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PINK1 and Parkin were first identified as the causal genes responsible for familial forms of

early-onset Parkinson’s disease (PD), a prevalent neurodegenerative disorder. PINK1 encodes a

mitochondrial serine ⁄ threonine protein kinase, whereas Parkin encodes an ubiquitin-protein

ligase. PINK1 and Parkin cooperate to maintain mitochondrial integrity; however, the detailed

molecular mechanism of how Parkin-catalyzed ubiquitylation results in mitochondrial integ-

rity remains an enigma. In this study, we show that Parkin-catalyzed K63-linked polyubiquity-

lation of depolarized mitochondria resulted in ubiquitylated mitochondria being transported

along microtubules to cluster in the perinuclear region, which was interfered by pathogenic

mutations of Parkin. In addition, p62 ⁄SQSTM1 (hereafter referred to as p62) was recruited to

depolarized mitochondria after Parkin-directed ubiquitylation. Intriguingly, deletion of p62 in

mouse embryonic fibroblasts resulted in a gross loss of mitochondrial perinuclear clustering

but did not hinder mitochondrial degradation. Thus, p62 is required for ubiquitylation-depen-

dent clustering of damaged mitochondria, which resembles p62-mediated ‘aggresome’ forma-

tion of misfolded ⁄ unfolded proteins after ubiquitylation.

Introduction

Our understanding of the pathogenesis of two autoso-
mal recessive familial Parkinson’s diseases (PDs) has
been greatly developed and continues to evolve. One
familial form of the PD gene causing autosomal reces-
sive juvenile Parkinsonism (AR-JP) is Parkin (also
known as PARK2), which encodes an E3 ubiquitin
ligase, a substrate recognition member of the ubiqui-
tylation pathway (Kitada et al. 1998; Shimura et al.
2000). The other early-onset PD gene encodes a
mitochondria-targeted serine-threonine kinase termed

PTEN induced putative kinase 1 (PINK1) (Valente
et al. 2004). Judging from their molecular functions,
it is clear that Parkin-mediated ubiquitylation and
phosphorylation by PINK1 are key events in disease
pathogenesis, but the details are still largely unknown.
Various clinical symptoms in patients caused by Parkin
and PINK1 dysfunctions resemble each other. In
addition, genetic studies using Drosophila showed that
PINK1 and Parkin function in the same mitochon-
drial homeostasis pathway, because individual loss of
either of the two genes leads to abnormal mitochon-
drial morphology and integrity. Moreover, PINK1
functions upstream of Parkin, because forced overex-
pression of Parkin rescues loss-of-function phenotypes
of PINK1 but not vice versa (Clark et al. 2006; Park
et al. 2006; Yang et al. 2006).

Interestingly, PINK1 is rapidly and constitutively
degraded under steady-state conditions in a normal
(healthy) mitochondria, and a loss in mitochondrial
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membrane potential stabilizes PINK1 on damaged
mitochondria by likely inhibiting an as-yet-unknown
processing protease that catalyzes conversion of the
mature PINK1 (approximately 60 kDa) to an interme-
diate short form (approximately 50 kDa), which is fur-
ther exclusively degraded by the proteasome pathway
(Matsuda et al. 2010; Narendra et al. 2010). PINK1
then recruits Parkin from the cytoplasm to depolarized
mitochondria that then undergo Parkin-catalyzed
ubiquitylation, meaning that PINK1 and Parkin
cooperate to ubiquitylate mitochondria with low
membrane potentials (Narendra et al. 2008, 2010;
Geisler et al. 2010; Matsuda et al. 2010; Vives-Bauza
et al. 2010).

Mitochondrial homeostasis plays a pivotal role in
the maintenance of normal healthy cells, in particular
nondividing cells such as neurons. To maintain the
integrity of mitochondria, the selective elimination of
impaired mitochondria caused by various endogenous
and exogenous stresses, such as unnecessary genera-
tion of reactive oxygen species (ROS) and mtDNA
mutations, is critical, with mitochondria-dedicated
selective autophagy (termed mitophagy) considered to
be essential for this clearance pathway (Narendra et al.
2008; Twig et al. 2008). Thus, it becomes clear that
PINK1 and Parkin function in mitochondrial quality
control; however, the detailed molecular mechanism
of how Parkin-catalyzed ubiquitylation results in
mitochondrial integrity remains an open question.
Here, we show that Parkin leads to juxtanuclear clus-
tering of depolarized mitochondria reminiscent of
‘aggresome’ formation and that the ubiquitin-interacting
protein, p62 ⁄ SQSTM1 ⁄ sequestosome-1 (referred to
hereafter as p62), is involved in this process.

