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Abstract: Agriculture remains critical to Africa’s socioeconomic development, employing 65%
of the work force and contributing 32% of GDP (Gross Domestic Product). Low productivity,
which characterises food production in many Africa countries, remains a major concern. Compounded
by the effects of climate change and lack of technical expertise, recent reports suggest that the impacts
of climate change on agriculture and food systems in African countries may have further-reaching
consequences than previously anticipated. Thus, it has become imperative that African scientists
and farmers adopt new technologies which facilitate their research and provide smart agricultural
solutions to mitigating current and future climate change-related challenges. Advanced technologies
have been developed across the globe to facilitate adaptation to climate change in the agriculture
sector. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated
protein 9 (Cas9), synthetic biology, and genomic selection, among others, constitute examples of some
of these technologies. In this work, emerging advanced technologies with the potential to effectively
mitigate climate change in Africa are reviewed. The authors show how these technologies can be
utilised to enhance knowledge discovery for increased production in a climate change-impacted
environment. We conclude that the application of these technologies could empower African
scientists to explore agricultural strategies more resilient to the effects of climate change. Additionally,
we conclude that support for African scientists from the international community in various forms is
necessary to help Africans avoid the full undesirable effects of climate change.
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1. Introduction

Apparent since the early 1970s, climate change and its effects are already a reality in Africa [1]
and it has resulted in new and varied phenomena, including increased temperatures, low agricultural
production, severe variations in weather patterns and disease transmission, among others.
Research indicates that although Africa’s CO2 emissions is much lower than the rest of the world,
the continent is the most vulnerable to the effects of climate change [2] (Figure 1A). Africa’s vulnerability
to climate change hinges on a range of factors, including weak adaptive capacity, high dependence on
ecosystem goods for livelihoods and traditional agricultural systems [3]. Vulnerability will be further
exacerbated by growing food demand from an increasingly wealthy populations and the reduction of
their rural population (Figure 1B–D).
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Figure 1. Comparison of global historical indicators (1960–2015) between Africa and the rest of
the world for: (A) CO2 emissions, (B) agricultural land, (C) rural population and (D) population
growth. (Source: World Bank, 2020).

In particular, the consequences of climate change are projected to severely negatively impact
agricultural production, food security, water resources, health, energy and ecosystem services,
with related effects on lives and sustainable development prospects in Africa [2].

Climate change has increased temperatures across the continent and generated, in some cases,
extended heat waves [4]. Future projections using general circulation models (GCMs), Representative
Concentration Pathway 2.6 (RCP2.6), suggest a temperature increase of 1.7 ◦C by 2030 [1]. Figure 2
shows historic and predicted temperature and precipitation data corresponding to the African continent.
The green thick line, in both plots, represents historic data, from 1991 to 2015. The thin red lines
which represent multiple climate models under RCP2.6 suggest a most likely increase in temperature,
drought and flood (Source: World Bank, Climate Change Knowledge Portal). Significant increases
in temperature, higher than the global mean temperature, are expected, particularly in the Sahel region.
Also, regions in Africa within 15 degrees of the equator are projected to experience an increase in hot
nights, as well as longer and more frequent heat waves. Projections show that the western Sahel region
will experience the strongest drying, with a significant increase in the maximum length of dry spells.
Currently, it is one of the most environmentally degraded in the world, with temperature increases
projected to be 1.5 times higher than in the rest of the world.
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Figure 2. Historic and predicted (2020–2039, RCP 2.6) (A) temperature and (B) precipitation. The green
tick line shows average monthly data from 1991 to 2016. Thin red lines are the outcome of multiple
models predicting average monthly data from 2020 to 2019 under Representative Concentration
Pathway 2.6 (RCP2.6). RCP2.6 assumes that global annual greenhouse gases (GHG) emissions
(measured in CO2-equivalents) peak between 2010–2020, with emissions declining substantially
thereafter. (Source: World Bank).

Even though climate change is not at its peak in Africa, past variations in temperature and
precipitation have already shown immediate implications for food production and security across
the continent. Drought, heat stress and flooding have exacerbated the already low production of crops
and livestock and have contributed to increased rates of malnutrition and poverty, leading to reduced
quality of life and health. Food shortages have often caused cross-border migration. Future projections
predict areas of maize and beans to experience yield reductions of 12–40% by 2050. In addition,
the climate suitability of most major crops is expected to shift as the climate warms [5]. West Africa,
for instance, has been identified as a climate-change hotspot, with climate change likely to lessen crop
yields and production, with resultant impacts on food security. Reductions of 20% and 32% in maize
production as a result of climate change have been projected [6–8]. The high impact of the effects
of climate change in Africa have been attributed to its geographical position and limited adaptive
capacity [9], exacerbated by widespread poverty and low levels of development. Another effect of
climate change is the outbreak of internal conflicts driven by the depletion of essential resources, such as
potable drinking water. Drought, desertification and scarcity of resources have led to heightened
conflicts between crop farmers and cattle herders, and weak governance has led to social breakdowns.

The African continent is particularly vulnerable to the effects of climate change and the implications
of procrastinated action or complete inaction will have long and lasting effects on the continent.
Further, considering that the world has become a global village which fosters extreme interconnectivity,
there is the potential for a spillover of the effects to the rest of the globe. In view of this, the need for
all stakeholders, especially African scientists, to prepare and adopt effective and efficient strategies
to mitigate these effects cannot be overemphasised. Technologies targeting increased agricultural
production exist across the world, some examples are: next generation (Next-Gen) artificial intelligence
tools, advances in genomics and phenomics [10,11], the availability of computational resources on
plant genomics, advances in plant phenotyping, modelling and computational biology, advances
in plant breeding, and improved applications of synthetic biology [12], which are providing insights
into complicated biological mechanisms underlying plant response to environmental stresses resulting
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from climate change while simultaneously providing opportunities to expand the range of possible
plants products. It is critical that Africa makes use of current available technologies (e.g., equipment,
methods or processes) which will increase the speed at which most agri-food stakeholders can prepare
and adapt to the effects of climate change. In addition, it is imperative that breeding programs in Africa
are focused on breeding crops for high yield and superior adaptability to new and evolving climates to
ensure sustained food security, biomass production and ecosystem services [10].

Despite the availability of these technologies, most of them are expensive to acquire, difficult to use,
disseminated in pay-for-access journals and mostly tested under specific environments which may be
alien to the African environment. Thus, it is also critical that the global scientific community collaborate
to support African scientists in the development of basic and applied research. It is only through
concerted efforts that African scientists can fully explore ways to create effective and efficient agricultural
strategies that are more resilient to climate change and fine-tuned for a rapidly growing population.

In this review, we discuss the current advanced technologies in fields such as genomics and
phenomics, and show how these technologies can be utilised to enhance knowledge discovery to
mitigate the effects of climate change and increase production in Africa.

