the ISG15-activating enzyme UBE1L. ISG15 is

rapidly and strongly induced in response to stimulation by type I

IFN [61] and by certain types of LPS [62]. In human PBMCs,

ISG15 transcript abundance increases after stimulation with heat-

killed E. coli, but not S. aureus, B. pertussis, or B. pertussis LPS [20].

Although we confirmed that BpeLPS was only a weak inducer of

ISG15 mRNA, we demonstrated that purified FHA induced high

levels of ISG15 mRNA, as well as increased levels of free ISG15

and several ISGylated conjugates. The presence of an additional

conjugate of ,130 kDa in FHA-treated cells suggests that FHA

might modify the function of at least one target protein in the

host. However, because multiple molecules of ISG15 may

conjugate to the same protein [26], the actual size of the target

protein may be difficult to predict a priori; further investigation

will be needed to identify the targets of ISGylation resulting from

FHA exposure.

Our study demonstrated that monocytes and an NK-enriched

cell population were, in contrast to lymphocytes, the main

producers of ISG15, both at the mRNA and protein levels. These

results not only are consistent with earlier findings [63], but they

also reveal that NK cells are not only the target of ISG15 [63], but

also one of the major producers of ISG15, suggesting autocrine

regulation of ISG15 in NK cells. This seems to be a feature of the

ISGylation pathway, independent of the stimulus.

The peak levels of ISG15 (and USP18) transcript abundance

were consistently observed after 8 hours of FHA exposure, rather

than after 4 hours, as is the case after EcLPS and IFN-a treatment.

These findings suggested two hypotheses. First, FHA might delay,

and then amplify the expression of ISG15 and USP18 through

typical pathways and mechanisms. Alternatively, FHA might use a

different signaling pathway that results in delayed expression of

these genes. In any case, the late induction of ISG15 expression

could be responsible for the late inhibition of NF-kB activation

[12] due to the negative regulation of this pathway by ISGylation

[64].

ISG15 interferes with ubiquitination of viral proteins [31,32]

and exhibits cytokine-like immunomodulatory activities [45,46]. In

addition, USP18 was recently identified as a novel regulator of

IFN signaling [42]. Even though it is now clear that ISG15 has the

capacity to modulate diverse cellular and physiologic functions, the

roles of ISG15 and the ISGylation pathway in host defense against

infectious agents have not been fully elucidated [65]. We believe

that our work, by broadening our awareness of the involvement of

this pathway in bacterial infection, might contribute to an

understanding of the ‘‘ubiquitin-like enigma’’ [24], and help

suggest mechanisms by which bacterial pathogens modulate the

host immune response.

Materials and Methods

Bacterial strains, bacterial products, and culture
conditions

Clinical isolates, laboratory strains, and isogenic mutant strains

of B. pertussis (Table 1) were cultured in modified Stainer-Sholte

medium (SSM) [66] or on Bordet-Gengou (BG) agar (Difco

Laboratories, Detroit, MI) plates supplemented with 13% vol/vol

whole sheep blood (Microbiological Media, Concord, CA) in the

presence of antibiotic(s) when appropriate. E. coli Sm10l-pir [67]

was grown in Luria Bertani (LB) broth or on LB agar plates.

Antibiotics (Sigma, St Louis, MO) were used at the following

concentrations: ampicillin, 200 mg/ml; nalidixic acid, 50 mg/ml;

rifampicin, 30 mg/ml; streptomycin, 100 mg/ml; gentamicin,

50 mg/ml. E. coli O111:B4 LPS was purchased from Sigma, and

B. pertussis LPS was a generous gift from A. Preston (Department of

Molecular and Cellular Biology, University of Guelph, Ontario,

Canada).

Table 1. B. pertussis Strains Used in This Study.