Results

Parkin-catalyzed K63-linked polyubiquitylation

promotes mitochondrial clustering

As reported by us and other groups, a loss of mito-
chondrial membrane potential triggers stabilization of
mitochondrial PINK1. This drastic accumulation of
PINK1 then serves to recruit Parkin, which ubiquity-
lates the outer membrane protein(s) of mitochondria
with no membrane potential with the ubiquitylated
mitochondria destined for final degradation in part via
mitophagy (Narendra et al. 2008, 2010; Geisler et al.
2010; Matsuda et al. 2010; Vives-Bauza et al. 2010;
Ziviani et al. 2010). To dissect this process in more
detail, we analyzed the mode of ubiquitylation and
time course of mitochondria degradation in depth.

In mitochondria fragmented with the mitochondrial
uncoupler, carbonyl cyanide m-chlorophenylhydraz-
one (CCCP), Parkin quickly moved to depolarized
mitochondria and ubiquitylated them (t = 1 h). Inter-
estingly, mitochondria later concentrated to the peri-
nuclear region at t > 4 h (Fig. 1A,B) and finally
degraded as reported (Narendra et al. 2008) (not
shown). This perinuclear transport and clustering of
mitochondria are Parkin dependent, because this phe-
nomenon was only observed in Parkin-expressing
HeLa cells that lack an endogenous Parkin gene
(Denison et al. 2003) (Fig. 1A, panel 3).

Because the fate of ubiquitylated proteins is deter-
mined by which lysine(s) within ubiquitin is
covalently linked via an isopeptide bond to the C
terminus of an adjacent ubiquitin (Weissman 2001),
we next tried to determine the linkage mode of
ubiquitylation catalyzed by Parkin. Parkin has the
potential to catalyze several types of ubiquitylation:
multiple monoubiquitylation, Lys-48-linked polyub-
iquitylation and Lys-63-linked polyubiquitylation
(Lim 2007; Matsuda & Tanaka 2010). Recently,
Springer et al. reported that Parkin catalyzes poly-
ubiquitin chain linked through K27 and K63 on
depolarized mitochondria (Geisler et al. 2010). How-
ever, in their work, various ubiquitin mutants such
as 63K-only or K63R, whose lysine residue is
replaced by an arginine residue, were over-expressed
to determine the linkage of Parkin-catalyzed ubiqui-
tylation. However, overproduction of mutant ubiqu-
itin can change the ubiquitylation linkage, and thus
careful interpretation of observed results is required
(Pickart & Raasi 2005; Saeki et al. 2009). To address
this issue, we used linkage-specific anti-ubiquitin
antibodies Apu2, Apu3 and HWA4C4 (Newton et al.
2008; Wang et al. 2008) that can determine the
linkage without overproduction of mutant ubiquitin.
Immunoblotting against K48- and K63-linked
polyubiquitin chains, whose linkage was directly
confirmed by MALDI-TOF mass spectrometry (data
not shown), showed the high specificity of the
antibodies (Fig. 1C). In immunocytochemistry exper-
iments, the Apu3 and HWA4C4 antibodies, which
exclusively react with ubiquitin chain linked at K63,
clearly stained Parkin-localized mitochondria, whereas
Apu2, which specifically recognizes K48-linkage
polyubiquitylation, did not stain Parkin-localized
mitochondria as well (Fig. 1D,E). We confirmed that
the signals generated by Apu3 and HWA4C4 disap-
peared with E3-inactivated mutations of Parkin
(Fig. 1F and not shown). These results suggest that
Parkin ubiquitylates the damaged mitochondria
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Figure 1 K63-linkage-specific anti-ubiquitin antibody can detect mitochondrial ubiquitylation catalyzed by Parkin. (A) HeLa cells

expressing HA-Parkin were treated with CCCP for the indicated times, then immunostained with anti-HA or anti-Tom20 anti-

bodies. Mitochondria clustered to the juxtanuclear region (t = 4 h) only in Parkin-expressing cells. (B) Morphology of mitochon-

dria in Parkin-expressing HeLa cells was analyzed in more than 100 cells in each time course. Bars represent the mean ± SD

values of at least three experiments. (C) Linkage-specificity of anti-ubiquitin antibodies. K48- or K63-linked ubiquitin chain was

blotted with Apu2, Apu3 or HWA4C4 antibody. P4D1 recognizes any type of ubiquitin and was used as a positive control. (D)

