
RESEARCH ARTICLE

Deep learning-based approach to the

characterization and quantification of

histopathology in mouse models of colitis

Soma KobayashiID
1, Jason Shieh2, Ainara Ruiz de Sabando3, Julie Kim2, Yang Liu2, Sui

Y. Zee4, Prateek Prasanna1, Agnieszka B. Bialkowska2, Joel H. Saltz1,4, Vincent

W. YangID
1,2,5*

1 Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, United States of America,

2 Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY,

United States of America, 3 Department of Medical Genetics, Complejo Hospitalario de Navarra, Pamplona,

Navarra, Spain, 4 Department of Pathology, Renaissance School of Medicine at Stony Brook University,

Stony Brook, NY, United States of America, 5 Department of Physiology and Biophysics, Stony Brook

University, Stony Brook, NY, United States of America

* Vincent.Yang@stonybrookmedicine.edu

Abstract

Inflammatory bowel disease (IBD) is a chronic immune-mediated disease of the gastrointes-

tinal tract. While therapies exist, response can be limited within the patient population.

Researchers have thus studied mouse models of colitis to further understand pathogenesis

and identify new treatment targets. Flow cytometry and RNA-sequencing can phenotype

immune populations with single-cell resolution but provide no spatial context. Spatial context

may be particularly important in colitis mouse models, due to the simultaneous presence of

colonic regions that are involved or uninvolved with disease. These regions can be identified

on hematoxylin and eosin (H&E)-stained colonic tissue slides based on the presence of

abnormal or normal histology. However, detection of such regions requires expert interpre-

tation by pathologists. This can be a tedious process that may be difficult to perform consis-

tently across experiments. To this end, we trained a deep learning model to detect ‘Involved’

and ‘Uninvolved’ regions from H&E-stained colonic tissue slides. Our model was trained on

specimens from controls and three mouse models of colitis–the dextran sodium sulfate

(DSS) chemical induction model, the recently established intestinal epithelium-specific,

inducible Klf5ΔIND (Villin-CreERT2;Klf5fl/fl) genetic model, and one that combines both induc-

tion methods. Image patches predicted to be ‘Involved’ and ‘Uninvolved’ were extracted

across mice to cluster and identify histological classes. We quantified the proportion of

‘Uninvolved’ patches and ‘Involved’ patch classes in murine swiss-rolled colons. Further-

more, we trained linear determinant analysis classifiers on these patch proportions to

predict mouse model and clinical score bins in a prospectively treated cohort of mice. Such

a pipeline has the potential to reveal histological links and improve synergy between various

colitis mouse model studies to identify new therapeutic targets and pathophysiological

mechanisms.
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Introduction

Inflammatory bowel disease (IBD) is a state of chronic intestinal inflammation that is com-

prised of two major subtypes, Crohn’s disease (CD) and ulcerative colitis (UC). IBD afflicts

approximately 1.6 million Americans, and as many as 70,000 new cases are diagnosed each

year [1]. In addition to intestinal symptoms such as abdominal pain and diarrhea, patients can

be severely affected by extraintestinal manifestations such as arthritis, ankylosing spondylitis,

erythema nodosum, pyoderma gangrenosum, iritis, uveitis, and primary sclerosing cholangitis

[2]. Furthermore, CD has been linked to increased risk for cancer, pulmonary, gastrointestinal,

genital, and urinary tract diseases [1], and UC is associated with an increased risk for colorectal

cancer [3]. Classically, CD and UC have different patterns of intestinal involvement. CD

pathology is discontinuous and can affect any area along the gastrointestinal tract, while UC

has a continuous distribution that is limited to the colon [4]. Both diseases can have unin-

volved intestinal regions. In CD, affected areas are termed ‘skip lesions’ as they are interspersed

with uninvolved regions. In UC, disease often does not involve the whole large intestine.

Mouse models of colitis have been heavily studied to understand disease pathogenesis and

identify new treatment targets. Colons from these mice also have involved and uninvolved

regions. One of the most used, in part due to the relatively simple method of induction and

replicability, is the dextran sodium sulfate (DSS) chemical induction model. DSS is provided

to mice in drinking water for seven days to cause acute colitis [5]. DSS-treated mice have a

proximal-sparing injury pattern [6, 7], and Kolachala et al. reported different cytokine profiles

between the proximal and distal colon [6]. Studies have characterized the immune response in

these mice with flow cytometry and single-cell RNA [8, 9]. However, these protocols require

the processing of whole colons at once. Diseased and healthy colonic regions are thus mixed

before dissociation into single cells. Such an approach may not be sufficient to fully capture

intracolonic heterogeneity. Our group has also observed the simultaneous presence of colonic

regions involved or uninvolved with disease in the recently established the Klf5ΔIND colitis

mouse model [10, 11]. Therefore, we were motivated to develop an automated method to his-

tologically identify these areas across these mouse models.

Convolutional neural networks (CNNs) have shown much promise in biomedical image

classification tasks. CNNs learn to associate visual patterns with image labels [12–14]. Histologic

findings are labels that pathologists have attributed to common cellular, morphological, and tis-

sue patterns associated with disease. Since histopathological analysis is grounded upon detec-

tion of such labels, CNNs are well-suited for this domain. In practice, histological slides are

digitized into gigapixel resolution whole slide images (WSIs). Due to the file sizes of WSIs, they

are broken up into smaller image patches to which CNNs are applied. Patch-level, CNN outputs

can be aggregated to make WSI-level predictions. In this study, we incorporated CNNs in a

pipeline that quantifies patch-level histological findings to characterize murine colon WSIs.

Novel protein and genomic targets are frequently identified in preclinical animal models

for assessment in clinical studies. In contrast, use of histology is often limited to confirming

presence or absence of these targets. Characterization and quantification of histological pat-

terns is often not a focus in preclinical mouse models. However, histological patterns are clini-

cally significant and a manifestation of cellular and sub-cellular mechanisms mediated by

protein and genomic targets. This is evidenced by the clinical impact of polyp classes, as the

extent of the “villous” subtype is a major independent risk factor for high-grade dysplasia [15].

There is therefore likely value in mapping the presence of histological patterns across colitis

mouse models to molecular studies. Adaptation of preclinically-defined histological pheno-

types to routinely collected clinical specimens has the potential for more spatially-granular,

non-invasive characterizations.

PLOS ONE Deep learning-based quantification of histopathology in mouse models of colitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0268954 August 29, 2022 2 / 22

Funding: NIH grants: DK052230 to V.W.Y. and

CA205109/CA225021 to J.H.S. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0268954


An automated pipeline to detect intracolonic heterogeneity could significantly decrease

time needed to characterize histology of colitis mouse models. This could circumvent the need

for a pathologist to undergo a tedious scoring process. The histological readouts could also aid

in the evaluation of treatment efficacies. In addition, reliable identification of diseased and

healthy colonic areas is the first step towards further phenotyping cellular populations by spa-

tial context. Cell populations can be mapped immunohistochemically to those regions to pro-

vide a spatial context-aware characterization of immune responses. Lastly, our computational

approach can extract predicted image regions across a mouse cohort. ‘Involved’ and ‘Unin-

volved’ region extraction allows for clustering approaches to identify histological classes. We

quantified the proportion of ‘Uninvolved’ patches and ‘Involved’ patch classes to train separate

machine learning classifiers for two tasks. In our prospectively treated cohort of mice, these

two classifiers predicted mouse model and clinical score bins with overall F1 scores of 95.75%

and 86.39%, respectively.

