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Biological rhythms lie at the center of regulatory schemes that control many aspects of 
living systems. At the cellular level, meaningful responses to external stimuli depend on 
propagation and quenching of a signal to maintain vigilance for subsequent stimulation 
or changes that serve to shape and modulate the response. The hypothalamus–pitu-
itary–gonad endocrine axis that controls reproductive development and function relies 
on control through rhythmic stimulation. Central to this axis is the pulsatile stimulation of 
the gonadotropes by hypothalamic neurons through episodic release of the neuropep-
tide gonadotropin-releasing hormone. Alterations in pulsatile stimulation of the gonado-
tropes result in differential synthesis and secretion of the gonadotropins LH and FSH and 
changes in the expression of their respective hormone subunit genes. The requirement 
to amplify signals arising from activation of the gonadotropin-releasing hormone (GnRH) 
receptor and to rapidly quench the resultant signal to preserve an adaptive response 
suggests the need for rapid activation and feedback control operating at the level of 
intracellular signaling. Emerging data suggest that reactive oxygen species (ROS) can 
fulfill this role in the GnRH receptor signaling through activation of MAP kinase signaling 
cascades, control of negative feedback, and participation in the secretory process. 
Results obtained in gonadotrope cell lines or other cell models indicate that ROS can 
participate in each of these regulatory cascades. We discuss the potential advantage of 
reactive oxygen signaling for modulating the gonadotrope response to GnRH stimulation 
and the potential mechanisms for this action. These observations suggest further targets 
of study for regulation in the gonadotrope.
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mitogen-activated protein kinase, erK, pituitary, metabolism
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tHe cHALLeNGe OF PULsAtiLe 
GONADOtrOPiN-reLeAsiNG HOrMONe 
(GnrH) siGNALiNG iN GONADOtrOPes

The fundamental role of pulsatile stimulation of gonadotropes by 
the hypothalamic neuropeptide GnRH, or GnRH-I in maintain-
ing function of the hypothalamic–pituitary–gonad (HPG) axis 
is one of the earliest principal findings after discovery of the 
hormone (1, 2). Studies in nonhuman primates demonstrated the 
requirement for pulsatile stimulation of the pituitary to maintain 
the reproductive axis (3). The identity of the signaling molecules 
and mechanisms that contribute to pulse interpretation has been 
the subject of extensive study since many models developed to 
explain signaling control of gene expression (4–13). But questions 
remain concerning the mechanism of pulse interpretation and 
the signaling factors responsible. The hypothalamic neuropeptide 
GnRH and its receptor GnRHR are the prototypic members of 
a superfamily that has evolutionary roots reaching to the emer-
gence of the bilateria (14). In vertebrates, a feature of this pair is 
its central role in regulating the anterior pituitary gonadotropes 
(15, 16). The hypothalamic GnRH neurons release hormone 
into the adenohypophyseal portal circulation in an episodic 
manner that is central to the development and operation of the 
HPG axis and fertility. In this system, the GnRHR governs the 
release of the gonadotropins LH and FSH and regulates expres-
sion of their subunit genes. The mammalian GnRHR is unique in 
structure, lacking a cytoplasmic tail that is normally associated 
with β-arrestin-mediated downregulation of receptor signaling. 
Thus, GnRHR itself faces unique challenges in transmitting an 
episodic signal in which alterations in amplitude and frequency 
are meaningful, yet, receptor homologous desensitization is not 
an accessible regulatory scheme. It is likely that pulse interpreta-
tion is accomplished by the operation of the signaling cascades 
themselves rather than desensitization or receptor availability at 
the membrane.