HeLa cells expressing HA-Parkin were treated with CCCP and subjected to immunocytochemistry with the indicated linkage-spe-

cific anti-ubiquitin antibodies. (E) Parkin-expressing HeLa cells were stained with the indicated antibodies, and cells with double-

stained mitochondria by Parkin and linkage-specific Ub were counted in more than 100 cells per antibody. Bars represent the

mean ± SD values of at least three experiments. (F) K63-linked ubiquitylation on mitochondria depends on the E3 activity of

Parkin. K63-linked ubiquitylation signal disappeared when the catalytically dead T415N and G430D mutations were introduced

into Parkin. Scale bars represent 10 lm in (A), (D) and (F).
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mainly via K63-linked polyubiquitylation and are
consistent, in part, with the recent report by Geisler
et al. (2010).

Mitochondrial clustering is microtubule dependent

Within the cell, many organelles including mito-
chondria are transported along microtubules, which
function as intracellular railways (Hirokawa 1998). To
examine whether microtubules are involved in Parkin-
dependent mitochondrial-clustering, we carried out
pharmacologic experiments. Parkin-expressing HeLa
cells were treated with nocodazole and colchicine,
both of which inhibit microtubule polymerization.
After treatment with nocodazole (10 lg ⁄ mL) or col-
chicine (50 lg ⁄mL), the perinuclear mitochondria
clusters dissipated (Fig. 2A). These data and statistical
analyses (Fig. 2B) showed that mitochondrial
morphology was altered from a large cluster to small
aggregates scattered throughout the cells. In contrast,
treatment with latrunculin A ⁄ B, which prevents actin
polymerization, had no effect on the mitochondrial
perinuclear clustering (not shown). These results sug-
gest that the transport of depolarized mitochondria to
the perinuclear region is microtubule dependent and
are in agreement with a recent report by Przedbor-
ski’s group (Vives-Bauza et al. 2010).

Various pathogenic mutations of Parkin impede

mitochondrial clustering

We next examined whether pathogenic mutations of
Parkin affect the perinuclear clustering of mitochon-
dria. HA-Parkin mutants harboring one of eight path-
ogenic mutations (R42P, K161N, T240R, R275W,
C352G, T415N and G430D; Fig. 3A) were serially
introduced into HeLa cells, followed by CCCP
treatment for 4 h and the mitochondrial morphology
analyzed in more than 100 cells per mutation
(Fig. 3B). The K161N, K211N and T240R mutations,
which severely compromised the mitochondrial
localization of Parkin (Geisler et al. 2010; Matsuda
et al. 2010; Narendra et al. 2010), inhibited the mito-
chondrial clustering. In these cells and in particular
the K211N cells, Parkin was diffusely localized
throughout the cytosol and did not affect mitochon-
drial clustering (Fig. 3C, panel 3). In the R275W and
C352G mutations, Parkin associated with depolarized
mitochondria, but mitochondrial ubiquitylation and
juxtanuclear clustering were severely inhibited
(Fig. 3C and not shown). Because ubiquitin-ligase
(E3) activity against a pseudo-substrate (i.e., the MBP
moiety of the MBP-fused Parkin in vitro and the GFP
moiety of the GFP-Parkin in cell) was intact in these
Parkin mutations (Hampe et al. 2006; Matsuda et al.

(A) (B)

Figure 2 Mitochondrial clustering catalyzed by Parkin is microtubule dependent. (A) Microtubule polymerization inhibitors ham-

pered the perinuclear clustering of mitochondria. HeLa cells expressing HA-Parkin were treated with CCCP plus DMSO (con-

trol), nocodazole or colchicine, then immunostained with anti-Parkin or anti-Tom20 antibodies. Scale bars represent 10 lm.

Treatment with both nocodazole and colchicine caused the depolarized mitochondria to scatter throughout the cells. (B) The mor-

phology of mitochondria was analyzed in more than 100 cells per each condition. Bars represent the mean ± SD values of at least

three experiments. Asterisk, P < 0.01 (Welch’s t-test).
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2006, 2010), it is possible that the R275W and
C352G mutations might affect the recognition of
intrinsic substrates. Furthermore, mutations in the
RING2 catalytic domain (T415N and G430D),
which abolished the E3 activity of Parkin in vitro
(Hampe et al. 2006; Matsuda et al. 2006), impeded
the mitochondrial clustering (Fig. 3B). In these cells,
even when mutant Parkin localized on damaged
mitochondria, mitochondria were still dissipated
throughout the cells (Fig. 3C, panel 6). Triple stain-
ing for mitochondria, ubiquitin and Parkin further
confirmed that the T415N and G430D mutants did
not promote mitochondrial ubiquitylation or mito-
chondrial clustering (Fig. 3D). These results suggest
that ubiquitylation catalyzed by Parkin is required for
mitochondrial clustering.