2. Resources in Plant Breeding

Plant breeding refers to manipulation of plant species in order to create desired genotypes and
phenotypes for specific purposes. Plant breeding activities date back to the dawn of agriculture when
healthy and strong looking plants were transplanted into other locations with the view to changing
the hereditary material of plants. Breeding at the time was long, tedious and rudimentary and yet
it yielded results; the best plants in the field were selected and their seeds were kept as stock for future
planting. This process led to genetic mutations and sometimes resulted in new useful traits which
were bred into economically important crops by human selection [13].

Between the end of the 19th century and the beginning of the 20th century, Mendel’s discovery of
the laws of inheritance, the discovery of the structure of DNA and the establishment of quantitative
genetics theory, plant breeding activities accelerated. Advances in plant breeding during this
time included replicated field trials, controlled crossings, statistical analyses, formal experimental
designs, hybrid breeding, pedigree-based estimates of breeding values, and precise measurement
of yield at scale [14]. In the late 1980s, the advent of complete genetic linkage maps stimulated
interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative
traits in experimental organisms [15]. The introduction of high-throughput genotyping expanded
the quantitative genetics tools to dissect variation in natural populations [16]. In addition, genome-wide
association studies have increased the ability to identify individual variants associated with useful
effects in crops. Genomic selection (GS) uses the information contained in dense genetic marker sets for
the prediction of quantitative traits. Also, GS lends itself to easy application of computational models
derived from artificial intelligence tools to facilitate accurate prediction of phenotypes in a breeding
programme [17]. Further, advances in semiconductors and graphics processing unit (GPU) technologies
has made it easy for GS to employ deep learning tools to analyse multiple traits with mixed phenotype
and prediction accuracy [18].

The commonly adopted conventional breeding methods for crops remain a herculean task.
The need for frequent crossing and selfing for the desired number of generations, preceded by
extended crop cycle generation during breeding activity, present serious challenges. Currently, speed
breeding, a new breeding technique, which uses supplemental light-emitting diode (LED) lighting to
extend photoperiod and shorten generation cycles in the greenhouse, has been used to demonstrate
the potential to shorten generation cycles of key staple crops such as wheat (Triticum aestivum), chickpea
Cicer arietinum) and oilseed rape (Brassica napus). For instance, for chickpea (Cicer arietinum) and oilseed
rape (Brassica napus), it has been demonstrated that six and four generations, respectively, can be
obtained per year [14]. Speed breeding is an important step forward, especially for countries which do
not have the infrastructure or budget to run several or multiple trials.
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Further, traditional methods to enhance genetic and phenotypic variation in crops has relied
on inter-crossing with wild relatives to introduce “exotic” allelic diversity, creating novel alleles
by random mutagenesis, and genetic engineering. These approaches are not always guaranteed to
produce agronomically meaningful traits [19]. Conversely, targeted mutagenesis technology, which
combines clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated
protein 9 (Cas9), popularly recognised as CRISPR/Cas9, can generate desirable mutations by
inducing precise gene editing through efficient double strand DNA breaks (DSBs) at a target site.
CRISPR-Cas9-based multiplexed gene editing (MGE) provides a powerful method to modify multiple
genomic regions simultaneously controlling different agronomic traits in crops [20,21]. CRISPR/Cas9 is
now widely used in plants and has made genome editing experiments more efficient, precise and rapid.
Akin to CRISPR-Cas9, genome wide association studies (GWAS) are also emerging as powerful tools
for the understanding of the inheritance of complex traits via utilization of high throughput genotyping
technologies and phenotypic assessments of plant collections. In GWAS, identification of significant
associations depends largely on factors including genetic marker coverage, number of individuals
studied, and linkage disequilibrium (LD) between causative, as well as linked, polymorphisms.
Currently, GWAS has, for instance, been employed successfully in hexaploid wheat for identification
of quantitative trait loci (QTL) for yield components, abiotic stress resistance, disease resistance and
grain quality [22]

CRISPR-Cas9, advanced genomic selection (GS), genome-wide association study (GWAS),
and speed breeding constitute some of the many technological breakthroughs that promise to boost
modern breeding.

3. Advances in Genomic Selection

The global human population is expected to grow by 25% in the next 30 years, reaching 10 billion.
While traditional breeding methods have been beneficial over the past decades, they will outlive
their usefulness as they will unable to match the pace required to meet the demand for crops such as
wheat (Triticum aestivum), rice (Oryza sativa) and maize (Zea mays) [23,24]. In recent years, the global
climate has changed, resulting in drastic fluctuations in rainfall patterns and increasing temperature.
Abrupt climate changes can cause significant economic losses to countries worldwide. Breeders,
and plant scientists alike, bear the burden of improving the quality of existing crops, as well as generating
new ones that possess higher nutrition content, higher yields, and disease and pest-resistance, as well
as climate-smart capabilities.

The introduction of second- and third-generation sequencing platforms means that breeders can
afford to use DNA markers to assist selections. This has facilitated gene discovery, trait dissection
and predictive breeding technology [25]. Over two decades ago, molecular marker technology was
predicted to be a significant tool that would reform breeding programs and facilitate swift gains
from selection [26,27]. Currently, however, it appears marker-assisted selection (MAS) has failed to
significantly improve polygenic traits [28,29]. While MAS has been effective for the manipulation of
large effect alleles with known association to a marker [30], it has been a bottleneck when many alleles
of small effect segregate and no substantial, reliable effects can be identified [31].

Originally developed for breeding livestock, GS utilises simulated data and is useful for
marker-based prediction of breeding values for individual animals [32]. Application of the GS approach
promises avenues to mitigate the challenges experienced when MAS is adopted for the identification
of quantitative traits [33]. GS primarily focuses on determination of the genetic potential of individual
plants instead of finding the specific QTL. The authors of [34] report that preliminary studies of
the application of GS to dairy cattle demonstrated significant and enhanced selection accuracy.
Further studies indicate that GS outperforms MAS under the same economic investments, even at
low accuracies [35,36]. Pioneering studies on the prospects of GS in plant breeding, carried out
in maize (Zea mays L.), can be attributed to by Bernardo et al. [36], who employed simulated data
for their studies. Similarly, studies have been carried out on wheat (Triticum aestivum L.) [37], barley
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(Hordeum vulgare L.) [38] and oat (Avena sativa L.), with much success [39]. Studies, this approach
has been employed to investigate hybrid breeding [40,41] and inbred or double haploid (DH) lines.
In all cases the accuracy of predictions demonstrate that GS is more efficient than PS. It is important to
note that, prior to the establishment and adoption of GS, plant breeders had developed ideas with
similar ingredients to Meuwissen et al.’s GS [32].