Results

Archived mouse cohort background

To train our models, we utilized archived, formalin-fixed paraffin-embedded (FFPE) swiss-

rolled colons [16]. Whole colons were collected from three colitis mouse models and appropri-

ate controls. The colitis model treatment schedules are detailed in S1A Fig. The first mouse

model is the recently established Klf5ΔIND (Villin-CreERT2;Klf5fl/fl) genetic model. Inducible

intestinal epithelium-specific knockout of Klf5 upon five days of intraperitoneal (IP) tamoxifen

(TAM) injections disrupts epithelial barrier function and causes colitis (5T-Klf5ΔIND) [10, 11].

We utilized female mice due to the higher rate of Klf5 knockout relative to males [11]. As

TAM is dissolved in corn oil (CO), we also performed five days of IP CO injections in Klf5ΔIND

mice as a control (5C-Klf5ΔIND). Additionally, we collected various combinations of biological

controls with five days of IP CO and five days of IP TAM injections across Klf5ΔIND, Klf5ΔIND/+

(Villin-CreERT2;Klf5fl/+), and Klf5WT mice (Villin-CreERT2;Klf5+/+) (S1 Table).

The second mouse model is the chemical dextran sodium sulfate (DSS) induction model.

To control for the injections in our 5T-Klf5ΔIND model, Klf5ΔIND/+ mice received five days of

IP CO injections. This was followed by seven days of 2.5% DSS in drinking water. The histol-

ogy mirrors that in non-injected Klf5WT mice treated with DSS (S1B Fig). For the third model,

we performed a combined induction. As homozygous 5T-Klf5ΔIND mice exhibit increased

mortality in an 18-day period after induction [11], we injected heterozygous Klf5ΔIND/+ mice

with TAM for five days IP, then followed with seven days of 2.5% DSS in drinking water (5T-

Klf5ΔIND/+ + DSS). Although we have yet to fully characterize the combined induction model,

we wanted to examine the histology in these mice. Specifically, we evaluated whether our

computational pipeline could distinguish the single-type induction models even with these

mice in the cohort. We gathered all relevant archived samples that were collected by past lab

members. In total, we have 48 mice in the archived mouse cohort. Sample numbers are avail-

able in S1 Table.

Colons extracted from these colitis models contain areas that are involved or uninvolved

with disease. Manually selected regions from representative whole slide images (WSIs) are

shown in Fig 1A. Swiss rolls allow for the visualization of a whole mouse colon on a single

glass side. In these preparations, the center is the proximal end. The colon tissue can be traced

distally towards the outer portion of the swiss roll. Although not utilized to train our model,

we provide WSIs of additional biologic controls (5C-Klf5ΔIND/+ and 5T-Klf5ΔIND/+) for the

combined induction model (S1C Fig). Clinical scoring metrics combining weight loss, stool

consistency, and fecal blood [17] trend higher for 5T-Klf5ΔIND/+ + DSS mice relative to control
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and 5C-Klf5ΔIND/+ + DSS mice (S1D Fig). 5T-Klf5ΔIND/+ + DSS mice trend lower on histologi-

cal scoring relative to 5C- Klf5ΔIND/+ + DSS mice (S1E Fig), mainly due to decreased extent of

ulceration along the colon. This mismatch in clinical and histological scoring trends helped

motivate the development of our automated pipeline.

While the regional heterogeneity in our colitis models is visually apparent (Fig 1A), identifi-

cation of these regions requires a pathologist’s inspection. This can be difficult at times to per-

form objectively and especially over many samples. Pathologist inter- and intra-observer

variability has been reported in various contexts, such as lymph node counting [18], atypical

ductal hyperplasia diagnosis [19], and follicular thyroid carcinoma diagnosis [20]. An auto-

mated pipeline to identify murine colonic regions involved and uninvolved with disease would

Fig 1. Colitis mouse models exhibit regional heterogeneity. A) Representative whole slide images (WSIs) of swiss–rolled colons from Klf5WT (Villin–
CreERT2;Klf5+/+) control and colitis mouse models. Manually selected regions that are ‘Involved’ (red) and ‘Uninvolved’ (green) are shown for colitis mouse

model samples. 8, 11, and 16 show areas with crypt dropout. 7 and 12 are examples of crypt dilation. 15 is an example of distorted glands. B) Observed patterns

of injury for colitis mouse models.

https://doi.org/10.1371/journal.pone.0268954.g001
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provide benefits in objective reproducibility and speed. Furthermore, reliable identification of

these areas opens the door for more spatially motivated, histological characterizations. A goal

of this pipeline is to capture the reported proximal-involving and proximal-sparing injury pat-

terns in the 5T-Klf5ΔIND [11] and DSS models [6, 7], respectively (Fig 1B). To this end, we

trained an ‘Involved’ versus ‘Uninvolved’ classification model that generates predictions over

mucosal and submucosal regions of swiss-rolled murine colonic tissues.

‘Involved’ versus ‘Uninvolved’ classifier training

For our classifier, we used the ResNet-34 (RN-34) architecture [21]. ResNet is considered a

landmark architecture for the introduction of skip connections. Deep networks introduce a

high number of non-linear mathematical operations through the addition of many layers. This

can complicate the gradient descent calculations that allow the neural network to "learn”. Gra-

dient explosion and vanishing occur when calculated gradients are too large or small and will

impede learning [22]. Skip connections allow gradient descent to skip portions of the network

where this occurs to continue training. This has made possible a deep, 34-layer ResNet that

can extract even higher dimensional features from images, a powerful quality for H&E-patch

classification. We trained RN-34 models that were pretrained on ImageNet, a large dataset

with natural images comprising 1000 classes [23].

Our classifier was trained in a two-phase approach (S2A and S2B Fig). All WSIs from our

archived mouse cohort were downsampled by a factor of 8 and tiled into equally sized 224x224

pixel patches. The initial phase classifier was trained with ground truth patch labels corre-

sponding to mouse colitis status (S2A Fig). As such, all patches from colitis mice were labeled

‘Colitis’ and those from control mice were labeled ‘Control’. This labeling process does not

account for the intracolonic heterogeneity observed in our colitis models (Fig 1A). Therefore,

we aimed to generate patch-level ground truth labels to improve model performance. We used

our initial phase model as a feature extractor to collect the high dimensional patch representa-

tions learned during the initial phase of training (S2B Fig). K-means clustering on these repre-

sentations across all archived mouse cohort samples identified five patch classes (S2C and S2D

Fig). Three of these (‘Crypts’, ‘Lightly Packed’, and ‘Rosettes’) were visually determined and

validated with a pathologist to be uninvolved, while the other two (‘Mixed Pathology’, ‘Dis-

torted Glands’) were involved with abnormal histology.