Name Parental strain Genotype or Relevant Characteristic Reference/Source

Bpe52 Clinical isolate (1994), GmR, RifR [83]

BP338 Tohama I Lab strain (1983), GmR, NalR [84]

Minnesota 1 Clinical isolate, GmR, RifR [20]

Bpe136 BP338 GmR, NalR, SmR This work

Bpe144 Minnesota 1 GmR, RifR, SmR This work

Bpe146 Bpe52 GmR, RifR, SmR This work

Bpe160 Bpe136 GmR, NalR, SmR, Dptx-ptl This work

Bpe162 Bpe144 GmR, NalR, SmR, Dptx-ptl This work

Bpe163 Bpe146 GmR, NalR, SmR, Dptx-ptl This work

Rif: rifampicin; Nal: nalidixic acid; Sm: streptomycin; Gm: gentamicin.
doi:10.1371/journal.pone.0027535.t001
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Construction of B. pertussis Dptx-ptl
To prevent co-purification of pertussis toxin with FHA, the

entire ptx-ptl region was deleted from Bpe136 (SmR derivative of

BP338), Bpe144 (SmR derivative of Minnesota 1), and Bpe146

(SmR derivative of Bpe52) by homologous recombination, as

previously described [68]. Plasmid pDMC28 (a generous gift from

D. L. Burns, Division of Bacterial, Parasitic, and Allergenic

Products, Center for Biologics Evaluation and Research, Food and

Drug Administration, Bethesda, Maryland, USA) was transformed

into E. coli Sm10l-pir. Allelic exchange was performed on BG-

agar plate for 4 hours between E. coli Sm10l-pir (pDMC28) and

B. pertussis (Bpe136, Bpe144, or Bpe146). Co-integrants were

selected for their resistance to both gentamicin and nalidixic acid

or rifampicin, and their sensitivity to streptomycin. Loss of the

plasmid by homologous recombination was selected by sequen-

tially plating the colonies on BG agar containing streptomycin,

and then BG agar containing gentamicin. The absence of the ptx

and ptl genes was confirmed by PCR using primers annealing at

positions 3991407–3991430 and 3991407–3991430 of the assem-

bled B. pertussis sequences from the Sanger Centre (www.sanger.ac.

uk), between ptlA and ptlB. Absence of pertussis toxin was verified

by Western-blot using a monoclonal antibody against the S1

subunit (m1B7, a generous gift from J. Maynard, Department of

Chemical Engineering and Materials Science, University of

Minnesota, MN, USA) (data not shown).

Cell separation and culture
Human PBMCs were purified from freshly drawn blood or from

the ‘‘buffy coat’’ fraction from healthy donors (Stanford Blood

Center, Stanford, CA), using Ficoll-Paque (Amersham Biosciences,

Piscataway, N.J.) according to the manufacturer’s instruction.

PBMCs were resuspended in RPMI-1640 medium (American

Type Culture Collection, ATCC, Manassas, VA) supplemented

with 10% fetal bovine serum (ATCC), 100 U/ml penicillin, and

100 mg/ml streptomycin (Gibco, Invitrogen Corportation, Carls-

bad, CA).

For some experiments, PBMCs were further separated into

natural killer (NK) cells, monocytes, and lymphocytes using

magnetic cell separation (Miltenyi Biotec, Auburn, CA). NK cells

were first positively enriched from PBMCs using the CD56

MicroBeads kit. The monocytes and lymphocytes present in the

flow-through were further separated using the Monocyte Isolation

Kit II; the resulting CD14+ cells were 81% pure. (CD14 antigen is

expressed at high levels on monocytes. In addition, anti-CD14

antibody recognizes interfollicular macrophages, reticular dendrit-

ic cells, and some Langerhans cells [BD Biosciences]). CD3+ and

CD20+ cells were 86% pure. (The anti-CD3 antibody recognizes a

major subset of peripheral blood lymphocytes, but not monocytes

or granulocytes [BD Biosciences]. CD20 phosphoprotein is found

on circulating peripheral blood B lymphocytes [BD Biosciences].)

The NK-enriched fraction contained 52% CD16+ cells, as

evaluated by FACS analysis. (CD16 is expressed on NK cells, as

well as on macrophages and granulocytes [BD Biosciences].)

FHA purification
FHA was purified, as previously described [69], from B. pertussis

Bpe160, Bpe162, and Bpe163 and named FHA-2, FHA-3, and

FHA-4, respectively. Briefly, B. pertussis liquid cultures were

harvested when the optical density at 600 nm was between 2.5

and 4. The culture supernatant was supplemented with Complete

Protease Inhibitor (Roche, Indianapolis, IN) and applied at 2 ml/

min on a 5 ml HiTrap Heparin column (Amersham Biosiciences).