Currently, industries within the private sector are employing genomic selection in their maize
breeding programmes [42]. Application of this method has produced varieties such as the ‘AQUAmax’
hybrids now widely planted in the United States. According to Cooper et al. [42] and Gaffney et al. [43],
AQUAmax maize hybrids demonstrate considerably greater yields under both favourable and
unfavourable (e.g., drought stress) conditions. This result establishes enhanced yield stability and
reduced risks for maize producers [43].

Using genomic selection, numerous traits can be targeted concurrently in order to increase desired
benefits. For instance, accurate selection of phenotypes with measurable multiple traits, including
normalised difference vegetation index, canopy temperature and genomic breeding values (GEBV) for
increased yield, can be achieved using this method [44]. Utilization of end-use quality traits commonly
measured in wheat breeding programs is another example worth mentioning. Here, predictions
obtained from nuclear magnetic resonance spectral and near-infrared analyses of small amounts of
flour can be combined with DNA marker predictions to provide accurate GEBV which will further
facilitate segregation of plants with desired end-use quality traits at an earlier time within the breeding
cycle [45].

Benefits obtained from employing genomic selection are enhanced even more when combined
with other modern technologies which reduce intervals in generation and identify, as well as integrate,
the exact position of causative mutations influencing the desired trait or traits. This is because, in cases
like this, predictions will not depend on linkage disequilibrium between the DNA markers and
the causative mutations.

Considering that speed breeding has the potential to significantly decreased generation
intervals [14], genetic gains from employing this method would be greatly enhanced by coupling it with
genomic selection. To achieve this, genomic selection has to be applied at each generation for accurate
selection of parents for the next generation. Currently, the high cost of genotyping is the biggest
challenge to the application of GS. One option to mitigate this would be to apply the procedure at every
second or third generation with the view to selecting candidates which meet the required benchmarks
for traits that can be phenotyped with a high level of reliability and confidence during speed breeding
cycles [46].

4. Advances in Plant Phenotyping

It has been two decades since Schilling et al. [47] proposed the idea of phenomics as the discipline
that analyses, interprets, and models the genotype–phenotype relationship. Schilling et al. [47] also
proposed the use of in silico models that utilise genomics data to predict phenotypic traits, such as
the visual appearance of an organism and its metabolic response to a given stimulus. However,
at the time of Schilling’s paper advances in sensor technologies and mechatronics lagged behind.
Likewise, robust algorithms for the integration, analysis and visualisation of multidimensional data
were none existent. as a result, the phenomics idea failed to fully materialise.

Fast forward 11 years, Houle et al. [48] faced a different technological environment.
New multi-processor/multi-core technologies [49] gave way to the construction of more powerful
phenotyping technologies to better understand the genotype–environment relationship [50].
Such phenotyping technologies can track the formation and development of static and dynamic
traits at the cellular and plant levels respectively [51,52]. For example, Camargo et al. [53] phenotyped
a cohort of the wheat MAGIC population across their life cycle and under controlled conditions.
Assessment of temporal dynamics of plant height, area and senescence allowed the identification
of marker-trait associations and tracking of trait development against the genetic contribution of
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key markers. Wang et al. [54] used unmanned aerial vehicle high-throughput phenotypic platforms
(UAV-HTPPs) to measure the height of maize inbred lines at four growth stages. QTL mapping identifies
multiple loci controlling plant height at different growth stages with a small number of them being
common across all growth stages. As such, plant phenomics offer a suite of technologies to accelerate
progress in understanding gene function and environmental responses. Wang et al. [55] used confocal
imaging and kinetic root elongation assays to analyze the dynamic progress of ethylene-induced
microtubule reorientation in Arabidopsis thaliana. They demonstrated that the time courses of
ethylene-induced microtubule reorientation and root elongation inhibition are highly correlated,
and that microtubule reorientation is required for the full responsiveness of root elongation to
ethylene treatment.

5. Modelling and Computational Biology Applications

Computational modelling uses mathematical and statistical principles to describe biological
processes. Models are usually accompanied by data visualization strategies to enable scientists to
examine the data provided and subsequently model phenomena in a more holistic manner, as well as
facilitate accurate interpretation of the model and related outcomes. As such, computational models
are used agricultural research to explore the development of complex organisms and how they respond
to given circumstances such as stresses caused by endogenous and exogenous factors. These virtual
observations and predictions can facilitate the development of crop ideotypes designed to meet future
yield and nutritional demands [56].

Computational models are usually dynamic, they capture and model spatial–temporal responses
which in the case of complex trait analysis can have the potential to extend simulations out to
novel environments and lend mechanistic insight to observed phenotypes. Typical examples include
utilization of near-infrared (NIR) measurements to model protein and moisture content in harvested
wheat in Australia [57–59] and also to identify molecular differences in cereal (barley) mutants [59,60].
Recently, commercial entities like Bayer have employed modelling and computer simulation to reduce
cross-breeding steps required to obtain required characteristics in plants. In addition, their experiments
have demonstrated the possibility of using less plants than previously needed (Bayer Research, 2016).
Despite the translational opportunities for varietal crop improvement that could be unlocked by linking
natural genetic variation to first-principles based modelling, these models are challenging to apply to
large populations of related individuals [61].

Furthermore, advances in synthetic biology have already demonstrated the capacity to design
artificial biological pathways whose behaviour can be predicted and controlled in microbial systems.
For instance, desirable characteristics such as nutritional value and increased crop yield can be achieved
using well-engineered plant specific synthetic metabolic pathways. Despite the demonstrated potential,
challenges including the inability to characterise plant cellular pathways, as well as complexity
arising as a result of compartmentalization and multicellularity, present limitations to the technology.
Increasing developments in modern computational capabilities is providing much needed solutions
to these challenges by making available the means to test the feasibility of plant synthetic metabolic
pathways, despite gaps in the accumulated knowledge of plant metabolism [62].

6. Synthetic Biology

The United Nations estimates that the world population will reach 10 billion by 2057. A population
of such magnitude requires an assured and steady supply of basic food that guarantees socioeconomic
stability across the world. This means, to meet food demands of this growing population, crop yield
has to double in the next 30 years, representing an annual yield increase of 2.2% [3,6]. Currently,
development and global distribution of natural and synthetically generated fertilisers (particularly
nitrogen, phosphorus and potassium), coupled with the green revolution, which has encouraged
utilization of non-traditional breeding methods to maximise plant architecture and light harvesting,
have increased production of a number of staple foods. However, these strategies are no longer
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sufficient to guarantee food production under the current social and environmental challenges, such as
the loss of arable land to rapid urbanisation, climate change and the fast emergence and re-emergence
of plant diseases. To mitigate this situation, there is the need to devise novel and innovate methods to
enhance agricultural productivity, with a view to guaranteeing food security in the medium and long
term. Genetically engineering plant performance towards improving growth and yield is a potential
solution to overcome upcoming problems [7,8].