We then quantified these patch classes across our mice. For each mouse, we calculated the

proportion of each of the five patch classes out of the total number of patches from the swiss

roll. Two of the three qualitatively uninvolved classes were significantly enriched in our con-

trol mice relative to colitis mice, while both of our involved classes were significantly enriched

in colitis mice relative to controls (S2D Fig). The lack of significance for the ‘Rosettes’ class is

attributed to the higher proportion of this patch type in DSS-treated mice relative to the other

colitis models (S2E Fig). This is likely due to the proximal-sparing injury pattern in DSS-

treated mice [6, 7], as rosette structures are more prevalent in the proximal colon. The

increased proximal prevalence is from sectioning mucosal folds, which are found in the proxi-

mal murine colon [24, 25]. In the second phase of training (S2B Fig), all patches from control

mice were labelled ‘Uninvolved’ as no colitis induction occurred. All patches from colitis mice

were labelled ‘Uninvolved’ or ‘Involved’ according to k-means patch class.

In both phases of training, 70% of total patches were used to train the model, 10% as a mid-

training performance validation set, and 20% as a held-out test set. Our final model exhibited

an overall F1 score of 90.1% on the held-out test set (Fig 2A). This was an improvement from

the initial phase model (overall F1 score of 77.6%) that was trained with colitis status ground

truth labels (S2F Fig). Notably, the initial phase model exhibited a relatively lower F1 score of
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68.87% when attempting to predict patches from colitis mice. This performance is likely

explained by the uninvolved patches from colitis mice labeled as ‘Colitis’ and motivated our

second phase of model training. Additionally, when applied to 171 patches with ‘Involved’ and

‘Uninvolved’ ground truth labels provided by a pathologist, our final classifier exhibited an

overall F1 score of 81.41% and again showed improvement from the initial phase model

(S2G Fig).

Small patch classifier training for preprocessing

We initially used simple thresholding of pixel intensities across each patch’s red, green, and

blue color channels to filter out patches with too much background and muscle. However, this

approach was not robust. We trained an additional RN-34 classifier pretrained on ImageNet

[23] on smaller 32x32 pixel patches to classify between ‘Background’, ‘Muscle’, ‘Tissue’, and

‘Submucosa’ classes (S3 Fig). From 8 mice (2 each of control and of the three mouse models),

we extracted 100 patches for each of the ‘Background’, ‘Muscle’, ‘Tissue’, and ‘Submucosa’ clas-

ses (S3A Fig). Our model was trained with these ground truth labels and applied to a test set of

patches from 4 separate mice (1 each of control and the 3 mouse models, 100 patches for each

class). This model achieved an overall F1 score of 93.5% (S3B Fig). We also generated qualita-

tive overlays of our small patch classifier’s prediction on test set mice (S3C Fig). Additionally,

we implement this small patch classifier during our patch filtering process. All patches with

>65% of area corresponding to regions predicted to be ‘Background’ or ‘Muscle’ are filtered

out during the patch extraction process (S4 Fig). We identified 65% as the ideal cutoff to

ensure proper coverage of mucosal areas across swiss-rolls, while filtering out patches with too

much ‘Muscle’ or ‘Background’ regions.

‘Involved’ versus ‘Uninvolved’ overlay generation

We generated overlays as visual outputs for our classifications. We sought to first reduce

‘Involved’ versus ‘Uninvolved’ classification dependence on what patch happened to be

extracted from a region. We extracted overlapping patches by taking initial patch locations

and iterating 20 pixels 10 times in each direction (up/down/left/right). This led to an increase

of ~450 to ~200,000 patches per mouse after repeating patch filtering. Our classifier was

applied to each overlapping patch, and ‘Involved’ and ‘Uninvolved’ prediction confidences

were averaged at every pixel in the WSI. The prediction associated with each pixel thus consid-

ers more spatial context than just the initial patch it resided in. Areas with at least 50% confi-

dence of ‘Involved’ and ‘Uninvolved’ predictions are overlayed onto the input H&E WSIs (Fig

2B). All regions predicted by our Small Patch Classifier to be ‘Background’ and ‘Muscle’ were

eliminated from final overlays.

Prospective mouse cohort

To test the robustness of our ‘Involved’ versus ‘Uninvolved’ Classifier, we treated and collected

H&E-stained, FFPE swiss-rolled colons from 24 additional mice. Specifically, this cohort

allowed us to assess whether our approaches would work regardless of who treated mice, col-

lected swiss rolls, and performed H&E staining. This consisted of eight controls (no injections,

put on normal drinking water), eight Klf5ΔIND/+ DSS-treated mice with no injections, five 5T-

Klf5ΔIND, mice and three 5T-Klf5ΔIND/+ + DSS mice (S1 Table). We elected to utilize non-

injected DSS-treated mice to confirm that our model properly captures the histology even

without five days of corn oil injections preceding the DSS. We applied our approach to these

prospective samples and generated ‘Involved’ versus ‘Uninvolved’ overlays (Fig 2C).
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Patch class discovery

To build upon the binary ‘Involved’ and ‘Uninvolved’ predictions, we defined more specific

image patch classes. Analogous to our second phase of model training (S2B Fig), we utilized

our final ‘Involved’ versus ‘Uninvolved’ Classifier to extract high dimensional representations

for patches in our archived mouse cohort. Specifically, two datasets (one with all ‘Involved’

patch representations and one with all ‘Uninvolved’ patch representations) were collected.

Given the high number of patches, principal component analysis (PCA)-based dimensionality

reduction was performed on each dataset before k-means clustering. Clustering on ‘Unin-

volved’ patch representations identified three classes: ‘Crypts’ (test-tube-like perspective of

crypt structures), ‘Lightly Packed’ (more space between crypts often accompanied by immune

cell nuclei), and ‘Rosettes’ (Ring-like cross-section perspective of crypts) (Fig 3A and 3B). Of

note, the discovered ‘Uninvolved’ patch classes matched those identified during our second

phase of classifier training (S2C Fig).

While the ‘Crypts’ class was significantly enriched in control mice relative to all the colitis

mouse models, this was not true for the other two classes. Specifically, the ‘Rosettes’ class was

significantly enriched in control mice relative to 5T-Klf5ΔIND and 5T-Klf5ΔIND/+ + DSS mice,

but not to 5C-Klf5ΔIND/+ + DSS mice (Fig 3B). In addition, the ‘Rosettes’ class was significantly

enriched in the 5C-Klf5ΔIND/+ + DSS mice relative to the other two colitis models. This is again

likely due to the proximal-sparing injury pattern in DSS-treated mice [6, 7]. This injury pattern

is also depicted in our ‘Involved’ versus ‘Uninvolved’ overlays (Fig 2B and 2C). Our DSS-

treated mice show more ‘Uninvolved’ predictions in the rosettes-enriched proximal colon

(center of swiss rolls) where disease is less common. In the 5T-Klf5ΔIND/+ + DSS mice, how-

ever, DSS-treatment no longer causes a proximal-sparing injury pattern (Figs 1B, 2B and 2C).

