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Abstract: Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are,
thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally
characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation
and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating
hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well
as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R
protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine.
Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover,
endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER
membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are
putative oxidoreductases that participate in various cellular processes depending on redox regulation.
Herein, we review the recent studies on the role of selenoproteins in redox regulation and their
physiological functions in humans, as well as their role in various diseases.
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1. Introduction

Most reactive oxygen species (ROS) are generated as by-products of cellular redox processes,
including mitochondrial respiration and are known to be harmful to human health when their
cellular levels exceed the physiologically acceptable level. However, moderate ROS concentrations
play a crucial role in regulating signal transduction and cellular functions, such as proliferation
and differentiation, via protein oxidation [1]. Nevertheless, ROS are toxic and can damage various
biological molecules, such as proteins, lipids, and nucleic acids. Thus, the imbalance between ROS
production and antioxidant capability of the organism is often associated with the development of
various chronic pathologies, including cancer, cardiovascular diseases (CVDs), diabetes, neurological
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disorders, ischemia/reperfusion injury, age-related alterations, dysfunctions related to immune defense
and inflammatory responses, and other diseases [1–11].

Antioxidant enzymes such as superoxide dismutase, catalase, and other redox enzymes, including
selenoproteins, and low weight antioxidant molecules such as carotenoids, ascorbate, vitamin E,α-lipoic
acid, and glutathione (GSH) are essential for maintaining the “steady state” concentration of ROS, which
helps to regulate the redox balance and maintain cellular homeostasis. Most functionally characterized
selenoproteins have catalytic activities owing to their selenocysteine (Sec) residue and act to neutralize
and remove ROS. Therefore, they protect against oxidative stress. Selenium was considered a toxic
element for humans and other mammals but is now considered an important trace element, as the
benefits of dietary selenium supplementation have been identified [12]. Selenium is widely distributed
in various tissues and organs after absorption and performs important biological functions through
regulating the synthesis of selenoproteins and being incorporated in selenoproteins [13]. Furthermore,
some selenoproteins are also involved in regulating the activation of signaling pathways and cellular
functions. In this review, we provide a brief overview of the various functions of selenoproteins and
their roles in redox regulation and physiological functions.

2. Selenocysteine in Selenoproteins

Sulfur and selenium have similar physicochemical properties as both are members of the
chalcogen group and undergo thiol-disulfide exchange reactions in the form of cysteine (Cys) or Sec,
respectively [14]. However, Sec is more reactive than Cys under physiological conditions as it has a
lower pKa (~5.2) than Cys (~8.0); thus, it can exist as a nucleophile without electrostatic interactions
and, therefore, has enhanced catalytic efficiency. The Sec residue in most selenoproteins is located
in the catalytic region, where it catalyzes the reduction of oxidized Cys residues, such as disulfide
and sulfenic acid [15]. Studies have shown that removal of the Sec residues by oxidative selenium
elimination, limited proteolysis [16], as well as specific alkylation of the Sec residues at pH 6.5 [16,17],
leads to catalytic activity decrease. Moreover, the substitution of Sec with Cys also results in a marked
reduction in catalytic efficiency [18–20].