Synthetic biology, a branch of biotechnology, is emerging as the key strategy to enhance agricultural
productivity and guarantee food security. Research in this field uses a set of approaches and tools
within biotechnology to enable modification or creation of biological organisms. Synthetic biology
involves the application of engineering principles and advances in molecular, cell, and systems biology
to describe and understand/recreate core biological processes. For instance, one focus of synthetic
biology is the design and construction of core bio components, from enzymes to genetic circuits and
metabolic pathways that can be modelled, understood and tuned to fulfil a specific role. The assembly
of these smaller parts and devices into larger integrated systems can be used to solve specific problems
such as the optimisation of nitrogen fixation or CO2 sequestration by plants and microorganisms.
A model example of synthetic biology is synthetic nucleases. Fusion of synthetic domains modeled
on the DNA-binding domains of zinc finger (ZNF) proteins or transcription activator-like effectors
(TALEs) with the nuclease domain of a natural restriction endonuclease, synthetic enzymes have been
developed that enable scientists to induce double-strand breaks (DSBs) in any genomic locus they
wish [63].

Modular genetic fragments constitute the key components which are combined to create synthetic
biological systems. For full functionality, each part requires its own unique mathematical model-guided
designs and quantitative function characterisation [64]. Currently, plant synthetic biology still lags
behind yeast, bacterial and mammalian systems, which have significantly contributed to research
efforts and are also extensively applied in the biotechnological and biopharmaceutical industries [65,66].
Standardization of genetic parts and development of modular cloning tools constituted the pioneering
efforts towards establishing a more generalised implementation of synthetic biology strategies for plant
research and applications [67,68]. Reported potential benefits of applications of synthetic biology to
efforts to increase food production and quality include development of synthetic metabolic routes for
improved CO2 fixation and carbon-conservation, reduction of natural and synthetic fertiliser application
in agriculture by engineering nitrogen fixation in crop plants and construction of synthetic plant
microbiome consortia, increased nutritional value of crop plants and the utilisation of photoautotrophic
organisms as production platforms for commercially interesting compounds [69].

Given the importance of synthetic biology, groups such as Open Plant (https://www.openplant.org/)
and the Joint BioEnergy Institute (https://public-registry.jbei.org/) are currently developing open-source
registries for plant-specific DNA parts [12]. Also, Synbio Africa, a forum for researchers, students,
citizen scientists, policy makers and the public at large, convenes to strategise and develop successful
pathways for the propagation of synthetic biology technologies, products and services throughout
Africa [70]. Again, there is the Biomaker Africa programme which aims to train biologists, as well as
non-biologists, to learn, design, prototype and share science hardware critical to building tools for
laboratory use and environmental sensing.

7. Computational Resources on Plant Genomics

Advances in high-throughput genomics technologies have greatly accelerated the progress in both
fundamental plant science and applied breeding research. In recent years, the genomic sequences
of numerous plant species, including common crops such as wheat, have been sequenced [71].
Computational tools have been developed to deal with the questions of which plant has been sequenced
and where is the sequence hosted. Although, short-read sequencing technologies have made genome
sequencing faster and more affordable, closing genomes is often costly and assembling short reads
from draft genomes whose fragmented into many contigs remains a challenge. Thus, long-read,

https://www.openplant.org/
https://public-registry.jbei.org/
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single-molecule sequencing is a relatively new sequencing technology that is designed to overcome
some of the deficiencies of short-read sequencing. The PacBio platform [72] and the Oxford Nanopore
Technologies (ONT) MinION [73] are both long-read, single-molecule sequencing technologies.
The MinION Oxford’s Nanopore is a small hand held sequencing device, which is based on nanopores.
MinION can be plugged directly into a laptop via a USB3 port and requires a relatively small upfront
financial investment relative to PacBio. This affordability and simplicity has enabled the rapid uptake
of MinION sequencing by individual labs worldwide and facilitated new applications such as the rapid
on-field detection of Cassava mosaic begomoviruses in Sub-Saharan Africa [74] or the assembly of
highly contiguous genome of A. brassicae [75] in India. Despite the rapid evolution and constant
improvement of next generation sequencing technologies, many standard pipelines and tools that can
potentially assemble a reasonable quality genome are available for both sequencing technologies [76].
What is required is for the user to have an acceptable level of familiarity with the technology, the data
and the genome to be assembled. All users are also required to have an acceptable level of proficiency
with data analytics and visualisations. It is usually the case that most genome assemble tools are
developed under the Python or R environment. Some tools are available in graphic user interface
(GUI) form, they are usually easy to use and allow users to upload data into the cloud to perform some
analytics. The CyVerse platform [77], an US National Science Foundation, provides life scientists with
powerful computational infrastructure to handle huge datasets and complex analyses which enables
data-driven discovery. CyVerse also provides data storage, bioinformatics tools, image analyses,
cloud services and APIs. The only limitation of CyVerse is that it requires users to upload their data
on the cloud. This is big limitation when it comes to assemble even small genomes. Thus, a combination
of GUI and scripts tools is perhaps the best approach to perform reasonably-sized genome assemblies.

8. Challenges and the Way Forward

Application of emerging technologies have the potential to tackle some of Africa’s urgent nutritional
and environmental demands. Although some of the approaches mentioned in this review are at least
partially known to African scientists, most scientific discoveries remain unknown. African scientists are
still very isolated from the global scientific community, but new policies on Open Access publication
are becoming a vital strategy to disseminate scientific knowledge across Africa. Open access not
only allows African scientists to stay up to date with newly available methods and technologies but
also to identify experts in specific fields. The downside of Open Access is the high publication costs,
which seem irrelevant to scientists is most developed countries but are an important issue for African
scientists, as the costs are prohibitively high. Thus, Open Access policies should be revisited and for
example put pressure on open access journals to waive charges for researchers in developing countries
or to encourage academics to write first for journals that are affiliated to societies. Profits from these
kinds of journals go back into supporting science through research grants, travel grants and meeting
support. Another way to stay up to date with science is through social media, these virtual channels
encourage and facilitate scientific exchange and collaboration. It is also very important for scientists to
have a web presence to facilitate and initiated research collaborations.

Assuming that the knowledge gap can be narrowed down, the next big barrier is concerned with
technology transfer. In Africa, most agri-related training is coordinated by the Consultative Group
for International Agricultural Research (CGIAR) organizations. Thus, scientists have to travel to or
from CGIAR’s headquarters to receive or provide training. as a result, training is not regular or widely
available. Alternative strategies such as the use of voice over IP (VoIP) technologies to facilitate training
and collaboration should be explored. Another strategy is to use a multiplicative approach to training
whereby an expert trains a cohort of students and those students are then expected to train another
group. Appropriate trainings strategies should be in place to guarantee the comprehension newly
acquired knowledge.