p62 ⁄SQSTM1 is not essential for mitochondrial

degradation

What then links the ubiquitylation of depolarized
mitochondria to their perinuclear clustering? The
important clue was obtained from our study focusing
on the role of p62 in Parkin-mediated mitochondrial
degradation. p62 can interact with both ubiquitin and
the autophagic machinery LC-3 (Bjorkoy et al. 2005;
Komatsu et al. 2007; Pankiv et al. 2007; Ichimura
et al. 2008; Noda et al. 2008; Shvets et al. 2008) and
thus p62 is a plausible factor that links Parkin-cata-
lyzed ubiquitylation with mitochondrial degradation
via autophagy.

Under steady-state conditions in HeLa cells, endog-
enous p62 was mainly localized throughout the cyto-
sol irrespective of the presence or absence of Parkin,
whereas p62 was rapidly recruited to the mitochondria
only in Parkin-expressing cells after CCCP treatment
for 1 h (Fig. 4A), as also reported by Springer et al.
recently (Geisler et al. 2010). Even after further treat-
ment with CCCP for 4 h, p62 remained localized on
perinuclear clustered-mitochondria. Staining with
single antibodies alone indicated that the merged data
described earlier were not derived from channel
crosstalk (Fig. S1 in Supporting Information). Mito-
chondrial localization of p62 was only observed in
Parkin-expressing cells and disappeared when Parkin
mutants deficient in substrate recognition or E3
activity (R275W, C352G, T415N and G430D;
Fig. 3A) were introduced (Fig. 4), suggesting that
ubiquitylation-catalyzed Parkin is required for the
recruitment of p62 onto depolarized mitochondria.

To examine whether p62 is involved in mitochon-
drial degradation, we set up an experimental system

using mouse embryonic fibroblasts (MEFs). Because
endogenous Parkin is undetectable in MEFs, HA- or
GFP-Parkin was introduced into control (p62+ ⁄ +) and
p62 KO (p62) ⁄ )) MEFs (Komatsu et al. 2007) by
retro-viral transfection (Kitamura et al. 2003). Because
MEFs are less sensitive than HeLa cells to CCCP,
higher concentrations of CCCP (30 lM) and longer
incubation are required to observe the phenotype. Par-
kin was selectively recruited to the mitochondria after
CCCP treatment in both p62+ ⁄ + and p62) ⁄ ) MEFs at
t = 4 h (Fig. 5B and data not shown). In wild-type
MEFs, p62 was again selectively recruited to the mito-
chondria after CCCP treatment at t = 4 h, although
the transport efficiency was lower than that of HeLa
cells (data not shown), and depolarized mitochondria
were later clustered in the perinuclear region similar to
HeLa cells at t > 12 h (Fig. 5A). We next carried out
cytochrome c oxidase (COX) electronmicrographs
that detect COX activity with mitochondria stained
black (Fig. 5C, left panel) (Seligman et al. 1968). Elec-
tron microscopic analysis showed that juxtanuclear-
clustered mitochondria aggregated in grape-like clus-
ters and not fused to each other to make single large
mitochondrion (Fig. 5C). Some mitochondria were
malformed with disintegration of cristae structures
indicated by black staining (Fig. 5C, arrowheads).

We then studied mitochondrial clearance in p62-
ablated MEFs to examine whether p62 recognizes
Parkin-catalyzed ubiquitylation on mitochondria and
directs mitochondria to autophagosomes via binding
to LC3. When Atg7 (an essential gene for autophagy)
KO MEFs (Komatsu et al. 2005) were used as a posi-
tive control, the clearance of depolarized mitochon-
dria was considerably impeded after CCCP treatment
for 24 h [Fig. 6A and (Matsuda et al. 2010)]. We then
examined mitochondrial degradation in p62) ⁄ )

MEFs. Contrary to our expectations, immunocyto-
chemistry experiments at 12, 16, 20 and 24 h showed
that p62 deletion did not inhibit but rather acceler-
ated Parkin-dependent mitochondrial degradation
(Fig. 6A–C). Immunocytochemistry using an anti-p62
antibody confirmed that endogenous p62 was indeed
lost in p62) ⁄ ) MEFs (Fig. 5A, right panel).