Purification was performed using an FPLC system equipped with a

P-500 pump and a FRAC-P100 fraction collector (Pharmacia

LKB). FHA was eluted at 2 ml/min with 16 PBS, 0.5 M NaCl

(‘‘Mock-2’’). Total protein concentrations, determined by the BCA

test (Pierce, Rockford, IL), were 560, 300, and 340 mg/ml for

FHA-2, FHA-3, and FHA-4, respectively. FHA-1 (a kind gift from

M. Pizza and R. Rappuoli, Novartis Vaccines, Siena, Italy) was

isolated from B. pertussis Wellcome 28 (W28) [70] using Matrex

Cellufine Sulfate (Millipore) and stored in a solution containing

50% glycerol, 0.5 M NaCl, and 25 mM Na2HPO4 (‘‘Mock-1’’).

The in-house FHA preparations (FHA-2, -3, and -4) were

evaluated for the presence of adenylate cyclase (AC) toxin using

ELISA [71], and for the presence of LPS using the purpald assay

[72] (data not shown). Trace amounts of AC (#2.7 pmol/mg of

total protein) and LPS (#27 mg/ml) were found in all of the FHA

preparations. After dilution of the FHA preparations into cell

cultures to obtain the working concentration (5 mg/ml), the

maximum effective LPS and AC concentrations during our

experiments never exceeded 0.45 mg/ml and #0.0135 pmol/ml

respectively. Purity of the FHA preparations was evaluated by

Coomassie blue staining and Western-blot analysis using anti-FHA

antibodies. Functionality of the FHA preparations was investigated

using a hemagglutination assay and was found to be retained as

compared to both heat-inactivated and proteinase-K-treated FHA

preparations (Fig. S1). The FHA-1 preparation was used as a

reference, as it was previously shown to induce both pro-

inflammatory and pro-apoptotic responses in human cells [13]

and to modulate the NF-kB pathway [12].

cDNA microarray and hybridization
Total RNA was extracted from PBMC using Trizol-LS

(Invitrogen), and then amplified using the MessageAmp aRNA

Kit (Ambion, Austin, TX) according to the manufacturer’s

instructions. Fluorescently labelled cDNA was hybridized to a

human cDNA microarray [73] in a two-color comparative format,

with the experimental samples labelled with Cy5 (Amersham

Biosciences) and a reference pool of mRNA (Universal Human

Reference RNA, Stratagene, La Jolla, CA) labelled with Cy3

(Amersham Biosciences). The array used for these studies

contained 37,632 spots derived from cDNA clones representing

approximately 18,000 unique human genes and was previously

used in a variety of published studies [39,74–78].The labelling

reaction, and microarray hybridization and washing were

performed as previously described (http://cmgm.stanford.edu/

pbrown/protocols/4_human_RNA.html), with the following

modifications: we used 4 mg of amplified RNA to anneal with

10 mg pd(N)6 random hexamers (Amersham Biosciences), and

hybridization was performed for 16 hours at 65uC.

Data filtering and analysis
Arrays were scanned using a GenePix 4000b microarray

scanner (Axon Instruments, Foster City, CA), and image analysis

was performed using GenePix Pro version 5.0 (Axon Instruments).

Data were expressed as the log2 ratio of background-subtracted

fluorescence intensities from the sample versus the reference, for

each element on the array [79]. Data were filtered to retain only

the elements with a signal/background intensity ratio .2.5 (in

either sample or reference channel) in at least 80% of the 23

arrays, and with a regression correlation coefficient between

sample and reference signal .0.6. Using these criteria, we

identified 25,867 well-measured elements. The time course data

from each treatment were normalized to the averaged time-zero

data of four replicates. The data were hierarchically clustered

using the CLUSTER program [80], and displayed using TREE-

VIEW (http://rana.lbl.gov/EisenSoftware.htm).
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Real-time reverse transcription (RT)-polymerase chain
reaction (RT-PCR)