Selenoproteins exist in three kingdoms of life, whereas yeast, fungi, and higher plants lack
selenoproteins. Instead, they have alternative cysteine-containing homologs [21]. Sec is the 21st amino
acid encoded by the in-frame UGA codon, which is usually recognized as a stop codon; therefore,
it requires specialized machinery for its incorporation into proteins. This machinery comprises
a selenocysteine tRNA (Sec-tRNA[Ser]Sec), a secondary stem-loop structure named selenocysteine
insertion sequence (SECIS), SECIS Binding Protein 2 (SBP2), and other protein factors [22,23]. However,
its molecular mechanism remains unclear. For Sec-tRNA[Ser]Sec synthesis, selenium can be intaken
from dietary sources, including organic forms such as selenomethionine (Se-Met) and inorganic
forms such as selenate and selenite [13]. To utilize selenium from Se-Mets, they are converted to
Sec by the trans-selenation pathway similar to the trans-sulfuration pathway for Met. Then Sec is
converted to H2Se by Sec b-lyase [24]. In the case of selenite, it interacts with glutathione and is directly
reduced to H2Se. Both organic and inorganic selenium sources become H2Se and is then converted to
selenophosphate, which reacts with tRNA-bound serinyl residues to produce Sec-tRNA[Ser]Sec [25].
In eukaryotes and archaea, SECIS is located in the 3′-untranslated region (UTR) and interacts with
trans-acting factors [22,26]. This unique feature of SECIS elements and the in-frame UGA codon has
been largely adopted for in silico selenoproteome identification in diverse organisms. This is a peculiar
feature, considering that another sulfur-containing amino acid Met and Se-Met cannot be distinguished
by a Met tRNA, and therefore, Se-Mets are incorporated in proteins randomly [27].

Selenoproteins are essential for survival in many organisms, including humans. For example,
prostate epithelium-specific selenocysteine tRNA gene Trsp deletion leads to oxidative stress, early-onset
intraepithelial neoplasia [28], and early embryonic death in mice [29]. Moreover, mammary
gland-specific Trsp knockout (KO) mice showed that p53 and BRCA1 expression changed, resulting in
enhancing susceptibility to cancer [30], which indicates that selenoproteins are essential for mammals.
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Based on Sec residue localization, selenoproteins can be divided into two groups. In the first group,
which includes all thioredoxin reductases (TrxRs) and selenoprotein I (SelI), SelK, SelO, SelR, and SelS,
the Sec residue is located in the C-terminal region. The second group, which contains the rest of the
selenoproteins (glutathione peroxidases, iodothyronine deiodinases, SelH, SelM, SelN, SelT, SelV, SelW,
SPS2, and Sep15), is characterized by the presence of the Sec residue in the N-terminal region, as part
of the redox-active thioredoxin (Trx)-like selenylsulfide/selenolthiol motif [31]. SelP has an N-terminal
redox Sec and multiple C-terminal Sec residues [32]. Over half of the mammalian selenoproteins
possess the Trx-like fold [33]; its common feature include a two-layer α/β/α sandwich structure and a
conserved CXXC motif (two Cys residues separated by two other amino acid residues). The CXXC
motif is a “rheostat” in the active site [34], because changes in residues that separate the two cysteines
influence redox potentials and pKa values of cysteines, configuring proteins for a particular redox
function [35]. Altering the CXXC motif affects not only the reduction potential of the protein but also its
ability to function as a disulfide isomerase and also affects its interaction with folding protein substrates
and reoxidants [20]. The Trx-like fold is commonly observed in proteins, most of which function in
disulfide bond formation and isomerization and regulate the redox state of the Cys residues for other
functions. Sep15, SelH, SelM, SelO, SelT, SelP, SelW, and SelV contain a CXXU motif, indicating that
they have an antioxidant activity, which corresponds to the CXXC motif of the Trx active site. A variety
of approaches has been used to determine the biological function of these selenoproteins. However,
most selenoproteins (thioredoxin glutathione reductase, SelH, SelI, SelM, SelO, SelT, SelV, SelW) have
no known functions. Interestingly, the selenoproteins with identified functions (redox functions) are
all oxidoreductases that contain Sec in the catalytic center and participate in various redox processes,
such as antioxidant defense, redox signaling, redox regulation of biological functions, and many other
processes that regulate intracellular redox homeostasis [31,36–38].

3. Glutathione Peroxidase

Glutathione peroxidase (GPx) is an intracellular antioxidant enzyme mainly protects the organism
against oxidative stress by catalyzing the reduction of hydrogen peroxide, lipid hydroperoxides,
and organic hydroperoxides to water or corresponding alcohols, using GSH as an essential cofactor [39].
It has also been reported that GPx dysfunction is associated with the incidence of various types of
cancer [40,41], muscle disorders [42], CVDs [43,44], hepatopathies [45], renal failure [46,47], neurological
disorders (such as Alzheimer’s disease (AD) and Parkinson’s disease (PD)) [48–50], immune defense
dysfunction [51], and other diseases.