While the mechanism of DSS-induced colitis has not been completely elucidated, the effects

are believed to be dependent on tissue penetration of the chemical leading to disruption of the

intestinal epithelial monolayer and barrier integrity [26]. DSS has a variable molecular weight

from 5 to 1400 kDa, and administration of forms 500 kDa and higher do not induce colitis

[27]. The shift in the proximal-sparing pattern of 5C-Klf5ΔIND/+ + DSS mice to the distal-spar-

ing one in 5T-Klf5ΔIND/+ + DSS mice may be a function of increased proximal tissue DSS pene-

trance following TAM-induction.

The ‘Lightly Packed’ class was significantly enriched in control mice relative to 5C-

Klf5ΔIND/+ + DSS mice but not the other two colitis mouse models. This likely relates to the

increased prevalence of abnormal proximal histology in the 5T-Klf5ΔIND and 5T-Klf5ΔIND/+

+ DSS models relative to 5C-Klf5ΔIND/+ + DSS mice [11] (Fig 2B and 2C). However, the

‘Crypts’, which are found more distally, significantly decreased in all colitis mouse models rela-

tive to controls. Thus, an additional explanation is that the ‘Lightly Packed’ regions sit on the

decision border. They may capture an accumulation of immune cells that is protective or too

low a grade of abnormal histology to garner an ‘Involved’ prediction. While our 5T-Klf5ΔIND/+

+ DSS model trended higher in clinical score than our 5C-Klf5ΔIND/+ + DSS mice (S1D Fig),

they trended lower in histological scoring (S1E Fig). Scoring schemes that rely upon counting

of pre-defined pathological findings without accounting for lower grade abnormalities may

Fig 2. Classifier detects ‘Involved’ versus ‘Uninvolved’ regions in swiss–rolled colons. A) Confusion matrix showing final model

predictions on patches from test set mice. From the 48 mice in our archived cohort (S1 Table), 34 mice (14281 patches, ~70% of total) were

used for model training, 5 mice were used for mid–training validation (2192 patches, ~10% of total), and 9 mice (4171 patches, ~19%) were

used as a final independent test set. B) Original input H&E–stained swiss rolls are shown with corresponding ‘Involved’ (red) versus

‘Uninvolved’ (green) classifier overlays for archived mouse cohort test set mice. C) Original input H&E–stained swiss rolls and

corresponding overlays for prospective mouse cohort samples. For both B) and C), red and green overlay colors correspond to regions with

at least 50% prediction confidence.

https://doi.org/10.1371/journal.pone.0268954.g002
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Fig 3. Discovered ‘Uninvolved’ patch classes are enriched in control mice and show shifts in prevalence across

colitis mouse models. A) ‘Uninvolved’ patch classes with qualitative class labels. Patches most representative of class

labels are shown. B) Box and whisker plots of ‘Uninvolved’ patch class proportions. Lines in center of box indicate

median. Box boundaries refer to 1st and 3rd interquartile ranges (IQRs). Whiskers extend to furthest point within to

1.5�IQR. One–way ANOVA shows that these ‘Uninvolved’ patch classes are found in differing portions across colitis

mouse models and controls. �p<0.0332, ��p<0.0021, ���p<0.0002, ���� p<0.0001.

https://doi.org/10.1371/journal.pone.0268954.g003
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not fully reflect histology. A future direction is thus to leverage this property of our pipeline to

consider these borderline regions in the grading of swiss rolls.

The ‘Mixed Pathology’ k-means class identified during our second phase of model training

(S2B–S2D Fig) motivated us to apply this approach to ‘Involved’ patch representations. K-

means clustering identified four diseased patch classes (Fig 4A and 4B). By visual inspection

and validation by a pathologist, these were classified as ‘Inflammatory’ (Milder, more hetero-

geneous phenotype with an influx of immune cell nuclei), ‘Crypt Dropout’ (loss of epithelium

and displacement by stroma and immune cells), ‘Crypt Dilation’ (expansion of crypt lumen

spaces), and ‘Distorted Glands’ (distortion of crypt structures). The ‘Distorted Glands’ per-

sisted from the discovered k-means classes used in our second round of model training (S2C

and S2D Fig). However, the ‘Mixed Pathologies’ class was replaced by new classes. Notably,

immune cell infiltration, crypt dilation, and gland distortion have all been observed in human

IBD [28–30]. Furthermore, these ‘Involved’ patch classes were present in significantly different

proportions across our mouse models and controls (Fig 4B). Specifically, 5T-Klf5ΔIND mice

were enriched in the ‘Inflammatory’ and ‘Crypt Dilation’ classes, 5C-Klf5ΔIND/+ + DSS mice in

the ‘Inflammatory’ and ‘Crypt Dropout’ classes, and 5T-Klf5ΔIND/+ + DSS mice in the ‘Crypt

Dropout’ and ‘Distorted Glands’ classes (Fig 4B).

Stacked bar plots visually summarize these findings (Fig 4C). While all three ‘Uninvolved’

patch classes are present in control mice, ‘Crypts’ fall significantly for all three colitis mouse

models and ‘Lightly Packed’ patches persist. ‘Rosettes’ are appreciable in 5C-Klf5ΔIND/+ + DSS

and control mice. For ‘Involved’ classes, ‘Inflammatory’ and ‘Crypt Dilation’ patches are most

prevalent in our 5T-Klf5ΔIND mice. Given the shorter treatment course of this colitis mouse

model (5 days), these may indicate more acute histological findings. On the other hand, the

‘Crypt Dropout’ class may be less acute as prevalence is higher in our longer treatment course

5C-Klf5ΔIND/+ + DSS (7 days) and 5T-Klf5ΔIND/+ + DSS mice (12 days). Similarly, 5T-Klf5ΔIND/

+ + DSS mice are the only model with appreciable presence of ‘Distorted Glands’. Distorted

glands are one of the histological markers of chronic inflammation in human IBD [31]. Thus,

this pipeline can histologically categorize colitis mouse models by which facets of human dis-

ease they recapitulate. In addition, a future direction is to partner this approach with immuno-

histochemical staining. This can shed further light on the relative contributions of length of

colitis induction and immune cell presence in causing various types of histological

abnormalities.

Prediction of mouse model from H&E inputs

Next, we sought to address whether the variable presence of ‘Uninvolved’ patches and

‘Involved’ patch classes is sufficient to predict mouse model. We thus formed the pipeline

detailed in S5A Fig to utilize ‘Uninvolved’ patch and ‘Involved’ k-means patch class propor-

tions to train a linear determinant analysis (LDA) classifier to predict mouse model.