To quantitatively confirm the aforemetioned
results, we examined the mtDNA copy number in
wild-type, Atg7) ⁄ ) and p62) ⁄ ) MEFs after CCCP
treatment. When we measured the abundance of
mitochondrial 12s ribosomal RNA gene (encoded in
mitochondrial DNA) normalized to the glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) gene
(encoded in nuclear DNA) in wild-type MEFs, we
found that the quantity of 12s ribosomal RNA gene
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was decreased to 62 ± 4% after CCCP treatment,
whereas the Atg7 knockout compensated for the
decease by restoring the level to 95 ± 13%, suggest-
ing that the reduction in mitochondrial DNA reflects
Parkin-dependent mitophagy. Furthermore, CCCP
treatment of p62 KO MEFs promoted the degrada-
tion of mitochondrial DNA (43 ± 2%) comparable to
that of wild-type MEFs (Fig. 6D), again implying
that mitochondrial degradation occurs in p62) ⁄ )

MEFs. Moreover, treatment with bafilomycin A1 (an

inhibitor of vacuolar-type H+-ATPase that prevents
autophagosome-lysosome fusion and ⁄ or intralyso-
somal degradation) or a cocktail of lysosomal inhi-
bitors (E64d, pepstatin A and ammonium chloride)
(Mizushima et al. 2010) inhibited the mitochondrial
degradation of p62) ⁄ ) MEFs by immunocytochemis-
try (Fig. 6E), showing that depolarized mitochondria
were indeed degraded by the autophagic and lyso-
somal pathway in p62) ⁄ ) MEFs. Although these
results do not rule out completely the involvement of

Figure 3 Various pathogenic mutations of Parkin impede mitochondrial clustering. (A) Schematic diagram of disease-relevant

mutants of Parkin used in this study. IBR, in between RING; Ubl, ubiquitin like. (B) HeLa cells expressing HA-Parkin with vari-

ous pathogenic mutations were treated with CCCP followed by immunocytochemistry. Mitochondrial clustering was analyzed in

more than 100 cells per mutation. Bars represent the mean ± SD values of at least three experiments. Asterisk, P < 0.01; two

asterisks, P < 0.001 (Welch’s t-test). (C) Immunocytochemistry indicative of a typical example for each mutation is shown. Scale

bars represent 20 lm in wild type and 10 lm in the other mutations. (D) Triple-staining using mitochondria-targeting GFP

(Mt-GFP), anti-ubiquitin and anti-Parkin antibodies confirmed that mitochondria in T415N and G430D mutants did not undergo

ubiquitylation or clustering.

(A) (B)

Figure 4 E3 activity of Parkin recruits endogenous p62 to depolarized mitochondria. (A) HeLa cells expressing wild type or E3-

incompetent Parkin were treated with CCCP for 0, 1 or 4 h, then immunostained with the indicated antibodies. Note that endog-

enous p62 was recruited to mitochondria only in wild-type Parkin-expressing cells. All scale bars represent 10 lm and higher mag-

nification views of the boxed areas are shown in the insets. (B) Recruitment of p62 onto mitochondria was analyzed in more than

100 cells in each experimental condition. Bars represent the mean ± SD values of at least three experiments. Two asterisks,

P < 0.001 (Welch’s t-test).
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p62 in Parkin-mediated mitophagy, a role for p62 in
Parkin-dependent mitochondrial degradation is substi-
tutable in MEFs (see Discussion).

p62 ⁄SQSTM1 is necessary for perinuclear

clustering of damaged mitochondria

Although we did not observe a distinct defect in the
degradation of damaged mitochondria in p62 KO
MEFs, we noticed that the perinuclear clustering of
depolarized mitochondria was almost completely inhib-
ited in p62 deficient MEFs (Fig. 6A–C). To exclude
the possible effect of factors other than disruption of
p62 in this phenotype, we examined whether wild-type
p62 rescued the p62) ⁄ ) MEF phenotype. Re-introduc-

tion of GFP-tagged p62 (Ichimura et al. 2008) comple-
mented the perinuclear clustering of depolarized
mitochondria in p62) ⁄ ) MEFs (Fig. 7), confirming that
the observed defects were caused by the loss of p62.