The selenol in the Sec residue of GPx is oxidized by H2O2 or other oxidants, which results in
selenenic acid (GPx-SeOH) formation. Then, the GPx-SeOH is converted back to selenol via a two-step
process. First, selenenyl sulfide (GPx-SeSG) is produced by the reaction between GPx-SeOH and
GSH. Subsequently, the second GSH reduces GPx-SeSG back to selenol. Notably, owing to high levels
of oxidative stress or low GSH concentrations, GPx-SeOH may be overoxidized to seleninic acid
(GPx-SeO2H) (Figure 1).

Mammalian GPx has eight isoforms; of these, GPx1 (ubiquitous, cytosolic), GPx2
(gastrointestinal-specific), GPx3 (plasma), GPx4 (phospholipid hydroperoxide), and GPx6 (olfactory
epithelium) contain a Sec residue in the active catalytic site and can, thus, catalyze H2O2 and lipid
hydroperoxide reduction in conjunction with GSH with increased efficiency [52,53]. In contrast, GPx6
homologs in some mammals, GPx5 (epididymal androgen-related protein), GPx7, and GPx8 are not
selenoproteins and utilize a conventional Cys residue instead of Sec [54]. GPx1, the first discovered
selenoenzyme, is located in the cytosol. Moreover, it is the most abundant GPx and found in nearly
all mammalian tissues. GPx1 can reduce H2O2 and organic hydroperoxides, including tert-butyl
hydroperoxide and cumene hydroperoxide. Its peroxidase activity and expression are affected by
Se status [55]. GPx1 loss is associated with the development of various types of cancer, including
breast [41], lung [56], prostate [57], and bladder [58] cancers. GPx2 is an intestinal selenoenzyme
highly and weakly expressed in the gastrointestinal mucosal epithelium and human liver, respectively.
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Moreover, it can catalyze H2O2, tert-butyl hydroperoxide, cumene hydroperoxide, and linoleic acid
hydroperoxide reduction [59]. The main function of GPx2 is to protect the intestinal epithelium
from oxidative stress and maintain mucosal homeostasis [60]. Florian et al. reported that GPx2
expression levels are much higher in crypt bases than in luminal sites. The crypts contain stem
cells that participate in the proliferative zone, thereby suggesting that GPx2 might play a role in cell
proliferation. GPx2 loss was also shown to increase apoptosis, mitosis, and GPx1 expression in mice
intestines [61]. Gpx3 is the only extracellular secreted member of the GPx family that catalyzes H2O2,
organic hydroperoxides, and lipid hydroperoxides to reduce systemic oxidative stress [18]. GPx3
has been identified as a tumor suppressor in many cancers [62]. GPx3 promoter hypermethylation
specifically downregulates its expression, which occurs commonly in human cancers, including
prostate, gastric, breast, lung, and colon cancers [63–65]. GPx3 dysregulation is also associated with
obesity and fat distribution and related to whole body insulin resistance [66]. GPx4 is the only known
enzyme that can reduce lipid hydroperoxides, which arise in the membrane. Unlike other GPx, GPx4
not only uses GSH as an electron donor but also uses protein thiols as reducing substrates when
GSH becomes limiting [67]. A study has shown that the pro-survival role of selenium in mammals
is largely mediated by GPx4 [68]. GPx4 activity is essential to maintain lipid homeostasis, prevent
toxic lipid ROS accumulation, and thereby block ferroptosis by its intrinsic resistance to irreversible
inactivation [69,70]. GPx6, found in the olfactory epithelium and during embryonic development [54],
is highly expressed in the olfactory bulb, striatum, and frontal cerebral cortex [71]. Synthetic lethal
screening in the mammalian central nervous system has identified that the age-regulated Gpx6 gene
is a modulator of mutant huntingtin toxicity, and its overexpression can dramatically alleviate both
behavioral and molecular phenotypes associated with a mouse model of Huntington’s disease [71].
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Figure 1. Catalytic redox cycle of glutathione peroxidase. GR, glutathione reductase; GSH, glutathione
(reduced form); GSSG, glutathione disulfide; GPx-SeOH, selenenic acid; GPx-SeSG, selenenyl sulfide;
GPx-SeO2H, seleninic acid; ROOH, hydroperoxides (H2O2, peroxynitrite or aliphatic hydroperoxide);
ROH, H2O or corresponding alcohol; NADPH, Nicotinamide adenine dinucleotide phosphate.