In addition to knowledge and training, scientists also need to be able to work in environments
that allow them to develop their own research and to make significant contributions to their field of
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expertise. Therefore, African governments need to develop strategies that lure scientists to stay and
further scientific knowledge in Africa rather than go to other countries that offer more opportunities for
research and development. Giving African scientists the tools and resources to develop their research
is the best strategy to prepare Africa for the most likely ravaging effects of climate change.

Though farmers may not directly apply the emerging technologies reviewed here, they form
the core of direct beneficiaries of processes, methods and products which emanate from research efforts.
They are also catalysts for adoption of new and improved crop varieties for domestic and commercial
production and consumption. For instance, farmers, through experience and application of their
indigenous methods, are able to identify crop characteristics. Again, their constant interaction with
retailers and consumers provide them with a wealth of information critical to crop production and
improvement activities. It would good for scientists to identify ways to engage farmers in knowledge
exchange in order to accurately capture and develop the farmer- and consumer-preferred varieties
required. Recently, agri-related NGOs are gaining attention. These organisations utilise their influence
and adopt advocacy to create changes and change paradigms. Empowered with information and
exposure to these technologies, they could blaze the trail of education, facilitating for communities
the adoption of improved methods and varieties for increased production.

9. Conclusions

Presently, climate change is already taking a huge toll on the African continent, with evidence
particularly in the production of crops. Projections suggest the effect of climate change could be worse
than originally anticipated. Added to that, are the current challenges associated to food security
in Africa, such as population growth and the decrease of the rural population. Thus, the African
continent needs to adopt implement measurements, such as the adoption of effective and efficient
technological strategies to mitigate the impact of climate change and ensure food security in the short
and long term.

This work has identified and reviewed current and emerging technologies which possess
the potential to mitigate climate change-related challenges likely to negatively impact agricultural
production, nutritional and environmental demands in Africa. Emerging technologies which would
be useful include next generation (Next-Gen) artificial intelligence tools, advances in genomics and
phenomics, availability of computational resources on plant genomics, advances in plant phenotyping,
modelling and computational biology, advances in plant breeding, and improved applications of
synthetic biology.

In addition to the urgency for the adoption of these technologies, significant challenges exist for
successful adoption and sustained use. Challenges identified by this work include high upfront cost
and utilization of the technologies, lack of capacity, lack of technology transfer infrastructure and
strategies, needed legislature in some cases.

This work has also identified the use of descriptive and predictive models driven by data as
critical to enhancing the capacity of African research scientists. Against the background of the high
cost of relevant software, lack of access to high performance computers and low capacity of scientists to
effectively apply the software for modelling purposes, this work recommends improvement capacity of
African scientists in areas including software training and artificial intelligence while tackling the issue
of training cost and related risks.

At this point, we suggest technological adoption rather than complete technological creation,
for three reasons. Firstly, development of technologies from scratch may not be the feasible and effective
option due to the imminent change in climate and the vulnerability of Africa as a whole. Again, the time
required to develop, test and deploy new and working technologies is generally longer than it is often
anticipated and new technologies may not be ready for use at the time required. Finally, access to
expert knowledge derived from already tested and deployed technologies is currently available.

The work recommends collaborations between African scientists and their counterparts to enable
effective technology transfer. Previously, scientific conferences and scientific missions were the main
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platforms for scientific exchange and collaboration. Recently, social media and other internet platforms
have become major drivers in the democratization of knowledge, including scientific knowledge.
African scientists can also use social media platforms to gain strong scientific presence and facilitate
the initiation of scientific collaborations. Governments of Africa are also encouraged to provide
the tools and incentives which will provide African scientists with the stability to present meaningful
significant and applicable research findings which can easily be adopted to mitigate the looming effects
of climate change.

As part of future work, the authors plan to test and report on the application of two technologies,
genetic mapping and speed breeding on selected crops in two developing countries.

Author Contributions: A.V.C.R. proposed the study, A.V.C.R. analysed the data, A.V.C.R and P.F.R. researched,
wrote and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by Cambridge-Africa ALBORADA fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Girvetz, E.; Ramirez-Villegas, J.; Claessens, L.; Lamanna, C.; Navarro-Racines, C.; Nowak, A.; Thornton, P.;
Rosenstock, T.S.; Rosenstock, T.S.; Nowak, A.; et al. Future Climate Projections in Africa: Where Are we Headed?
the Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future;
Springer International Publishing: Cham, Swizerland, 2019.

2. Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa.
In ClimateChange 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working
GroupII to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B.,
Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C.,
et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265.

3. Ofoegbu, C.; Chirwa, P.W.; Francis, J.; Babalola, F.D. Assessing local-level forest use and management
capacity as a climate-change adaptation strategy in Vhembe district of South Africa. Clim. Dev. 2019, 11,
501–512. [CrossRef]

4. Mueller, B.; Seneviratne, S.I. Hot days induced by precipitation deficits at the global scale Proceedings of
the National Academy of Sciences. Natl. Acad. Sci. 2012, 109, 12398–12403. [CrossRef] [PubMed]

5. Rippke, U.; Ramirez-Villegas, J.; Jarvis, A.; Vermeulen, S.J.; Parker, L.; Mer, F.; Diekkrüger, B.; Challinor, A.J.;
Howden, M. Timescales of transformational climate change adaptation in sub-Saharan African agriculture.
Nat. Clim. Chang. 2016, 6, 605–609. [CrossRef]

6. Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.;
Han, W.; Stepp, J.R.; et al. Environmental Factors Variably Impact Tea Secondary Metabolites in the Context
of Climate Change. Front. Plant Sci. 2019, 10, 939. [CrossRef] [PubMed]

7. Shi, W.; Tao, F. Vulnerability of African maize yield to climate change and variability during 1961–2010.
Food Secur. 2014, 6, 471–481. [CrossRef]

8. Rurinda, J.; Van Wijk, M.T.; Mapfumo, P.; Descheemaeker, K.; Supit, I.; Giller, K.E. Climate change and maize
yield in southern Africa: What can farm management do? Glob. Chang. Biol. 2015, 21, 4588–4601. [CrossRef]

9. Vogel, C.; Steynor, A.; Manyuchi, A. Climate services in Africa: Re-imagining an inclusive, robust and
sustainable service. Clim. Serv. 2019, 15, 100107. [CrossRef]

10. Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Mugnozza, G.S.; Moshelion, M.;
Tuskan, G.A.; Keurentjes, J.J.B.; Altman, A. Accelerating climate resilient plant breeding by applying
next-generation artificial intelligence. Trends Biotechnol. 2019, 37, 1217–1235. [CrossRef]

11. Batley, J.; Edwards, D. The application of genomics and bioinformatics to accelerate crop improvement
in a changing climate. Curr. Opin. Plant Biol. 2016, 30, 78–81. [CrossRef]