p62 possesses an N-terminal Phox and Bem1 (PB1)
domain that mediates hetero- and homo-oligomeriza-
tion of p62 (Lamark et al. 2003) and the LC3 recogni-
tion sequence (LRS) ⁄LC3 interacting region (LIR)
identified in murine (Ichimura et al. 2008) and human
p62 (Pankiv et al. 2007), respectively, to promote asso-
ciation with autophagic machinery. To examine the
role of these domains in mitochondrial clustering, we
introduced a K7A ⁄D69A double mutation in the PB1
domain or a W340A mutation in LRS ⁄ LIR, and
examined whether these p62 mutants complemented

(A) (B)

(C)

Figure 5 Damaged mitochondria clustered to the juxtanuclear region in mouse embryonic fibroblasts (MEFs). (A) Endogenous

p62 was recruited to mitochondria in MEFs. Exogenous Parkin and endogenous p62 were stained in wild-type or p62) ⁄ ) MEFs.

(B) Parkin was recruited to the mitochondria after CCCP treatment in p62) ⁄ ) MEFs. In A and B, higher magnification views of

the boxed areas are shown in the insets. (C) Depolarized mitochondria in the perinuclear region were not fused to each other.

Electron microscopic analysis showed that juxtanuclear-clustered mitochondria are aggregated like a bunch of grapes. Arrowheads

indicate malformed mitochondria with disintegrated cristae. Scale bars for each figure are shown below.
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(A) (B)

(C)

(D)

(E)

Figure 6 Juxtanuclear clustering rather than degradation of mitochondria is considerably inhibited in p62) ⁄ ) mouse embryonic

fibroblasts (MEFs). (A) Top panel: example figures indicative of diffused (light gray in the bar graph), aggregated (gray) or degraded

mitochondria (black) are shown. Bottom panel: wild type, p62) ⁄ ) and Atg7 ) ⁄ ) MEFs expressing HA-Parkin were treated with

CCCP for 24 h, and mitochondrial morphology was analyzed in >100 cells per mutation. Error bars represent the mean ± SD val-

ues of at least three experiments. (B) Immunocytochemistry of wild type, p62) ⁄ ) and Atg7 ) ⁄ ) MEFs expressing HA-Parkin after

CCCP treatment for 16 h. Green, red and blue arrowheads indicate cells with dispersed, aggregated and degraded mitochondria,

respectively. (C) Time course experiments showing the morphologic change of mitochondria. Wild-type or p62) ⁄ ) MEFs express-

ing HA-Parkin were treated with CCCP for the indicated times, immunostained with anti-HA and anti-Tom20 antibodies, and

then the mitochondrial morphology was analyzed in more than 100 cells per condition. Green, red and blue lines indicate cells

with dispersed, aggregated and degraded mitochondria, respectively. Error bars represent the mean ± SD values of at least three

experiments. (D) Measurement of mtDNA contents in wild type, Atg7 ) ⁄ ) and p62) ⁄ ) MEFs after CCCP treatment. The graph

represents the results from three independent experiments. Contents of mtDNA without CCCP treatment were defined as 100%

in each cell. Asterisk shows significant difference from control (P < 0.01; Welch’s t-test), whereas two asterisks show no signifi-

cance (P > 0.01). (E) Depolarized mitochondria are degraded by the autophagic and lysosomal pathway in p62) ⁄ ) MEFs. p62) ⁄ )

MEFs were treated with CCCP plus DMSO (control), bafilomycin A1 or a protease inhibitor cocktail (pepstatin A, E64d and

NH4Cl), then the morphology of mitochondria was analyzed in more than 100 cells per each condition. Bars represent the

mean ± SD values of at least three experiments. Asterisk, P < 0.001 (Welch’s t-test).
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the mitochondrial clustering in p62) ⁄ ) MEFs. When
introduced into p62) ⁄ ) MEFs, the K7A ⁄ D69A mutant
was unable to complement the dispersion of mitochon-
dria, whereas the W340A mutant did (Fig. 7). These
results suggest that oligomerization of p62 but not
interaction with LC3 is essential for the mitochondrial
clustering triggered by Parkin. Interestingly, a delay in
mitochondrial degradation was observed in p62) ⁄ )

MEFs complemented with the p62 mutant W340A
(Fig. 7B), suggesting that p62 is involved in Parkin-
mediated mitophagy. The defect in p62) ⁄ ) MEFs,
however, is concealed by other functionally redundant
protein(s) (see Discussion).