In mouse LβT2 cells, the switch between LH and FSH prefer-
ence occurs at the 60-min pulse interval (17). A general switching 
mechanism is achieved by the expression and decay of activating 
and repressing transcription factors that create high- or low-pass 
filters to govern gene expression. For Lhb, this is the pairing of the 
immediate-early Egr1 family of transcriptional activators with the 
Nab1/2 family of repressors. Transient frequency and amplitude-
dependent stimulation of Egr1 expression is countered by pulse-
insensitive expression of Nab1/2, establishing a high-pass filter 
that requires sustained stimulation to overcome suppression (17). 
Features of this model have been confirmed by in vivo studies and 
mixed primary pituitary culture in rats and in αT3-1 cells that 
do not express gonadotropin β-subunit genes (18). On the other 
hand, Fshb prefers low frequencies for promoter activator (c-Fos 
and c-Jun) upregulation, and high frequencies lead to upregu-
lation of Fshb promoter inhibitors, such as Skil and Tgif1 (19).  
A feature of pulse decoding in the GnRH system is the occur-
rence of maximal responses at submaximal stimulation, creating 
a bell-curve frequency response that requires complex regulation 
but imparts true frequency decoding (20, 21). Components of 
the signaling network may exhibit digital tracking in which each 
response is resolved between pulses and acts dependently, or in 

the case of slower, incomplete resolution, exhibits integrative 
tracking in which the cumulative stimulation creates a maximal 
response (10). Transcriptional regulation of gonadotropin subu-
nit genes is modest overall but exhibits integrative interpretation 
(22). GnRH also regulates protein synthesis and the distribution 
of mRNA in polyribosomes (23–26). Each of these may utilize 
different interpretative mechanisms.

MAP KiNAse siGNALiNG iN  
resPONse tO GnrH

GnRHR is a G protein-coupled receptor that signals primarily via 
the Gαq/11 G protein subfamily, although interaction with other 
G proteins is also documented in  vivo (27, 28). Stimulation of 
gonadotropes or gonadotrope-derived cell lines causes activation 
of phospholipase C, resulting in inositol 1,4,5-trisphosphate 
(IP3) and diacylglycerol (DAG) production. IP3 mobilizes Ca2+ 
from intracellular stores and influx via L-type voltage-gated Ca2+ 
channels. The mobilization of Ca2+ is associated with initiation 
of the secretory response and fusion of secretory granules with 
the extracellular membrane. In a related signaling branch, DAG 
along with Ca2+ activates multiple PKC isozymes, including 
the conventional isoforms PKCα, PKCβII, the novel isoforms 
PKCδ and PKCε, and the atypical PKCζ in αT3-1 and LβT2 cells  
(29, 30). These activated signals link to downstream induction 
of mitogen-activated protein kinases (MAPK) (18, 31–33). The 
role of MAPK1/3 (ERK1/2) is sexually dimorphic and essential 
in female reproduction (34). Phosphorylation of MAPK1/3 is 
highly stimulated within a few minutes and rapidly resolved 
such that MAPK1/3 activation is restored to prestimulation 
levels well within the 60-min interval switch point of differential 
gene expression (Figure 1) (35). The connection between PKC 
and MAPK1/3 activation is well appreciated, but the intervening 
sequence of Ras/Raf/MAPK kinase (MEKK) signaling is not well 
described (29, 30). MAPK1/3 activation can occur through the 
c-SRC-mediated RAS activation (30, 36) and, in other cells, RAS 
activation occurs through DAG-dependent GRP1/2. However, 
recent evidence has shown that GnRH-stimulated MAPK1/3 
activation in gonadotropes depends on reactive oxygen species 
(ROS) production by the NADPH oxidases (37). This suggests 
that multiple pathways contribute to MAPK1/3 activation and 
examination may shed light on their contribution to pulse 
interpretation.