The LDA classifier was trained on the archived mouse cohort then applied to the prospec-

tive mouse cohort via the inference pipeline in S5B Fig. The classifier predicted which mouse

model each swiss roll came from with an overall F1 score of 95.75% (Fig 4D). Of note, the k-

means patch class stacked bar plots for the prospective cohort (S5C Fig) mirrored those for the

archived mouse cohort (Fig 4C). As one of the 5T-Klf5ΔIND mice was classified as control, we

examined the input H&E. The WSI exhibited healthier appearing histology relative to WSIs

from properly classified 5T-Klf5ΔIND mice. This was apparent even from low magnification

with decreased luminal space areas and more tightly packed crypts (S6 Fig). Although some

‘Involved’ areas were present in the 5T-Klf5ΔIND mouse classified as control, crypts were more

intact in these regions and accompanied with goblet cell presence. Goblet cells secrete mucus
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Fig 4. Discovered ‘Involved’ k–means patch classes can be utilized by machine learning classifier to predict mouse model. A)

‘Involved’ patch classes with qualitative class labels. Patches most representative of class labels are shown. B) Box and whisker plots of

‘Involved’ patch class proportions. Lines in center of box indicate median. Box boundaries refer to 1st and 3rd interquartile ranges (IQRs).

Whiskers extend to furthest point within to 1.5�IQR. One–way ANOVA shows that these ‘Involved’ patch classes are found in differing

portions across colitis mouse models and controls. �p<0.0332, ��p<0.0021, ���p<0.0002, ���� p<0.0001. C) Stacked bar plot of total
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to provide a protective lining in the intestine, and decreased goblet cells are observed in CD

and UC [32]. As such, this pipeline can histologically identify outlier mice with weaker colitis

induction and phenotypes.

‘Involved’ patch presence predicts clinical score bins

We explored the correlation of ‘Involved’ predictions with clinical score. Mice were scored

according to Cooper et al. [17]. Clinical scoring accounted for body weight loss, stool consistency,

and blood in stool. For each prospective cohort mouse, we also calculated the InvolvedProportion,

the proportion of overlay prediction pixels that were ‘Involved’. InvolvedProportion shows mod-

erate linear correlation with clinical score (R2 = 0.669, S7A Fig).

We then assessed if ‘Uninvolved’ patch and ‘‘Involved’ k-means patch class proportions

provide value in predicting clinical score. Clinical scores were binned into “Low” (0–2), “Mid”

(3–7) and “High” (8–12). The range for “Low” was set to 0–2, as control mice could still accu-

mulate points for normal changes like <5% weight loss. The “Mid” and “High” bins each

cover a range of 5 clinical score values. We trained a new LDA model on the archived mouse

cohort to predict clinical score bins from patch proportions. This LDA model predicted clini-

cal score bins in our prospective cohort with an accuracy of 87.5% and overall F1 score of

86.4% (S7B Fig). Two “Mid” mice were predicted as “High” and one “High” mouse was pre-

dicted as “Low”. Of note, the two mice incorrectly predicted as “High” had the lowest propor-

tion of ‘Uninvolved’ patches, while the mouse incorrectly predicted as “Low” had the highest.

As such, there is overreliance on the proportion of ‘Uninvolved’ patches in predicting clinical

score bin and a need to provide weights for the different histological classes. Although tradi-

tional scoring schemes like Cooper et al. [17] are based on similar concepts, they are often not

developed across multiple colitis models and depend upon a simple tally of findings. Our

computational approach can facilitate multi-mouse model comparisons through the quantifi-

cation of histological findings across various colitis phenotypes. A future direction is thus to

apply weakly-supervised approaches to determine weights for histological findings based on

their relative contributions to phenotypic disease severity.

Discussion

This study sought to address the simultaneous presence of colonic regions that are involved

and uninvolved with abnormal histology within colitis mouse models. While these regions can

be identified via careful inspection by a pathologist, doing so objectively over many samples is

difficult and highly time-consuming. Deep learning models learn to associate class labels with

implicit patterns in data and are well-suited for this task. A computational method to quantify

the presence of abnormal histology can also serve as a histological readout for experiments per-

formed on mice. One example would be to confirm the effect of treatments histologically as an

accompaniment to clinical metrics like body weight, fecal blood, or stool consistency.

We thus present an ‘Involved’ versus ‘Uninvolved’ classifier for colons of 5T-Klf5ΔIND, DSS-

treated, 5T-Klf5ΔIND/+ + DSS, and control mice. Specifically, we utilized a two-phase training

approach. The initial phase uses mouse colitis status as patch ground truth labels, while the sec-

ond phase incorporates feature extraction and clustering to generate improved, patch-level

ground truth labeling. Importantly, our final model shows improved agreement with a pathol-

ogist relative to the model trained in just the initial phase of the approach.

‘Uninvolved’ and ‘Involved’ k–means patch class proportions across archived mouse cohort. Error bars show mean with standard

deviation. D) Confusion matrix for linear determinant analysis (LDA) classifier mouse model predictions on prospective mouse cohort.

https://doi.org/10.1371/journal.pone.0268954.g004
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In a related study, Bédard et al. published a proof of concept application of CNNs for the

microscopic scoring of acute inflammation in DSS colitis [33]. They utilized a commercial arti-

ficial intelligence platform to detect muscle, normal mucosa, and acutely inflamed mucosa in

H&E-stained murine colon WSIs. The authors calculated the ratio of acutely inflamed to total

mucosa to assess the level of disease. Identifying these regions is an important step towards the

microscopic grading of colitis samples. We similarly trained our Small Patch Classifier to

detect ‘Background’, ‘Muscle’, ‘Mucosa’, and ‘Submucosa’ classes from 32x32 pixel patches. In

our work, the Small Patch Classifier was implemented to improve our patch filtering process

and to focus our ‘Involved’ versus ‘Uninvolved’ classifier overlays onto the ‘Mucosa’ and ‘Sub-

mucosa’ regions. A future direction is to explore whether the Small Patch Classifier outputs

can improve our ‘Involved’ versus ‘Uninvolved’ model performance.

In an alternate approach, Rogers et al. attempted to segment colitis lesions in H&E-stained

WSIs across the DSS, CD45RBHi, and IL-10-/- mouse models to grade disease severity [34].

The authors experienced segmentation challenges due to variabilities in crypt morphologies.

They instead opted to generate a workflow based on CD3 immunohistochemical staining.

Morphological variabilities likely increase more with disease relative to healthy histology.

Here, we trained a patch-based ‘Involved’ versus ‘Uninvolved’ classifier. Including the task to

classify the more homogenous ‘Uninvolved’ regions may help to separate out the ‘Involved’

regions. An additional benefit is that this has allowed us to perform clustering on just the

‘Involved’ patches to identify specific types of abnormal histology. Clustering on ‘Uninvolved’

patches also generated classes of normal histology. As with Rogers et al., we also incorporated

multiple mouse models of colitis in our study. This has allowed for comparisons showing

quantitative enrichment of histologic classes in different mouse models.