Discussion

Function of p62 in the degradation of depolarized

mitochondria

Growing lines of evidence indicate that p62, a selec-
tive substrate of autophagy, acts as a shuttle protein

that transports ubiquitylated proteins to the auto-
phagosome via interactions with both the ubiquitin
and autophagic component LC3 (Kirkin et al. 2009;
Komatsu & Ichimura 2010). Because p62 is selec-
tively transported to the depolarized mitochondria
upon Parkin-catalyzed ubiquitylation, we initially pre-
dicted that p62 links Parkin-mediated ubiquitylation
and mitophagy. This idea is based on the preceding
paper regarding p62-mediated pexophagy and xeno-
phagy i.e., a selective autophagy for cytoplasm-invad-
ing bacteria and superfluous peroxisomes (Kim et al.
2008; Yoshikawa et al. 2009; Zheng et al. 2009).
However, in our experimental settings of this study,
we showed by immunocytochemistry and quantitative
analysis of mitochondrial DNA that Parkin-dependent
mitochondrial degradation was not hindered in p62
KO (p62) ⁄ )) MEFs (Figs 6,7). These results, while
admittedly not conclusive, seemingly suggest that p62
is not involved in Parkin-mediated mitophagy. We
think a key idea to resolve this discrepancy is func-
tional redundancy. Even when p62 is lost, several

(A) (B)

Figure 7 The PB1 domain of p62 is imperative for the clustering of depolarized mitochondria. (A) Immunocytochemistry of

p62) ⁄ ) mouse embryonic fibroblasts (MEFs) complemented by wild-type p62 or the indicated p62 mutants. Higher magnification

views of the boxed areas are shown in the insets in the middle panel. (B) The mitochondrial morphology of p62) ⁄ ) MEFs express-

ing the indicated p62 mutants was analyzed in more than 100 cells per mutation. Bars represent the mean ± SD values of at least

three experiments. Asterisk shows significant difference from control (P < 0.01; Student’s t-test) whereas two asterisks show no sig-

nificance (P = 0.43 > 0.01), meaning that wild-type p62 restored the mitochondrial clustering, whereas the PB1 domain mutant

(K7A, D69A) did not. Triple asterisks show significant difference from wild-type control (P = 0.005 < 0.01), meaning that mito-

chondrial degradation was impaired in p62) ⁄ ) MEFs complemented with the p62 W340A mutant.
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intracellular proteins such as NBR1, Alfy and BAG3
(Kirkin et al. 2009) might be able to link Parkin-cata-
lyzed ubiquitylation to autophagic degradation, and if
so the degradation-incompetent phenotype of p62) ⁄ )

MEFs might be concealed. Interestingly, we noticed
that mitochondrial degradation was impaired in
p62) ⁄ ) MEFs complemented with the p62 W340A
mutant, which cannot interact with LC3 (Fig. 7B).
The most plausible explanation for this result is that
the p62 W340A mutant competes for certain
common factor(s) with functionally redundant pro-
tein(s), and thus has a dominant effect, implying the
involvement of p62 in Parkin-mediated mitophagy
(note that complete disruption of p62 cannot cause
this type of titration and thus cannot confer the dom-
inant effect).

During the preparation of our manuscript, Geisler
et al. (2010) reported that p62 is required for Parkin-
dependent mitophagy. They showed that knockdown
of p62 in HeLa cells dramatically inhibited the final
clearance of damaged mitochondria; cells with uncle-
ared mitochondria decreased from 85% to 20% with
p62 siRNA treatment. Although our results are not
consistent with Geisler et al., methodological differ-
ences (i.e. we used p62 knockout MEFs whereas they
used p62 siRNA in HeLa cells) may account for the
conflicting observations and further analysis will clar-
ify the reason for this discrepancy.

Function of depolarized mitochondria

juxtanuclear clustering

Although we did not observe a clear defect in
mitochondrial degradation in p62 KO MEFs, we
realized that perinuclear clustering of depolarized
mitochondria was severely inhibited by p62 dele-
tion, showing that p62 is involved in this process.
Depolarized mitochondria were ubiquitylated by
Parkin, recognized by p62, transported via microtu-
bules to aggregate within a juxtanuclear region and
sometimes degraded. This series of events is remi-
niscent of aggresome formation, a general cellular
response to reduce the toxicity of misfolded or un-
assembled proteins. In this process, misfolded pro-
tein(s) are ubiquitylated, recognized by p62 ⁄ NBR1
to be segregated and concentrated into proteinacious
inclusion bodies and ⁄ or recognized by HDAC6 to
be transported along microtubles, organized into a
perinuclear aggregation (an aggresome) and some-
times degraded by autophagy (Johnston et al. 1998;
Garcia-Mata et al. 1999; Olzmann et al. 2007; Kir-
kin et al. 2009). The similarity between aggresome

and mitochondrial clustering, although superficial at
the moment, suggests that the two ubiquitin-
mediated cytoprotective events have something in
common.