rOs iNteGrAtiON iNtO PAtHWAYs 
PrOMOtiNG MAP KiNAse siGNALiNG

Reactive oxygen species are partially reduced metabolites of oxy-
gen produced through intracellular mechanisms or encountered 
in extracellular environments. Mitochondrial ROS are produced 
by aerobic respiration and incomplete oxidation of fatty acids and 
can indicate mitochondrial and endoplasmic reticulum stress. 
ROS are also employed as rapid signaling molecules through 
production by the NADPH/Dual Oxidase (NOX/DUOX) family, 
which are targets of activation by intracellular kinases or elevated 
intracellular Ca2+ (38). Exposure to ROS can cause oxidative 
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FiGUre 1 | Reactive oxygen species (ROS) involvement in mitogen-activated protein kinases (MAPK) 1/3 activation by gonadotropin-releasing hormone (GnRH) and 
resolution in gonadotrope cells. Activation profiles of MAPK1/3 and DUSP1 as determined by phosphorylation in response to a single GnRH pulse [adapted from 
Ref. (35)]. GnRH receptor-signaling via Gaq/11 activates phospholipase C, leading to diacylglycerol (DAG) and IP3 production. The DAG and IP3-induced rise in 
intracellular Ca2+ activate both NOX and DUOX family members, resulting in increased ROS production. ROS stimulates MAPK1/3 activation by promoting Ras and 
Raf activation of the MEKn cascade ultimately targeting MAPK1/3. Oxidative activation of epidermal growth factor receptor (EGFR) contributes to MAPK1/3 
activation through Raf. ROS may also transiently inactivate negative feedback through reversible oxidation of the DUSP active-site cysteine. ROS is normally 
reduced by peroxiredoxin (PRDX) by conversion of active reducing site cysteine thiol C–SH to sulfenic C–SOH. Sulfenic cysteine is recycled by thioredoxin (TRX) 
reduction. Excess ROS contributes to PRDX hyperoxidation that further oxidizes the sulfenic C–SOH to the sulfinic C–SOOH, which is reduced by the ATP-
dependent reductase activity of sulfiredoxin 1 (SRXN1), preserving PRDX capacity but allowing transient DUSP inactivation. DUSP activity is resumed after ROS level 
declines, permitting feedback control of MAPK1/3. ROS activation of L-type VGCC promotes intracellular Ca2+ that supports exocytosis and activation of DUOX.
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damage to many biomolecules, resulting in nucleic acid damage 
or mutation, enzymatic dysfunction, or cell death. Therefore, 
management of ROS is a focus of cellular homeostasis. Reducing 
systems operating through peroxiredoxins (PRDX1-6), thiore-
doxin (TRX), and glutathione (GSH) exchange of free radical 
oxygen are present in all cells and PRDX isoforms partition into 
subcellular regions for specialized action. Each of the six mam-
malian PRDX isoforms is represented in to the top 5% of cellular 
protein content (39), collectively constituting a high proportion 
of cellular protein and a significant investment in localizing ROS 
action and limiting oxidative damage.

Elevated ROS is associated with MAPK activation in multiple 
cell types (40). Insulin-like growth factor I activation of MAPK1/3 
increases ROS production and antioxidants inhibit activation of 

the MAPK1/3 pathway, showing dependence on ROS (38–41). 
Similarly, MAPK8/9 (JNK) and MAPK14 (p38 MAPK) phos-
phorylation is associated with ROS generation (42–44). The 
MAP3K-related kinase ASK1 associates with TRX and is released 
upon TRX oxidation, permitting activation of MAPK8/9/14 (44). 
In other professional secretory cells, ROS is central to secretion 
and activation of biosynthesis. In the endocrine pancreas, NOX 
enzymes are involved in stimulated insulin secretion and excess 
ROS production increases oxidative stress and loss of function 
(45–47). NOX/DUOX participate in the signaling response 
activating thyroid hormone biosynthesis (48–50). ROS mediates 
enhanced MAP kinase activation in activated eosinophils, con-
tributing to IL-5-mediated cell death (51). In contrast, NOX is a 
target of MAP kinase activation in neutrophils and ROS signaling 
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is utilized in formation of neutrophil extracellular traps (52). 
NOX proteins are, therefore, both upstream activators of MAP 
kinase signaling and targets of MAP kinase action, suggesting 
plasticity in how NOX/DUOX-derived ROS is deployed.