Specifically, we applied feature extraction, PCA-based dimensionality reduction and k-

means clustering on ‘Uninvolved’ patches to define ‘Crypt’, ‘Rosettes’, and ‘Lightly Packed’

classes. Patches of the ‘Crypt’ class were significantly decreased in all colitis mouse models.

The ‘Rosettes’ and ‘Lightly Packed’ classes were present in variable proportions across mouse

models, mirroring shifts in proximal-involved and proximal-sparing patterns of injury. As the

‘Lightly Packed’ classes in colitis mice may represent regions of immune infiltration without

overtly abnormal histology, we plan to assess the capacity of our model to consider these

regions in the grading of colonic histology.

From ‘Involved’ patches, we identified four classes of abnormal histology–‘Inflammatory’,

‘Crypt Dropout’, ‘Crypt Dilation’, and ‘Distorted Glands’. DSS-treated mice were enriched in the

‘Inflammatory’ and ‘Crypt Dropout’ classes, 5T-Klf5ΔIND mice in the ‘Inflammatory’ and ‘Crypt

Dilation’ classes, and 5T-Klf5ΔIND/+ + DSS in the ‘Crypt Dropout’ and ‘Distorted Glands’ classes.

Swiss roll ‘Uninvolved’ patch and ‘Involved’ patch class proportions were sufficient to train an

LDA classifier to predict mouse model and clinical score bins. Increased prevalence of the ‘Inflam-

matory’ and ‘Crypt Dilation’ classes in the shorter time course 5T-Klf5ΔIND (5 days) and DSS-

treated (7 days) mice may indicate these are more acute findings. Increases of ‘Distorted Glands’

in the combined induction model (12 days) and of ‘Crypt Dropout’ in the DSS-treated mice and

combined induction model may reflect the more chronic nature of these histological classes. To

the best of our knowledge, this is the first study to explore quantification of histological findings

across mouse models to invite further assessment beyond qualitative descriptions. This may help

validate the capacity of mouse models to capture certain aspects of human disease. To allow others

to utilize the code, we have made available our prospective mouse cohort WSIs and the full infer-

ence pipeline from WSI scaling and patch extraction to LDA inference on github.

Our pipeline thus essentially examines swiss rolls, detects and categorizes histology, then

predicts mouse model. As the 5T-Klf5ΔIND mice have a Th17-mediated immune response [11],

while the DSS model has been characterized as Th1-, Th17-, and innate immunity-mediated
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[8, 26, 35], we have confirmed that the variable immune responses in these models are accom-

panied by differences in histology. The next step is to delineate the respective contributions of

various immune populations to the presence of specific histological findings.

Accordingly, we believe this pipeline is the start for a spatially-motivated characterization

of immune populations by histologic localization to ‘Involved’ and ‘Uninvolved’ regions. This

approach may offer a complement to methods like flow cytometry and single-cell sequencing

that can characterize immune responses with single-cell resolution but lose spatial context. A

future direction is to map immune populations stained on serially sectioned slides to k-means

patch classes to assess immune cell functionality and subtypes. Residence of immune popula-

tions in areas with and without disease may provide another angle towards characterization.

Since many studies assessing functionality rely on knockouts or expensive neutralizing anti-

body experiments [11, 36–40], such a pipeline may offer a cheaper, quicker alternative.

One limitation of this method is that current application is restricted to the mouse models

included in this study. However, we believe this is an important first step to establish and pro-

mote the potential of computer vision methodologies at the bench, and specifically, within the

context of colitis mouse models. Another future direction is therefore to amplify the capacity

of this method by incorporating other colitis models within training, such as the 2,4,6-Trini-

trobenzenesulfonic acid (TNBS), IL-10 knockout, adoptive cell transfer, and oxazolone models

[41]. Doing so would allow for the application of our method as a histological readout over a

wider range of colitis mouse models.

More importantly, ‘Involved’ regions could then be extracted over an even more heteroge-

neous collection of colitis phenotypes. As these colitis models across literature differ in induc-

tion and flavor of immune responses, such an approach would open the door for synergy of

knowledge gained from different mouse models. One possibility is that immune response

characterizations, molecular approaches, and mechanistic studies focusing on pathophysiology

could be linked to similar and dissimilar presence of types of histological findings across differ-

ent murine colitis phenotypes. Notably, protein and genomic targets are often identified in

preclinical animal models then evaluated for clinical value in patient specimens. Histological

patterns identified in these animal models are driven by these same protein and genomic tar-

gets. Consequently, a future goal is to evaluate the clinical value and transferability of such his-

tological phenotypes identified in animal models. This approach, therefore, has the potential

to one day promote the discovery of novel therapeutic targets and pathways in IBD by serving

as link between studies. As such, we believe that the integration of computational and com-

puter vision approaches offers significant and exciting potential in bringing together the depth

of human knowledge that has been gained from across colitis mouse models and in encourag-

ing further collaboration across groups.

Materials and methods

Mice

All studies involving mice were approved by the Stony Brook University (SBU) Institutional

Animal Care and Use Committee (IACUC). All mice were house in the SBU Division of Labo-

ratory Animal Resources (DLAR) and maintained on a 12:12 hour light-dark cycle. The DLAR

facility has optimized conditions regarding well-regulated temperature and humidity and light

settings to ensure a stable, reproducible environment for animal growth. All mice carried an

inducible Cre recombinase gene under the Villin promoter. These mice carried either two

wild-type alleles of Klf5 (Villin-CreERT2;Klf5+/+) or were heterozygous or homozygous for an

additional Klf5 allele flanked by loxP sites (heterozygous: Villin-CreERT2;Klf5ΔIND/+, homozy-

gous: Villin-CreERT2;Klf5ΔIND/ΔIND).
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Treatment schedules are detailed in S1A Fig. All treatment conditions are available in S1

Table. Littermates were split across control groups in experiments to minimize littermate-spe-

cific batch effects. S.K. was to only one to know of treatment group allocation. For all experi-

ments, mice were eight to ten weeks old and female, as we have seen increased Cre

recombination efficiency relative to males in the 5T-Klf5ΔIND model [11]. Intraperitoneal (IP)

injection of tamoxifen at 1mg/day dissolved in corn oil for 5 days was performed as previously

described [11]. Control mice received 5 days of IP corn oil injections. For dextran sodium sul-

fate (DSS) treatment, mice in the archived cohort received 2.5% DSS in drinking water. In the

prospective cohort, DSS-treated mice received 3% DSS, as we observed this was the optimal

concentration for experiments at the Stony Brook University facilities. Controls for DSS treat-

ments were provided normal drinking water. For combined induction, Klf5ΔIND/+ mice

received 2.5% DSS following 5 days of IP injection of tamoxifen at 1mg/day dissolved in corn

oil. Upon conclusion of treatments, whole colons were collected and swiss-rolled according to

[16]. Swiss-rolled colons were then formalin-fixed and paraffin-embedded (FFPE). Mice

receiving histological or clinical scoring were scored according to Cooper et al. [17]. Histologi-

cal scoring accounted for inflammatory cells in the lamina propria, crypt damage, and extent

of ulceration. Clinical scoring covered weight loss, stool consistency, and fecal blood.