Total RNA was purified using the RNeasy mini kit (QIAGEN,

Valencia, CA), and 200 ng was submitted to cDNA synthesis using

TaqMan RT reagents (Applied Biosystems [ABI], Foster City, CA)

followed by PCR using the Taqman expression assays (ABI) for

USP18, ISG15, and 18S rRNA according to the manufacturer’s

instructions on the ABI Prism 7900HT sequence detection system

(ABI). At the beginning of each time course experiment (time

zero), total RNA from untreated cells (two or three independent

wells) was also extracted and used as the reference for comparison

with the expression level of treated cells using the comparative CT

method [81]. Within each experiment, the PCR product of each

sample was measured in duplicate; the mean, as well as the range

of fold change are displayed on the graph.

Western-blot analysis
A total of 56107 PBMCs were stimulated with 1,000 U/ml IFN-

a (Biosource, Camarillo, CA), 1 mg/ml EcLPS, 10 mg/ml BpeLPS,

or 5 mg/ml FHA-2, or left untreated for 20 hours. Cell lysates were

prepared according to a protocol adapted from D’Cunha et al. [82].

PBMCs were washed and resuspended into 500 to 800 ml cold lysis

buffer (0.02 M Tris-Cl pH 7.5, 0.15 M NaCl, 0.5% deoxycholate,

0.5% triton X-100, 0.05% SDS, 0.01 M EDTA, and 16solution of

Complete Protease Inhibitor [Roche]). After incubation on ice for

30 min, cells were passed through a 21-gauge needle and

centrifuged for 20 min at 12,0006g at 4uC. The protein

concentration was determined using MicroBCA (Pierce), and

90 mg were loaded onto 10% (for separation of ISGylated proteins)

or 15% (for separation of free ISG15) SDS-polyacrylamide gels and

transferred to Immobilon-P PVDF membrane (Millipore Corpora-

tion, Bedford, MA). ISGylated proteins were detected with a 1/500

dilution of rabbit-anti-human ISG15 IgG (Rockland, Gilbertsville,

PA); free ISG15 was detected using a 1/1,000 dilution of mouse

monoclonal anti-human ISG15 (clone 2.1; a kind gift from E.

Borden, Cleveland Clinic Foundation, Cleveland, OH). Anti-

human ISG15 antibodies were detected with HRP-conjugated

goat-anti rabbit (1/10,000, Sigma), or with anti-mouse (1/5,000,

Sigma) antibodies. Blots were visualized using the ECL-Plus

Western blotting detection kit according to the manufacturer’s

instructions (Amersham Biosciences). To assess equal protein

loading, membranes used for the detection of free ISG15 were

stripped and re-probed with a 1/1,000 dilution of mouse

monoclonal anti-actin antibody (Lab Vision Corporation, Fremont,

CA) and a 1/5,000 dilution of anti-mouse secondary antibody

(Sigma). As a positive control, 20 ng human recombinant ISG15

(BostonBiochem, Cambridge, MA) was loaded on all gels. The

higher molecular weight of recombinant ISG15 compared to

endogenous ISG15 is due to an extra amino acid left after cleavage

of a GST tag from the recombinant protein.

Cytokine measurement by ELISA and Luminex assay
Detection of IFN-a in the supernatant of cultured PBMCs was

performed using the Human Interferon Alpha (Hu-IFN-a) ELISA

kit (Biosource International, Inc., Camarillo, CA) according to the

manufacturer’s instructions. Each sample was measured twice in

duplicate and the standard deviation was calculated based on the

average value of the two independent measurements.

Samples with supernatant were sent to an outside laboratory,

Upstate (Charlottesville, VA) for measurements of TNF-a, IL-1b,

IL-6, and IL-8 concentration using the Beadlyte Human Cytokine

Profiler Analysis (Upstate). The results reported were the average

of triplicate measurements.

FACS analysis
Flow cytometry was performed at the Stanford University

Digestive Disease Centre Core Facility (VA Hospital, Palo Alto,

CA, USA) using the BD LSR II system (BD Biosciences, San Jose,

CA). For each sample, a minimum of 100,000 events were

collected. Data were analysed with FACSDiva software (BD

Biosciences).