4. Thioredoxin Reductase

TrxR is an essential component of the Trx system, which comprises Trx, nicotinamide adenine
dinucleotide phosphate (NADPH), and TrxR (Figure 2). The Trx/TrxR system functions as a protein
disulfide oxidoreductase to maintain the redox status of intracellular substrate proteins, such as
ribonuclease reductase, peroxiredoxin, glucocorticoid receptors, transcription factors, and protein
tyrosine phosphatases such as PTEN [72,73]. The two subunits of TrxR are only active in their dimeric
form and form a head-to-tail pattern in active homodimeric TrxRs. TrxR is indispensable for Trx function
as it is the only enzyme that catalyzes the NADPH-dependent Trx reduction [74]. Three isoforms of
TrxR are found in mammals: cytosolic TrxR (TrxR1), mitochondrial TrxR (TrxR2), and a testis-specific
thioredoxin glutathione reductase (TrxR3) [75]. All three enzymes contain conserved Gly-Cys-Sec-Gly
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sites in the flexible C-terminal region, which is both reactive and solvent-accessible [19,76–80].
In particular, the Sec residue is critical for TrxR reductase activity [81]. Mammalian TrxR1 and TrxR2
have another conserved site, namely the Cys-Val-Asn-Val-Gly-Cys motif, which is adjacent to the
flavin adenine dinucleotide located in the N-terminal region [19,77]. Owing to these two conserved
sites, mammalian TrxRs possess surprisingly multifaceted properties and functions beyond direct Trx
reduction. In addition to Trx, mammalian TrxRs have a broad substrate specificity. As such, they
can reduce glutaredoxin 2, protein disulfide isomerase, and many other disulfides in proteins. They
also reduce some non-disulfide substrates, such as H2O2 [21], selenite [82], lipid hydroperoxides [83],
ascorbic acid [84],α-lipoic acid [74,85–87], cytosolic peptide granulysin [88], antibacterial NK-lysine [89],
dehydroascorbate [84], and cytochrome C [90]. Similar to other selenoproteins, such as SelR and GPx1,
the expression of TrxRs depends on the concentration of selenium: selenium deficiency reduced TrxR
synthesis; however, a high selenium concentration mediated Sec incorporation and increased TrxR
enzyme activity without increasing protein synthesis [91,92].
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TrxRs are ubiquitously expressed enzymes that regulate redox metabolism and play a critical
role in protection against malignant transformation. There is increasing evidence that supports the
idea that TrxRs inhibit multiple stages of tumor progression, from initiation to growth, invasion,
and metastasis [93–95]. Interestingly, TxR overactivation or dysfunction is associated with the onset of
various diseases, such as CVDs, neurological disorders, type 2 diabetes, human immunodeficiency virus
infection, and cancer [96–99]. Trx1 not only acts as an antioxidant but also plays an important role in
cellular function by regulating signaling pathways via direct interaction with other small molecules, all
of which are involved in ventricular remodeling inhibition after myocardial infarction [100]. Therefore,
in CVD, TrxR functions via interactions with Trx1 [101].