To minimize distress, daily observations of body weight and abnormalities, including

anorexia, rectal prolapse, intractable diarrhea, ruffled fur, labored breathing, hunched posture,

or lack of normal investigative behavior were performed. Any mouse exhibiting these observa-

tions or experiencing greater than 15% loss of baseline weight during treatment course were

euthanized. Euthanasia was performed by delivering carbon dioxide via compressed gas fol-

lowed by immediate cervical dislocation.

Whole slide image (WSI) generation

FFPE swiss-rolled colons were sectioned onto glass slides and stained by hematoxylin and

eosin (H&E) [16]. These glass slides were then scanned and digitized at 40X magnification

(0.17 μM/pixel) to a.vsi format by the Olympus VS120 Digital Virtual Slide System

(VS120-L100-W). The files were converted to a tiff format for further downstream use.

H&E ‘Involved’ versus ‘Uninvolved’ classifier training

We trained the ResNet-34 (RN-34) neural network, which is considered a landmark architec-

ture for its introduction of skip connections [21]. Briefly, skip connections allow the model to

‘skip’ parts of its architecture where training would typically be impeded due to gradient explo-

sion or vanishing [22]. We trained a RN-34 model pretrained on ImageNet, a large dataset

with natural images comprising 1000 classes [23].

An overview schematic of our two-phase training approach is available in S2A and S2B Fig.

We downsize WSIs by a factor of 8 and extract 224x224 pixel patches. Patches containing too

little tissue are filtered out. The initial phase (S2A Fig) utilizes mouse colitis induction status as

ground truth to label extracted patches. As such, colonic regional heterogeneity (Fig 1A) is not

addressed here. Instead, all patches from colitis mice are provided a ‘Colitis’ label, while all

patches from control mice are provided a ‘Control’ label. Once labeled, 70% of patches were

used to train the model, 10% of patches were used to assess performance mid-training, and

20% of patches were used as a held-out test set.

To generate more granular, patch-level ground truth labeling, we pursued the approach in

S2B Fig. We used the initial phase model as a feature extractor to convert all archived mouse

cohort image patches to high-dimensional 512-length numerical representations learned
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during the initial phase of training. K-means clustering on these representations revealed

patch classes (S2C Fig).

We then utilized these k-means clusters to generate new patch-level ground truth labels. As

our control mice did not receive any colitis induction, we provided ‘Uninvolved’ ground truth

labels to all patches from these mice. For our mice with colitis induction, we referred to the k-

means clustering results. With this new ground truth labeling, we trained another RN-34

model pretrained on ImageNet [23] using a 70/10/20% training/validation/test set split.

Small patch classifier training for preprocessing

From our archived mouse cohort WSIs, we extracted 32x32 pixel patches and trained an addi-

tional RN-34 classifier pretrained on ImageNet [23] (S3 Fig). Our Small Patch Classifier pre-

dicts these patches as one of the ‘Background’, ‘Muscle’, ‘Tissue’, and ‘Submucosa’ classes.

Tissue map generation and patch filtering

For every H&E-stained, swiss-rolled colon WSI, we first extract 32x32 pixel patches. The Small

Patch Classifier is applied to each to generate a tissue map for every input H&E WSI (S4A Fig).

The tissue map is of the same dimension as the input H&E. White areas represent ‘Tissue’ and

‘Submucosa’ classifications, while the black areas represent ‘Muscle’ and ‘Background’. For

each subsequently extracted 224x224 pixel H&E patch, the corresponding area is extracted

from the tissue map. Each patch is then thresholded to evaluate whether enough tissue or sub-

mucosa is present. Practically, we implement a 65% threshold. Patches with more than 65% of

‘Background’ or ‘Muscle’ regions are filtered out, while those with less are kept (S4B Fig).

Overlap patch extraction and overlay generation

To reduce classification dependence for what patch happened to be extracted from a region in

a WSI, we extracted overlapping patches. Beginning with existing patch locations, we iterated

20 pixels 10 times in each direction (up/down/left/right) and extracted new patches. We then

again filtered out patches containing too little tissue. This led to an increase of ~450 to

~200,000 patches per mouse.

To generate overlays, our ‘Involved’ versus ‘Uninvolved’ classifier was applied to all patches,

including overlapping patches. At every pixel, ‘Involved’ and ‘Uninvolved’ prediction confi-

dences were averaged. Red areas correspond to pixels with>50% confidence of ‘Involved’ pre-

dictions, while green areas correspond to pixels with>50% confidence of ‘Uninvolved’

predictions. Furthermore, all regions in tissue maps corresponding to ‘Muscle’ and ‘Back-

ground’ were eliminated from the overlay. This generated final outputs with predictions over

only mucosal and submucosal areas (Fig 2B and 2C).

Discovery of patch classes

Overview schematic is shown in S5A Fig. From our archived mouse cohort, we extracted all

patches, including overlapping patches, classified as ‘Involved’. We utilized our final ‘Involved’

versus ‘Uninvolved’ classifier as a feature extractor, then performed PCA-based dimensionality

reduction to 250 principal components (PCs) that capture 95% of variability. We then applied

k-means clustering to identify disease patch classes. This process was repeated for all patches

classified as ‘Uninvolved’ from our archived mouse cohort to identify healthy patch classes.

PCA-based dimensionality reduction for ‘Uninvolved’ patches required 255 PCs to account

for 95% of variability.
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Machine learning classifier to predict mouse model

Per mouse proportions of ‘Uninvolved’ patches and the ‘Involved’ k-means patch classes were

generated for every sample from the archived mouse cohort. These proportions were utilized

to train a linear determinant analysis (LDA) classifier to predict mouse model (S5A Fig). For

inference, the schematic is shown in S5B Fig. Overlapping patches are extracted from our pro-

spective mouse cohort samples and filtered according to tissue maps generated by the small

patch classifier. Our ‘Involved’ versus ‘Uninvolved’ classifier is applied, and ‘Involved’ patches

undergo a further round of PCA-based dimensionality reduction that is first fit to archived

mouse cohort data. Our k-means model, which is also trained on our archived mouse cohort,

then categorizes ‘Involved’ patches into one of the discovered classes. Finally, the per mouse

proportions of ‘Uninvolved’ patches and ‘Involved’ k-means patch classes are generated for

each mouse and fed into the LDA classifier to infer the mouse model.

Machine learning classifier to predict clinical score bins

The generated per mouse proportions of ‘Uninvolved’ patches and the ‘Involved’ k-means

patch classes were also utilized to train a separate LDA classifier to predict clinical score bins.