12. Mortimer, J.C. Plant synthetic biology could drive a revolution in biofuels and medicine. Exp. Biol. Med.
2019, 244, 323–331. [CrossRef]

13. Wallace, J.G.; Rodgers-Melnick, E.; Buckler, E.S. on the Road to Breeding 4.0: Unraveling the Good, the Bad,
and the Boring of Crop Quantitative Genomics. Ann. Rev. Genet. 2018, 52, 421–444. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/17565529.2018.1447904
http://dx.doi.org/10.1073/pnas.1204330109
http://www.ncbi.nlm.nih.gov/pubmed/22802672
http://dx.doi.org/10.1038/nclimate2947
http://dx.doi.org/10.3389/fpls.2019.00939
http://www.ncbi.nlm.nih.gov/pubmed/31475018
http://dx.doi.org/10.1007/s12571-014-0370-4
http://dx.doi.org/10.1111/gcb.13061
http://dx.doi.org/10.1016/j.cliser.2019.100107
http://dx.doi.org/10.1016/j.tibtech.2019.05.007
http://dx.doi.org/10.1016/j.pbi.2016.02.002
http://dx.doi.org/10.1177/1535370218793890
http://dx.doi.org/10.1146/annurev-genet-120116-024846
http://www.ncbi.nlm.nih.gov/pubmed/30285496


Plants 2020, 9, 381 12 of 14

14. Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Adamski, N.M. Speed breeding
is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [CrossRef] [PubMed]

15. Lander, E.S.; Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP markers.
Genetics 1989, 121, 185–199. [PubMed]

16. Risch, N.; Merikangas, K.M. The future of genetic studies of complex human diseases. Science 1996, 273,
1516–1517. [CrossRef]

17. Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere microbiome assemblage is affected by plant
development. ISME J. Int. Soc. Microb. Ecol. 2013, 8, 790–803. [CrossRef]

18. Montesinos-López, O.A.; Martín-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández-Suárez, C.M.;
Montesinos-López, A.; Juliana, P.; Singh, R. New Deep Learning Genomic-Based Prediction Model for
Multiple Traits with Binary, Ordinal, and Continuous Phenotypes. G3 2019, 9, 1545–1556. [CrossRef]

19. Wang, C.; Hu, S.; Gardner, C.; Lübberstedt, T. Trends. Plant Sci. 2017, 22, 624–637. [CrossRef]
20. Wang, W.; Pan, Q.; He, F.; Akhunova, A.; Chao, S.; Trick, H.; Akhunov, E. Transgenerational CRISPR-Cas9

Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR J. 2018, 1, 65–74. [CrossRef]
21. Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, M.E.; Lippman, Z.B. Engineering Quantitative Trait

Variation for Crop Improvement by Genome Editing. Cell 2017, 171, 470–480. [CrossRef]
22. Turuspekov, Y.; Baibulatova, A.; Yermekbayev, K.; Tokhetova, L.; Chudinov, V.; Sereda, G.; Ganal, M.;

Griffiths, S.; Abugalieva, S. GWAS for plant growth stages and yield components in spring wheat
(Triticum aestivum L.) harvested in three regions of Kazakhstan BMC plant biology. Biomed. Cent. 2017,
17, 190. [CrossRef]

23. Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and
stagnation. Nat. Commun. 2012, 3, 1293. [CrossRef]

24. Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production
by 2050. PLoS ONE 2013, 8, e66428. [CrossRef] [PubMed]

25. Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of
genomic selection in wheat (Triticum spp.). Plant Sci. 2016, 242, 23–36. [CrossRef] [PubMed]

26. Stuber, C.W.; Goodman, M.M.; Moll, R.H. Improvement of yield and ear number resulting from selection at
allozyme loci in a maize population. Crop Sci. 1982, 22, 737–740. [CrossRef]

27. Tanksley, S.D.; Young, N.D.; Paterson, A.H.; Bonierbale, M.W. RFLP mapping in plant breeding: New tools
for an old science. Biotechnology 1989, 7, 257–264. [CrossRef]

28. Bernardo, R. Molecular markers and selection for complex traits in plants: Learning from the last 20 years.
Crop Sci. 2008, 48, 1649–1664. [CrossRef]

29. Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci.
2008, 48, 391–407. [CrossRef]

30. Zhong, S.; Toubia-Rahme, H.; Steffenson, B.J.; Smith, K.P. Molecular Mapping and Marker-Assisted Selection
of Genes for Septoria Speckled Leaf Blotch Resistance in Barley. Phytopathology 2006, 96, 993–999. [CrossRef]

31. Moreau, L.; Charcosset, A.; Gallais, A. Experimental evaluation of several cycles of marker-assisted selection
in maize. Euphytica 2004, 137, 111–118. [CrossRef]

32. Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense
marker maps. Genetics 2001, 157, 1819–1829.

33. Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [CrossRef]
34. Su, G.; Guldbrandtsen, B.; Gregersen, V.R.; Lund, M.S. Preliminary investigation on reliability of genomic

estimated breeding values in the Danish Holstein population. J. Dairysci. 2010, 93, 1175–1183. [CrossRef]
35. Heffner, E.L.; Lorenz, A.J.; Jannink, J.L.; Sorrells, M.E. Plant breeding with genomic selection: Gain per unit

time and cost. Crop Sci. 2010, 50, 1681–1690. [CrossRef]
36. Bernardo, R.; Yu, J.M. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 2007, 47,

1082–1090. [CrossRef]
37. Crossa, J.; Perez, P.; Hickey, J.; Burgueno, J.; Ornella, L.; Ceron-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.;

Li, Y.; et al. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 2014, 112, 48–60.
[CrossRef] [PubMed]

38. Lorenz, A.J.; Smith, K.P.; Jannink, J.L. Potential and optimization of genomic selection for fusarium head
blight resistance in six-row barley. Crop Sci. 2012, 52, 1609–1621. [CrossRef]