The tumor suppressor PTEN negatively regulates the PI3K/AKT signaling pathway, which is
pivotal for cell growth and survival. Numerous studies have demonstrated that PTEN catalytic
activity is regulated via direct oxidation by ROS [102,103]. Therefore, its enzymatic activity recovery
depends on cellular Trx/TrxR system availability [73]. Increased Trx1 expression in human tumors
is associated with abnormal growth, which is caused by the binding of Trx1 to the C2 domain of
PTEN, thereby resulting in the inhibition of its lipid phosphatase activity and membrane binding
capacity [104]. It has been reported that Trx and TrxR are highly overexpressed in a variety of
aggressive tumors and may increase tumor cell survival and proliferation [105–107], indicating
that the Trx system has a dual function in cancer. The effect of TrxR inhibition on tumor cell
survival and aggressiveness is robust, and tumor proliferation appears to be dependent on an
active Trx system, making TrxR a potential target for cancer chemotherapy [108–112] (Figure 3).
In this regard, the Sec residue in mammalian TrxR can be the primary target for the development
of drugs that exert inhibitory effects on various type of cancers, including gold compounds and
platinum-based drugs [113], alkylating anticancer agents such as nitrosoureas [114], nitrogen mustards,
ifosfamide [115], and cyclophosphamide [116], arsenic trioxide [117], dinitrohalobenzenes such as
1-chloro-2,4-dinitrobenzene, 1-fluoro-2,4-dinitrobenzene, and 1-bromo-2,4-dinitrobenzene, and natural
products such as curcumin [118], flavonoids [119], and quinones [120]. The irreversible TrxR inhibition
by dinitrohalobenzenes and curcumin is accompanied by the alkylation of both the redox-active Sec497
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chemotherapeutics have been shown to be TrxR inhibitors. TrxR inhibition blocks thioredoxin
(Trx)-mediated activity in various processes, such as defense against oxidative stress, DNA replication
and repair, apoptosis inhibition, transcription control, and protein folding via different signaling
pathways. Some inhibitors, such as 1-chloro-2,4-dinitrobenzene (DNCB) and curcumin, modify TrxR via
the alkylation of Cys496 and redox-active Sec497 residues and induce nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity, finally leading to reactive oxygen species (ROS) production.

5. Selenoprotein R

SelR (also designated as MsrB1) is an antioxidant enzyme that uses Met to defend cellular
macromolecules against oxidative stress. Met is a sulfur-containing amino acid that is readily oxidized
to Met sulfoxide by ROS; subsequently, Met sulfoxide reductases (Msr) such as SelR reduce Met
sulfoxide back to Met [122]. Met sulfoxide contains two diastereomeric forms, Met-S-sulfoxide
(Met-S-SO) and Met-R-sulfoxide (Met-R-SO) [123]. Met-R-SO is reduced by the MsrB family of proteins,
including SelR, whereas Met-S-SO is reduced by the MsrA family of proteins [124]. Mammals have
one MsrA and three MsrBs, namely, SelR, MsrB2, and MsrB3 [18]. Among these, SelR is the only
selenoprotein that is localized in both the cytosol and nucleus. SelR is present specifically in vertebrates
and appears to have evolved separately, having the lowest homology with other Msr enzymes [125].

SelR expression is regulated by dietary selenium; its mRNA expression level is low in
a selenium-deficient diet, but this can be reversed by dietary selenium supplementation [126].
SelR activity was also found to reduce with age [127]. SelR has catalytic activity, especially for
protein-bound and free Met-R-SO but has low catalytic efficiency. Like other Msr enzymes, SelR is
an oxidoreductase that requires Trx/TrxR/NADPH to recycle its oxidized form to the reduced form
(Figure 4A) [99]. Along with its catalytic activity toward protein-bound Met-R-SO, SelR plays a role in
repairing oxidized proteins, thus protecting the structure and function of proteins against oxidative
stress [128]. SelR also regulates biological processes via the reversible oxidation/reduction of Met
residues in proteins. The oxidation of Met residues at certain sites by either ROS or enzymes often
leads to changes in protein function, which can then be reversed by SelR-catalyzed reduction of the
said Met residues [129]. For instance, it was found that F-actin disassembly caused by the stereospecific
oxidation of the 44 and 47 Met residues in actin by MICAL proteins can be rescued by SelR [130].