Clinical score bins were “Low” (0–2), “Mid” (3–7), and “High” (8–12). The “Low” range was

selected to account for normal observations that might accumulate clinical score, such as<5%

weight loss over experimental course. This LDA classifier was trained on the archived mouse

cohort and applied to predict clinical score bins in the prospective mouse cohort.

Statistics

One-way ANOVA and student’s t-test calculations were performed on GraphPad Prism Ver-

sion 9.0.0 for Mac. Linear correlation R2 values were generated in Python. One-way ANOVA

was performed when there were three or more comparison groups. Student’s t-test was per-

formed for two comparison groups.

Supporting information

S1 Table. Mouse cohort sample numbers per genotype and treatment.

(TIF)

S1 Fig. Colitis mouse models. A) Treatment schedules for each mouse model. DSS model in

prospective cohort has no injections to confirm abnormal pathology is recognized indepen-

dent of corn oil. Additionally, 3.0% DSS was used in prospective mice, as this was observed to

be the optimal concentration at the Stony Brook facilities. B) Swiss roll of Klf5WT (Villin-
CreERT2;Klf5+/+) mouse treated with DSS and no TAM or CO injections. C) Though not used

to train our classifier, swiss rolls of corresponding controls (5T-Klf5ΔIND/+ and 5C-Klf5ΔIND/+)

are shown for combined colitis model. D) Clinical scores combining weight loss, stool consis-

tency, and fecal blood according to Cooper et al. [17] for combined colitis model, 5C-Klf5ΔIND/

+ + DSS, and control mice. E) Histological scores according to Cooper et al. [17]. One-way

ANOVA was performed for D) and E). �p<0.0332, ��p<0.0021, ���p<0.0002, ���� p<0.0001.

(TIF)

S2 Fig. Second phase of training with k-means patch class labels improves model perfor-

mance. A) Overview schematic showing initial phase of RN-34 model training that uses

mouse colitis status as patch ground truth labels. Thus, intracolonic heterogeneity in colitis

mice is not addressed at this round of patch labeling. B) Second phase of model training that

uses trained RN-34 model from A) as a feature extractor for patches in dataset. K-means
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clustering on extracted features generated patch classes. Student t-test is utilized to assess

whether patch classes are significantly enriched in colitis or control mice. Patches from control

mice are labeled as ‘Uninvolved’, as no colitis induction occurred. For colitis mice, patches are

labelled ‘Uninvolved’ or ‘Involved’ according to k-means predictions. C) K-means patch clas-

ses identified during second phase of training in B) used for ground truth labeling. D) Box and

whisker plots of patch class proportions. Lines in center of box indicate median.

Box boundaries refer to 1st and 3rd interquartile ranges (IQRs). Whiskers extend to furthest

point within to 1.5�IQR. Student’s t-tests were performed. �p<0.05, ��p<0.01, ���p<0.001,
����p<0.0001. E) Rosettes are in DSS-treated mice have higher means relative to other colitis

models. One-way ANOVA shows a statistically significant difference between groups. F) Inde-

pendent test set output confusion matrix for initial phase model. G) 200 patches from 4 mice

(1 control, 1 of each colitis mouse model) were labeled as ‘Uninvolved’ or ‘Involved’ by a

pathologist. 29/200 patches were discarded for not enough spatial context to provide a label.

Inference using models trained in A) and B) show that the k-means patch labeling approach

increased prediction agreement with pathologist-generated labels.

(TIF)

S3 Fig. Small patch classifier for preprocessing. A) Example 32x32 pixel patches for the

‘Background’, ‘Tissue’, ‘Muscle’, and ‘Submucosa’ classes used to train the Small Patch RN-34

Classifier. B) Trained Small Patch Clasifier confusion matrix outputs for independent test set

of 4 mice, each with 100 patches of each class (1600 total patches). C) Example overlay of Small

Patch Classifier on DSS-treated test set mouse.

(TIF)

S4 Fig. Tissue map generation and filtering process. A) Small Patch Classifier from S3 Fig is

applied to all 32x32 pixel patches extracted from a WSI. A tissue map is generated where ‘Back-

ground’ and ‘Muscle’ are black, while ‘Tissue’ and ‘Submucosa’ are white. The yellow arrow

indicates a portion of muscle that is assigned to the Background/Muscle class on the corre-

sponding tissue map. B) Example 224x224 pixel H&E patches with corresponding tissue map

patches and filtering decisions. For each extracted patch, the decision is made based on

whether there is more than 65% (filter) or less than 65% (keep) of unwanted Background/Mus-

cle area on the corresponding tissue map patch.

(TIF)

S5 Fig. Linear determinant analysis classifier training and inference schematics for mouse

model predictions. A) Overview schematic. All patches classified as ‘Involved’ by our model,

including overlapping patches, undergo feature extraction by our final ‘Involved’ versus ‘Unin-

volved’ classifier. Subsequent PCA-based dimensionality reduction and k-means clustering

identify 4 ‘Involved’ patch classes (Fig 4A). An LDA classifier is trained on per mice propor-

tions of ‘Uninvolved’ patches and ‘Involved’ k-means patch classes to predict mouse models.

B) Overview schematic for inference pipeline. Overlapping patches are extracted and patches

containing too much background or muscle are filtered out via the tissue map process in S4

Fig. The classifier is applied to each kept patch. ‘Involved’ patches undergo further RN-34 fea-

ture extraction and PCA-based dimensionality reduction. These patches are then classified

‘into one of the four ‘Involved’ patch classes. The trained LDA model then predicts mouse

model from the per-mouse proportions of ‘Uninvolved’ patch and ‘Involved’ k-means patch

classes. C) Stacked bar plot of total ‘Uninvolved’ and ‘Involved’ k-means patch class propor-

tions across prospective mouse cohort. Error bars show mean with standard deviation.

(TIF)
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S6 Fig. 5T-Klf5ΔIND swiss roll predicted as control has healthier appearing histology than

5T-Klf5ΔIND swiss roll predicted as 5T-Klf5ΔIND. Compared to the properly predicted 5T-

Klf5ΔIND swiss rolled colon (left), the 5T-Klf5ΔIND colon predicted as control has fewer histo-

logical abnormalities and represents a mouse with weak colitis induction. Yellow arrows indi-

cate healthy goblet cells. Red arrows indicate absence of goblet cells. Orange arrows indicate

crypt loss.

(TIF)

S7 Fig. ‘Involved’ predictions likely provide value in predicting clinical score. A) Scatter

plot of Clinical Score verse InvolvedProportion. Clinical scores were obtained according to

Cooper et al. [17]. InvolvedProportion is the proportion of ‘Involved’-predicted pixels out of

all prediction pixels in overlays. B) LDA trained on archived mouse cohort predicts prospec-

tive mouse cohort clinical score bins from per-mouse ‘Uninvolved’ patch and ‘Involved’ k-

means patch class proportions. Clinical score bins are “Low” (0–2), “Mid” (3–7), and “High”

(8–12).

(TIF)

S1 File. Full arrive 2.0 guidelines checklist.

(PDF)
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