For cell surface staining, approximately 16106 cells were

washed and incubated with 10% human serum before staining

with one of the following FITC- or PE-conjugated antibodies

(Caltag Laboratories, Burlingame, CA, and BD PharMingen):

CD3, CD20, CD14, and CD16. After staining, cells were washed

once and fixed with 1% paraformaldehyde.

For the detection of intracellular ISG15, cells were incubated

for 4 hours with stimulus, and in the presence of 10 mg/ml

brefeldin A (Sigma) during the last 2 hours. Approximately 16106

cells were washed, resuspended in 10% human serum for 20 min

on ice, washed, and resuspended in 2% paraformaldehyde. After

20 min incubation on ice, cells were washed and resuspended in

PBA buffer (0.2% BSA and 0.09% sodium azide in 16PBS). After

overnight incubation at 4uC, cells were resuspended in 10 ml

saponin buffer (0.2% BSA and 0.5% saponin in 16 PBS)

containing 10 mg mouse IgG (Jackson ImmunoResearch, West

Grove, PA) to block nonspecific binding; Alexa Fluor 647-

conjugated mouse monoclonal anti-ISG15 or Alexa Fluor 647-

conjugated mouse IgG antibodies were then added to monitor

nonspecific binding. After 15 min incubation on ice and washing

with cold saponin buffer, cells were resuspended in 500 ml PBA

buffer for analysis. Alexa Fluor 647-conjugated antibodies were

obtained by labelling 100 mg of mouse monoclonal anti-ISG15

antibody (clone 4.1, a generous gift from Dr. E. Borden, Cleveland

Clinic Foundation, Cleveland, OH) and 100 mg of purified mouse

IgG1 (eBioscience, San Diego, CA) using the Alexa Fluor 647

monoclonal antibody labelling kit (Molecular Probes, Eugene,

OR) according to the manufacturer’s instructions.

Microarray data deposition
The data discussed in this publication have been deposited at

NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.

nih.gov/geo) and are available through GEO Series accession

number GSE8802.

Supporting Information

Figure S1 Integrity and functionality of FHA purified
from B. pertussis culture supernatants. FHA was purified

from B. pertussis culture supernatant as described in Materials and

Methods. A. Total protein concentration in FPLC elution

fractions 4–8 of Bpe160 (FHA-2), Bpe162 (FHA-3), and Bpe163

(FHA-4). B. Coomassie blue staining of Bpe160 (160) and Bpe163

(163) liquid culture supernatants (loaded with the equivalent of

400 ml liquid culture at OD600 nm = 3), as well as their

corresponding purified, FHA-2 (10 ml fraction #5) and FHA-4

(34 ml of fraction #5). Protein size in kDa of the molecular weight

markers (MW) is indicated on the left. C. Western-blot analysis of

FHA-1 using anti-FHA antibody (M08), with protein size (kDa)

indicated on the right. D. Agglutination with FHA-1, as well as

FHA-2 (elution fractions #9 (193 mg protein/ml), #10 (1200 mg

protein/ml), #11 (821 mg protein/ml), and #12 (373 mg protein/

ml) from a purification similar to that shown in A) was performed

by adding 50 ml FHA to 50 ml 1% sheep blood and incubating for

1 h at 37uC in a V-shape bottom 96-well plate. PBS was used as

negative control and did not agglutinate the red blood cells. FHA-

1 was either heat-inactivated for 20 minutes at 95uC (heat) or
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incubated with proteinase-K (Prot. K), or left untreated (WT)

before incubation with red blood cells.

(TIF)

Table S1 FHA-activated elements. The 817 elements whose

expression was activated by at least 3-fold in FHA-treated

compared to untreated cells are represented, together with their

expression values.

(XLS)

Table S2 FHA-repressed elements. The 418 elements

whose expression was repressed by at least 3-fold in FHA-treated

compared to untreated cells are represented, together with their

expression values.

(XLS)

Table S3 IFN-regulated genes whose expression is
affected by FHA treatment. The IFN-regulated genes were

selected from the 1,235 FHA-responsive elements by comparison

with lists of known IFN-a-, -b-, and -c-regulated genes [36–40].

This comparison returned 296 elements.

(XLS)
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