Antioxidants 2020, 9, 383 7 of 17

Actin cytoskeleton dynamics regulation is important for many cellular responses, including neural
development, muscle contraction, and filopodia formation [131–133]. Moreover, F-actin assembly is
known to be bidirectionally associated with the mitogen-activated protein kinase (MAPK) pathway,
which controls many cellular processes, including cell proliferation [134]. Accordingly, SelR is a
potentially redox-dependent regulator that participates in many cellular processes and signaling
pathways related to actin cytoskeleton dynamics via F-actin assembly regulation.
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Figure 4. (A) Catalytic mechanism of SelR reducing methionine-R-sulfoxide (Met-R-SO). The catalytic
selenocysteine (Sec) residue attacks Met-R-SO and forms the intermediate selenenic acid with Met
release. The resolving cysteine (Cys) residue attacks the intermediate, resulting in the formation of
intramolecular selenide–sulfide bond. The intramolecular selenide–sulfide bond of SelR is directly
reduced by thioredoxin (Trx) system. (B) Role of SelR in various organs and cell types.

SelR KO mice exhibit increased oxidative stress in the liver and kidney with exacerbated
hepatotoxicity [135,136]. SelR is also required for human lens epithelial (hLE) cell viability against
oxidative stress-induced apoptosis and attenuates cataracts [137]. Since membrane-bound proteins
in hLE cells from patients with cataract contain high levels of Met sulfoxide residues, SelR may
directly retard cataract [138]. SelR appears to play an important role in innate immunity; however,
its underlying mechanism is poorly understood. In macrophages, SelR expression is induced by
lipopolysaccharides and is involved in controlling macrophage function by promoting the expression
of anti-inflammatory cytokines, such as IL-10 and IL-1RA [139]. Neutrophils were also shown to have
high levels of SelR expression in response to excessive ROS. Moreover, a recent study has suggested
that decreased SelR activity in neutrophils might be associated with AD [140]. A study has also shown
that SelR is highly expressed in carcinoma cells in response to increased oxidative stress, and may thus
enhance carcinoma cell survival. Moreover, SelR expression upregulation aggravates oncogenesis
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by promoting proliferation via MAPK pathway activation and promotes invasion and metastasis by
regulating actin cytoskeleton dynamics [141,142] (Figure 4B).

6. Selenoprotein O

SelO, the largest protein among the 25 mammalian selenoproteins, is expressed in a variety of
organs, such as the brain, heart, liver, kidneys, lungs, and stomach [54,143]. Unlike SelR and GPx1
expression, SelO expression is not influenced by a selenium-deficient diet [143]. In higher eukaryotes,
SelO contains a single Sec residue near the C-terminal region [54,143]. Notably, in lower eukaryotes and
all prokaryotes, the Sec residue in SelO is replaced with an invariant Cys residue [144]. Mammalian
SelO is located in the mitochondria [143,144], and the occurrence of the CXXU motif in the C-terminal
region suggests that SelO might have a redox-active Sec residue, similar to other thiol-dependent
oxidoreductases [143]. SelO activity in Escherichia coli is regulated by intramolecular disulfide bridge
formation between a Cys residue in the activation loop (Cys272) and the Cys residue in the C-terminal
region (Cys476), with the latter being replaced by a Sec residue in higher eukaryotes [144]. Using
bioinformatic tools, Dudkiewicz et al. predicted that the three-dimensional structure of SelO may be
similar to that of a protein kinase and that it might have phosphotransferase activity [145]. Recently,
structural studies have shown that SelO is a highly conserved pseudokinase that transfers AMP from
ATP to Ser, Thr, and Tyr residues in its substrate protein via a process known as AMPylation [144].
SelO plays a role in response to oxidative stress and regulates global S-glutathionylation levels via
AMPylation in conjunction with glutaredoxin [144] (Figure 5). Furthermore, SelO has been shown to
play an essential role in chondrocyte viability, proliferation, and chondrogenic differentiation [146].
However, the physiological functions of SelO remain unknown. As such, further research is needed to
clarify its physiological functions, role in disease, and association with other redox enzymes.
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7. Other Selenoproteins