http://dx.doi.org/10.1038/s41477-017-0083-8
http://www.ncbi.nlm.nih.gov/pubmed/29292376
http://www.ncbi.nlm.nih.gov/pubmed/2563713
http://dx.doi.org/10.1126/science.273.5281.1516
http://dx.doi.org/10.1038/ismej.2013.196
http://dx.doi.org/10.1534/g3.119.300585
http://dx.doi.org/10.1016/j.tplants.2017.04.002
http://dx.doi.org/10.1089/crispr.2017.0010
http://dx.doi.org/10.1016/j.cell.2017.08.030
http://dx.doi.org/10.1186/s12870-017-1131-2
http://dx.doi.org/10.1038/ncomms2296
http://dx.doi.org/10.1371/journal.pone.0066428
http://www.ncbi.nlm.nih.gov/pubmed/23840465
http://dx.doi.org/10.1016/j.plantsci.2015.08.021
http://www.ncbi.nlm.nih.gov/pubmed/26566822
http://dx.doi.org/10.2135/cropsci1982.0011183X002200040010x
http://dx.doi.org/10.1038/nbt0389-257
http://dx.doi.org/10.2135/cropsci2008.03.0131
http://dx.doi.org/10.2135/cropsci2007.04.0191
http://dx.doi.org/10.1094/PHYTO-96-0993
http://dx.doi.org/10.1023/B:EUPH.0000040508.01402.21
http://dx.doi.org/10.2135/cropsci2008.08.0512
http://dx.doi.org/10.3168/jds.2009-2192
http://dx.doi.org/10.2135/cropsci2009.11.0662
http://dx.doi.org/10.2135/cropsci2006.11.0690
http://dx.doi.org/10.1038/hdy.2013.16
http://www.ncbi.nlm.nih.gov/pubmed/23572121
http://dx.doi.org/10.2135/cropsci2011.09.0503


Plants 2020, 9, 381 13 of 14

39. Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Tinker, N.A.; Jannink, J.L. Genomic, marker-assisted,
and pedigree-BLUP selection methods for beta-glucan concentration in elite oat. Crop Sci. 2013, 53, 1894–1906.
[CrossRef]

40. Lariepe, A.; Moreau, L.; Laborde, J.; Bauland, C.; Mezmouk, S.; Decousset, L.; Mary-Huard, T.; Fievet, J.B.;
Gallais, A.; Dubreuil, P.; et al. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid
panel: Relative importance of population structure and genetic divergence between parents. Appl. Genet.
2017, 130, 403–417. [CrossRef]

41. Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.;
Willmitzer, L.; Melchinger, A.E. Genomic and metabolic prediction of complex heterotic traits in hybrid
maize. Nat. Genet. 2012, 44, 217–220. [CrossRef]

42. Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding drought-tolerant maize hybrids for the US
corn-belt: Discovery to product. J. Exp. Bot. 2014, 65, 6191–6204. [CrossRef]

43. Gaffney, J.; Schussler, J.; Löffler, C.; Cai, W.; Paszkiewicz, S.; Messina, C.D.; Groeteke, J.; Keaschall, J.;
Cooper, M. Industry-Scale Evaluation of Maize Hybrids Selected for Increased Yield in Drought-Stress
Conditions of the US Corn Belt. Crop. Sci. 2015, 55, 1608–1618. [CrossRef]

44. Crain, J.; Mondal, S.; Rutkoski, J.; Singh, R.P.; Poland, J. Combining high-throughput phenotyping and
genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 2018, 11,
170043. [CrossRef] [PubMed]

45. Hayes, B.; Panozzo, J.; Walker, C.K.; Choy, A.L.; Kant, S.; Wong, D.; Tibbits, J.; Daetwyler, H.D.; Rochfort, S.;
Hayden, M.; et al. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions
incorporating near infrared and nuclear magnetic resonance-derived phenotypes. Theor. Appl. Genet. 2017,
130, 2505–2519. [CrossRef] [PubMed]

46. Riaz, A.; Periyannan, S.; Aitken, E.; Hickey, L. A rapid phenotyping method for adult plant resistance to leaf
rust in wheat. Plant Methods 2016, 12, 17. [CrossRef]

47. Schilling, C.H.; Edwards, J.S.; Palsson, B.O. Toward Metabolic Phenomics: Analysis of Genomic Data Using
Flux Balances. Biotechnol. Prog. 1999, 15, 288–295. [CrossRef]

48. Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: the Next Challenge Nature Reviews Genetics; Nature
Publishing Group: New York, NY, USA, 2010.

49. Furber, S. Correction to ‘Microprocessors: the engines of the digital age’. Proc. Math. Phys. Eng. Sci. 2017,
473, 20160893. [CrossRef]

50. Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science
2010, 12, 818–822. [CrossRef]

51. Furbank, R.T.; Tester, M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci.
2011, 16, 635–644. [CrossRef]

52. Camargo, A.; Gustavo, L.A. Latin America: a Development Pole for Phenomics. Front. Plant Sci. 2016. [CrossRef]
53. Camargo, A.V.; Mackay, I.; Mott, R.; Han, J.; Doonan, J.H.; Askew, K.; Corke, F.; Williams, K.; Bentley, A.R.

Functional Mapping of Quantitative Trait Loci (QTLs) Associated With Plant Performance in a Wheat MAGIC
Mapping Population. Front. Plant Sci. 2018, 9, 887. [CrossRef]

54. Wang, X.; Zhang, R.; Song, W.; Han, L.; Liu, X.; Sun, X.; Luo, M.; Chen, K.; Zhang, Y.; Yang, H.; et al.
Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput
unmanned aerial vehicle (UAV). Sci. Rep. 2019, 9, 3458. [CrossRef] [PubMed]

55. Wang, Y.; Ji, Y.; Fu, Y.; Guo, H. Ethylene-induced microtubule reorientation is essential for fast inhibition of
root elongation in Arabidopsis. J. Integr. Plant Biol. 2018, 60, 864–877. [CrossRef] [PubMed]

56. Christensen, A.J.; Srinivasan, V.; Hart, J.C.; Marshall-Colón, A. Use of computational modeling combined
with advanced visualization to develop strategies for the design of crop ideotypes to address food security.
Nutr Rev. 2018, 76, 332–347. [CrossRef] [PubMed]

57. Osborne, B. Near-Infrared Spectroscopy in Food Analysis Encyclopedia of Analytical Chemistry; BRI Australia Ltd.:
North Ryde, Australia, 2006.

58. Wesley, J.; Larroque, O.; Osborne, B.G.; Azudin, N.; Allen, H.; Skerritt, J.H. Measurement of gliadin and
glutenin content of flour by NIR spectroscopy. J. Cereal. Sci. 2001, 34, 125–133. [CrossRef]

59. Anderssen, R.; Edwards, M. Mathematical modelling in the science and technology of plant breeding. Int. J.
Numer. Anal. Model. Ser. B 2012, 3, 242–258.