Gonadotropin-releasing hormone stimulation of mouse 
primary pituitary and LβT2 cells that endogenously express all 
gonadotropin subunit genes (53, 54), results in ROS production 
that is blocked by pharmacological inhibition of NOX/DUOX 
enzymes with diphenyleneiodonium (DPI). N-acetyl cysteine 
(NAC), which is general ROS scavenger, also attenuates MAPK1/3 
and MAPK8/9 activation. Both DPI and NAC attenuate activa-
tion of Lhb and Fshb transcription (37). Further, GnRH-mediated 
activation of ROS depends on PKC and Ca2+ availability. This 
places ROS between PKC and MAPK1/3 and supports an inter-
mediate role in activation similar to ROS-mediated activation of 
Ras through kinase and regulatory subunit regulation (55, 56). 
The rapid and transient activation of MAPK1/3 by GnRH is simi-
lar to that reported by direct activation by H2O2 via epidermal 
growth factor receptor (EGFR) (57). The cysteine-rich motifs of 
growth factor receptors including EGFR are proposed targets of 
activation by oxidation (42). But demonstration using suramin 
and its known broad actions that include inhibition of G-protein 
receptor signaling suggests that revisiting this may be warranted. 
GnRH signaling is also associated with EGFR activation possibly 
through matrix metalloprotease liberation of extracellular ligand 
(58–60). An alternative ligand-independent activation pathway 
through oxidative activation of EGFR could support the rapid 
elevation of MAPK 1/3 activation after GnRH stimulation (41).

In addition to activation of MAP kinase pathways through posi-
tive regulation of signaling cascades, ROS may also play a central 
role in promoting MAP kinase phospho-activation through inacti-
vation of negative feedback. Dual-specificity protein phosphatases 
(DUSP’s, also MKP’s) serve a primary role as negative feedback 
regulators of MAP kinase signaling through dephosphorylation 
of activated MAP kinases (Figure  1) (61). DUSP’s and other 
protein tyrosine phosphatase superfamily members share a com-
mon catalytic site motif of [I/V]HCXXGXXR[S/T] in which the 
invariant cysteine residue serves as a catalytic nucleophile that is 
susceptible to reversible inactivating oxidation (62). Oxidative sup-
pression of DUSP’s can support sustained activation of MAPK 8/9 
and drive TNF-α-mediated cell death (63) and oxidative control 
of DUSP and MAPK signaling has been observed in pancreatic 
β-cells (46, 64), supporting this mechanism in professional secre-
tory cells. Oxidation of DUSP’s also promotes their proteosomal 
degradation, limiting their availability to inhibit MAPK kinase 
(65). In LβT2 gonadotropes, high amplitude GnRH stimulation 
causes sustained activation of MAPK1/3 similar to that observed 
with ROS-mediated suppression of DUSP feedback (35). Chronic 
stimulation with GnRH also results in ROS production (37) but the 
status of DUSP after prolonged exposure to ROS or chronic GnRH 
stimulation has not been directly examined. The participation of 
ROS in rapid activation of MAP kinase signaling in gonadotropes 
through positive control of signaling cascades and negative control 
of feedback suggests that ROS contributes to the rapid activation 
of MAP kinases that is observed in response to GnRH stimulation. 
Involvement in both MAPK 1/3 and MAPK 8/9 activation suggests 
that both Fshb and Lhb transcription can be regulated through ROS.