SelS (also designated as SEPS1, VIMP, and Tanis) is a single-pass transmembrane protein [54]
that has an extensive tissue distribution, being present in the liver, kidneys, adipose tissue, skeletal
muscle, pancreatic islets, and blood vessels [147]. SelS participates in the endoplasmic reticulum
(ER)-associated protein degradation (ERAD) pathway, which is responsible for transporting unfolded or
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misfolded proteins from the ER to the cytoplasm, followed by degradation via the ubiquitin–proteasome
system [148]. SelS is a Trx-dependent reductase that catalyzes H2O2 and cumene hydroperoxide
reduction [149]. An NF-κB-binding site is located within the SelS gene promoter region in Bama
mini-pigs [150]. Moreover, SelS can regulate the production of inflammatory cytokines, such as IL-1β
and IL-6, in stimulated astrocytes [151]. This suggests that SelS is involved in inflammation, oxidative
stress, and endoplasmic stress [152,153].

Human SelT is a 22 kDa protein localized to the Golgi apparatus and ER and present in the plasma
membrane [154]. SelT possesses a Trx-like fold and a conserved CXXU motif, which are common
structural domains in oxidoreductases with a catalytic Sec residue. Moreover, SelT knockdown was
found to increase the expression of Cbr3 and SelW, which are involved in redox regulation, thereby
supporting the idea that this protein might function as an oxidoreductase [155]. SelT is a trophic
neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-regulated gene involved
in intracellular Ca2+ mobilization and neuroendocrine secretion. Sec-containing SelT overexpression
in PC12 cells was found to increase intracellular Ca2+ concentrations, whereas the Sec-to-Ala SelT
mutant overexpression had no effect on Ca2+ release, suggesting that SelT regulates intracellular Ca2+

mobilization via the redox-active Sec residue [156]. SelT has also been reported to protect dopaminergic
neurons against oxidative stress and prevent early and severe movement impairment in Parkinson’s
disease (PD) animal models [157].

SelN is a 65 kDa transmembrane glycoprotein, which is localized to the ER that contains a
transmembrane-addressing site in proximity to the EF-hand motif, which is a helix-loop-helix structural
motif found in a large family of calcium-binding proteins. [158]. Human SelN mRNA is detected in
most fetal tissues, but its level reduces in adult tissues [159]. Moreover, its expression increases in
proliferating cells, such as fibroblasts and myoblasts, and gradually decreases during the differentiation
of myoblasts to myotubes [158]. SelN is so far the only selenoprotein directly linked to human
genetic disorders. Certain mutations in the SelN gene cause SEPN1-related myopathy (SEPN1-RM),
which is an early-onset muscle disease that is characterized by muscle weakness, spinal rigidity,
and respiratory insufficiency. SelN plays an important role in conferring resistance against oxidative
stress and maintaining Ca2+ homeostasis in human skeletal muscle cells [160]. Moreover, SelN-deficient
fibroblasts and muscle cells have been shown to have an increased susceptibility to H2O2-induced
oxidative stress [160]. Notably, in SelN-deficient muscle cells, the generated ROS/NO have been found
to regulate intracellular Ca2+ concentrations via the modulation of Ca2+ channels, followed by Ca2+

release or leaking [160].

8. Conclusions

Organisms contain an array of defense systems, such as the thiol-dependent antioxidant system,
which coordinate to remove ROS and reactive nitrogen species. This review focused on several
mammalian selenoproteins, discussing their splicing forms, structures, and relationships with oxidative
stress and disease. Although the functions of some selenoproteins still remain unclear, up-to-date
research is advancing in the characterization of some of the less known selenoproteins, as well as
their role in the development of various diseases as they may act as potential drug targets. Further
studies should focus on revealing the detailed molecular mechanisms underlying the functions of
selenoproteins, which can further help develop new guidelines for novel therapies in various diseases.
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