http://dx.doi.org/10.2135/cropsci2012.09.0526
http://dx.doi.org/10.1007/s00122-016-2822-z
http://dx.doi.org/10.1038/ng.1033
http://dx.doi.org/10.1093/jxb/eru064
http://dx.doi.org/10.2135/cropsci2014.09.0654
http://dx.doi.org/10.3835/plantgenome2017.05.0043
http://www.ncbi.nlm.nih.gov/pubmed/29505641
http://dx.doi.org/10.1007/s00122-017-2972-7
http://www.ncbi.nlm.nih.gov/pubmed/28840266
http://dx.doi.org/10.1186/s13007-016-0117-7
http://dx.doi.org/10.1021/bp9900357
http://dx.doi.org/10.1098/rspa.2016.0893
http://dx.doi.org/10.1126/science.1183700
http://dx.doi.org/10.1016/j.tplants.2011.09.005
http://dx.doi.org/10.3389/fpls.2016.01729
http://dx.doi.org/10.3389/fpls.2018.00887
http://dx.doi.org/10.1038/s41598-019-39448-z
http://www.ncbi.nlm.nih.gov/pubmed/30837510
http://dx.doi.org/10.1111/jipb.12666
http://www.ncbi.nlm.nih.gov/pubmed/29752856
http://dx.doi.org/10.1093/nutrit/nux076
http://www.ncbi.nlm.nih.gov/pubmed/29562368
http://dx.doi.org/10.1006/jcrs.2001.0378


Plants 2020, 9, 381 14 of 14

60. Wiley, P.R.; Tanner, G.J.; Chandler, P.M.; Anderssen, R.S. Molecular Classification of Barley (Hordeum vulgare L.)
Mutants Using Derivative NIR Spectroscopy. J. Agric. Food Chem. 2009, 57, 4042–4050. [CrossRef]

61. A framework for genomics-informed ecophysiological modeling in plants. J. Exp. Bot. 2019, 70, 2561–2574. [CrossRef]
62. Küken, A.; Nikoloski, Z. Computational Approaches to Design and Test Plant Synthetic Metabolic Pathways.

Plant Physiol. 2019, 179, 894. [CrossRef]
63. Small, I.; Puchta, H. Emerging tools for synthetic biology in plants. Plant J. Cell Mol. Biol. 2014, 78, 725–726. [CrossRef]
64. Andres, J.; Blomeier, T.; Zurbriggen, M.D. Synthetic switches and regulatory circuits in plants. Plant Physiol.

2019, 179, 862–884. [CrossRef]
65. Toda, S.; Blauch, L.R.; Tang, S.K.Y.; Morsut, L.; Lim, W.A. Programming self-organizing multicellular

structures with synthetic cell-cell signalling. Science 2018, 361, 156–162. [PubMed]
66. Shaw, W.M.; Yamauchi, H.; Mead, J.; Gowers, G.-O.F.; Bell, D.J.; Öling, D.; Larsson, N.; Wigglesworth, M.;

Ladds, G.; Ellis, T. Engineering a model cell for rational tuning of GPCR signalling. Cell 2019, 177, 782–796.
[CrossRef] [PubMed]

67. Sarrion-Perdigones, E.E.; Falconi, S.I.; Zandalinas, P.; Juárez, A.; Fernández-del-Carmen, A.; Granell, D.
Orzaez Golden Braid: an iterative cloning system for standardized assembly of reusable genetic modules.
PLoS ONE 2011, 6, e21622. [CrossRef] [PubMed]

68. Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.-M.; Werner, S.; Jones, J.D.G.; Patron, N.J.; Marillonnet, S.
A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 2014, 3, 839–843. [CrossRef] [PubMed]

69. Roell, M.-S.; Zurbriggen, M.D. The impact of synthetic biology for future agriculture and nutrition.
Curr. Opin. Biotechnol. 2020, 61, 102–109. [CrossRef] [PubMed]

70. Synbio Africa. Available online: https://synbioafrica.com/ (accessed on 19 March 2020).
71. The International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.;

Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the limits in wheat
research and breeding using a fully annotated reference genome. Science 2018, 361. [CrossRef]

72. Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing
technologies. Nat. Rev. Genet. 2016, 17, 333–351. [CrossRef]

73. Goldstein, S.; Beka, L.; Graf, J.; Klassen, J.L. Evaluation of strategies for the assembly of diverse bacterial
genomes using MinION long-read sequencing. BMC Genom. 2019, 20, 23. [CrossRef]

74. Boykin, L.M.; Sseruwagi, P.; Alicai, T.; Ateka, E.; Mohammed, I.U.; Stanton, J.-A.L.; Kayuki, C.; Mark, D.;
Fute, T.; Erasto, J.; et al. Tree Lab: Portable genomics for Early Detection of Plant Viruses and Pests
in Sub-Saharan Africa. Genes 2019, 10, 632. [CrossRef]

75. Rajarammohan, S.; Pental, D.; Kaur, J. Near-Complete Genome Assembly of Alternaria brassicae-A Necrotrophic
Pathogen of Brassica Crops. Molecular plant-microbe interactions. MPMI 2019, 32, 928–930. [CrossRef]

76. Bolger, A.M.; Poorter, H.; Dumschott, K.; Bolger, M.E.; Arend, D.; Osorio, S.; Gundlach, H.; Mayer, K.F.X.;
Lange, M.; Scholz, U.; et al. Computational aspects underlying genome to phenome analysis in plants.
Plant J. 2019, 97, 182–198. [CrossRef] [PubMed]

77. Merchant, N.; Lyons, E.; Goff, S.; Vaughn, M.W.; Ware, R.; Micklos, D.; Antin, P. The iPlant Collaborative:
Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLoS Biol. 2016, e1002342. [CrossRef]
[PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/jf9001523
http://dx.doi.org/10.1093/jxb/erz090
http://dx.doi.org/10.1104/pp.18.01273
http://dx.doi.org/10.1111/tpj.12462
http://dx.doi.org/10.1104/pp.18.01362
http://www.ncbi.nlm.nih.gov/pubmed/29853554
http://dx.doi.org/10.1016/j.cell.2019.02.023
http://www.ncbi.nlm.nih.gov/pubmed/30955892
http://dx.doi.org/10.1371/journal.pone.0021622
http://www.ncbi.nlm.nih.gov/pubmed/21750718
http://dx.doi.org/10.1021/sb4001504
http://www.ncbi.nlm.nih.gov/pubmed/24933124
http://dx.doi.org/10.1016/j.copbio.2019.10.004
http://www.ncbi.nlm.nih.gov/pubmed/31812911
https://synbioafrica.com/
http://dx.doi.org/10.1126/science.aar7191
http://dx.doi.org/10.1038/nrg.2016.49
http://dx.doi.org/10.1186/s12864-018-5381-7
http://dx.doi.org/10.3390/genes10090632
http://dx.doi.org/10.1094/MPMI-03-19-0084-A
http://dx.doi.org/10.1111/tpj.14179
http://www.ncbi.nlm.nih.gov/pubmed/30500991
http://dx.doi.org/10.1371/journal.pbio.1002342
http://www.ncbi.nlm.nih.gov/pubmed/26752627
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Resources in Plant Breeding 
	Advances in Genomic Selection 
	Advances in Plant Phenotyping 
	Modelling and Computational Biology Applications 
	Synthetic Biology 
	Computational Resources on Plant Genomics 
	Challenges and the Way Forward 
	Conclusions 
	References