resOLUtiON OF GnrH-stiMULAteD 
MAPK siGNALiNG

Feedback control of MAPK activation by DUSP family members 
is central to the control of MAP kinase signaling networks. For 
cells to remain vigilant for change in GnRH pulses, sensitivity 
to a subsequent pulse is maintained and interpreted in context, 
which implies a capacity for hysteresis. In either digital or inte-
grative pulse tracking, some balance between activation, negative 
feedback, and response decay must be achieved. Signaling net-
works may switch between modes by changing this relationship. 
Hysteresis in cell signaling was initially proposed and tested in 
the model of bistable MAPK1/3 activation by platelet-derived 
growth factor receptor, which showed that MAPK1/3 response 
amplitude is dictated by the degree of DUSP1 feedback activated 
by a previous signaling response (66). The role of DUSP’s in nega-
tive feedback control of MAPK1/3 activation has been examined 
extensively in the context of GnRHR signaling. In LβT2 cells, acti-
vation of MAPK1/3 by physiological levels of GnRH is resolved 
within 30 min (35). Overexpression or knockdown of nuclear-
resident DUSP1 suppresses or increases activation of MAPK1/3 
in response to GnRH, respectively (35). But studies in cells that 
do not natively express GnRHR or gonadotropin genes or using 
reporters of translocation have questioned this observation (67). 
LβT2 gonadotropes show elevated DUSP1 in unstimulated cells, 
suggesting that they are primed for suppression of MAP kinase 
signaling activation. This available phosphatase activity is subject 
to rapid inactivation by ROS but the reversibility of inactivation 
suggests some capacity is maintained or quickly recovered, 
contributing to the rapid resolution of MAPK1/3 activation. 
Another possibility is the involvement of cellular mechanisms 
limiting ROS through reduction by PRDX and TRX. These pro-
teins are part of a larger network of factors controlling oxidative 
stress that includes GSH, catalase, superoxide dismutase, and the 
ATP-dependent redox factor sulfiredoxin 1 (SRXN1, also NPN3). 
These factors contribute to the maintenance of reductive capacity 
through resolution of oxidized or hyperoxidized PRDX, return-
ing it to the pool of available reductase. Although the 2-cysteine 
PRDX1-4 family members are efficient ROS scavengers, they 
can be hyperoxidized by conversion of their nucleophilic thiol 
to sulfinic acid (Figure  1). Hyperoxidized PRDX is recycled 
through ATP-dependent reduction by SRXN1 (68, 69). In LβT2 
cells, Srxn1 gene expression is proportionally induced by increas-
ing pulsatile and tonic GnRH stimulation (17), implying a role in 
resolution of oxidative stress.

The restoration of feedback control can also be achieved 
through increased DUSP synthesis in response to GnRH stimula-
tion. In LβT2 cells, GnRH stimulation causes transient activa-
tion of the unfolded protein response (UPR) (24). Translation 
is largely inhibited by the UPR but Dusp1 and Dusp8 mRNA 
escape translation inhibition and DUSP1 is increased during the 
time the UPR is active (23, 35). Translational control of Dusp1 
mRNA is MAPK1/3 dependent and is attributed to the 3′UTR 
ELAVL1 binding site known to contribute to mRNA stability  
(23, 70). Pulsatile GnRH increases Dusp1, Dusp8, and Dusp16 
expression, all of which target MAP kinases (17). Although 
DUSPs are subject to rapid inactivation by ROS, the reversibility of 
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FiGUre 2 | Oleate (OLA), but not gonadotropin-releasing hormone (GnRH), 
induces mitochondrial superoxide production. LβT2 cells (RRID:CVCL_0398) 
cultured on Poly-l-Lysine (Sigma-Aldrich Inc.) coated Nunc Lab-Tek II 
chamber slides (Thermo Fisher Scientific) for 24 h were serum starved 
overnight, then exposed to either vehicle or 500 µM oleate for 2 h, then with 
vehicle or 10 nM GnRH for 30 min. Cells were subsequently treated with 
5 µM red-fluorescent MitoSOX probe (Thermo Fisher Scientific) for 5 min. 
Afterward, cells were directly fixed with 2% paraformaldehyde solution for 
15 min, washed, and cover slipped with mounting medium containing 
4′,6-diamidino-2-phenylindole (DAPI) (Vector Labs) to visualize nuclei in blue. 
Blue DAPI and Red MitoSOX fluorescence was captured by wide-field 
fluorescent microscopy using Nikon TE2000-U microscope (Nikon America 
Inc., Melville, NY, USA) equipped with an X-Cite 120PC collimated light 
source (Lumen Dynamics Group Inc.) and a DAPI-1160A or mCherry-C000 
filter set (Semrock, Inc.) using a CoolSNAP DYNO CCD camera 
(Photometrics Inc.). In LβT2 cells, GnRH alone does not enhance 
mitochondrial ROS production as determined by changes in red 
fluorescence, whereas OLA-treated cells showed a highly elevated signal. 
Co-treatment with GnRH and Oleic acid did not appear to alter overall 
staining intensity.
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oxidative inhibition, the rapid translational response of the UPR, 
and the long-term transcriptional response to GnRH stimulation 
provide mechanisms for preserving feedback regulation while 
permitting short-term activation of MAP kinase signaling.

On a broad time scale, ROS may regulate gonadotropins 
through regulation of gene expression and sensitivity to GnRH 
through microRNA modulation of gonadotropin and Gαq/11 
signaling component gene expression. MiR132/212 regulates 
Fshb mRNA expression and secretion via SIRT1 deacetylation 
in gonadotropes (71). MiR-7a2 or miR-200b and miR-429 par-
ticipate in maintenance of gonadotropin gene expression (72, 
73). Further, miR125b contributes to desensitization of sustained 
GnRH stimulation by targeting components of the Gαq/11 pathway 
(74). MicroRNA regulation occurs through oxidation-sensitive 
transcription factors such as CEBPB and ZEB1 and microRNA 
also directly affects MAPK signaling (75). The ROS-sensitive 
regulation of microRNA may further link GnRH signaling to ROS 
directly through GnRH receptor stimulation of ROS production 
or to ROS derived from other sources.

rOs iN GnrH-iNDUceD GONADOtrOPiN 
secretiON

Hormone secretion by exocytosis in endocrine cells is triggered 
by Ca2+ released from intracellular stores. A rise of intracellular 
Ca2+ regulates several steps of exocytosis; including, vesicle 
priming and fusion to the plasma membrane (76). Localized 
Ca2+ increase with IP3 stimulation is necessary for gonadotropin 
exocytosis (77). Increased Ca2+ also induces ROS production by 
DUOX activation (37) and both voltage-gated and L-type cal-
cium channels are activated by ROS (78, 79). This may tie local-
ized Ca2+ to enzymatic ROS generation by DUOX. Thrombin 
promotes Ca2+ influx in smooth muscle cells by NOX-derived 
ROS activation of L-type calcium channels (80). Also, insulin-
induced NOX increases IP3 receptor activity and Ca2+ release in 
skeletal muscle (81). In gonadotrope cells, DPI blocks GnRH-
induced gonadotropin secretion, indicating dependence on ROS 
for secretion (37) and suggesting integration of Ca2+ and ROS 
signaling in exocytosis.

Interestingly, ROS in the form of nitric oxide may play an 
important role in maturation and regulation of the hypothalamus 
in concert with pituitary ROS. Nitric oxide production in the 
hypothalamus elicits GnRH secretion and expression of GnRH 
mRNA is modulated through miR-200 and miR-155 expression 
before puberty by controlling the nitric oxide-sensitive regula-
tors CEBPB and ZEB1 (82, 83). These phenomena indicate that 
microRNA and ROS are tightly linked to rapid and long-term 
control of the HPG axis.

rOs As A MetABOLic rePOrter  
iN tHe GONADOtrOPe

Energy balance has a profound influence on reproductive fitness 
and operation of the HPG axis. The critical fat hypothesis suggests 
that an optimal level of body fat is permissive to menarche and 
may be necessary for optimal operation of the HPG axis (84, 85). 
Adipose-associated changes in gonadotropin levels imply the 

presence of a sensing mechanism that reports energy status to 
the reproductive endocrine axis (86–91). Reproductive disorders 
such as polycystic ovary syndrome and hypogonadotropic hypo-
gonadism are associated with metabolic dysfunction and obesity. 
However, not all metabolic signals associated with obesity explain 
the inverse relationship between adiposity and gonadotropin 
levels observed in men and women (92–95). Adipose-derived 
endocrine signals such as leptin play a role in modulating hypo-
thalamic or pituitary function (96). Another potential modulator 
of the HPG axis are free fatty acids (FFA). Data suggest that FFA 
have a direct impact on gonadotropes in ruminants, and FFA 
suppresses gonadotropin secretion in cultured primary pituitary  
(97, 98). Unsaturated FFA can induce mitochondrial ROS pro-
duction and activation of the UPR (99). We examined the ability 
of the monounsaturated fatty acid oleate (OLA) to induce mito-
chondrial ROS in LβT2 cells (Figure 2). We found that moderate 
physiological OLA, 500 µM, can induce mitochondrial. Unlike 
OLA, GnRH does not impact mitochondrial ROS production as 
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signaling is likely to yield useful insight into the mechanism of 
pulse interpretation and integration of stress signaling into the 
reproductive axis.
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