Then, what is the physiologic significance of the
microtubule transport and juxtanuclear clustering of
depolarized mitochondria? Two scenarios are possible.
In the first scenario, this event is involved in
inclusion body formation. Many neurodegenerative
diseases typically involve deposits of inclusion bodies
containing abnormal aggregated proteins. Such inclu-
sion bodies have been suggested to be pathogenic;
however, growing lines of evidence indicate that they
are not the main cause of toxicity but a consequence
of a protective cellular response (Ross & Poirier
2005). In the case of Parkinson disease, a characteris-
tic inclusion called the Lewy body (LB) is observed
within neurons of the substntia nigra. Interestingly,
electron microscopic analysis by Gai et al. (2000)
showed that many mitochondria are concentrated in
the early forms of Lewy bodies and Bedford et al.
(2008) also demonstrated deposits of mitochondria in
the early form of the Lewy body (pale body) in
patients with Parkinson’s disease. These results suggest
that mitochondria are a key component of the early
phase in the biogenesis of the Lewy body and thus
mitochondrial clustering might be involved in this
process.

In the second scenario, transport and perinuclear
clustering of depolarized mitochondria in cultured
cells reflect withdrawal of axonal mitochondria in
neurons. Generally, mitochondria must be positioned
properly to serve the needs of the cell. Neuron cells
are highly polarized cells, and thus the importance of
mitochondrial positioning looms much larger than
conventional cells. Indeed, mitochondria are deliv-
ered to areas of the axon where metabolic demand is
high, such as synapses, active growth cones and
branches (Hollenbeck & Saxton 2005). In axons,
microtubules are oriented with their plus ends
toward the periphery, and damaged mitochondria are
subjected to retrograde transport along microtubules
toward the cell body, which is the same direction of
aggresome formation (MacAskill & Kittler 2010).
We speculate that the retrograde transport along
microtubules and the juxtanuclear clustering of depo-
larized mitochondria mediated by PINK1 ⁄ Parkin in
cultured cells reflect the aforementioned retrieval of
damaged mitochondria in neuronal axons. If so, then
PINK1 ⁄Parkin functions not only in degradation
but also in retrieval and quarantine of damaged
mitochondria.
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Experimental procedures

Cell culture and transfection

HeLa cells were cultured at 37 �C with 5% CO2 in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with glucose and L-glutamine (Sigma) containing penicil-

lin ⁄ streptomycin and 10% fetal bovine serum (FBS; Gibco).

To obtain transformants, cells were transiently transfected with

various plasmids by Fugene 6 (Roche). MEFs were cultured at

32 �C with 5% CO2 in MEF media containing DMEM, 10%

FBS, penicillin ⁄ streptomycin, b-mercaptoethanol (Sigma), 1·
nonessential amino acids (Gibco) and 1 m Sodium Pyruvate

(Gibco). To induce the expression of wild-type or mutants

p62 in p62) ⁄ ) MEFs (Ichimura et al. 2008), cells were pre-

treated with 250 ng ⁄ mL of doxycycline (Sigma). Various stable

transformants of MEFs were established by infecting MEFs

with recombinant retroviruses. HA-Parkin and GFP-Parkin

were cloned into a pMXs-puro vector. Retrovirus packaging

cells, PLAT-E were provided by Dr T. Kitamura from the

University of Tokyo (Kitamura et al. 2003) were transfected

with the aforementioned vectors and were cultured at 37 �C
for 24 h. After changing the medium, cells were further incu-

bated at 37 �C for 24 h and the viral supernatant was collected

and used for infection. MEFs were plated onto 35-mm dishes

at 24 h before infection, and the medium was replaced with

the undiluted viral supernatant described earlier with 8 lg ⁄ mL

polybrene (Sigma). Two days later, transformants were selected

in medium containing 10 lg ⁄ mL puromycin.

Electron microscopic analysis

COX electronmicrographs were carried out as reported previ-

ously (Nonaka et al. 1989; Nakada et al. 2001). Briefly, cul-

tured cells were fixed in cooled 0.05 M phosphate buffer (pH

7.4) with 2% glutaraldehyde for <1 min. The fixed samples

were rinsed with 0.05 M phosphate buffer (pH 7.4) at room

temperature and stained for COX activity (Seligman et al.

1968). The stained section was washed in PBS and fixed in

OsO4 for 45 min. After dehydration, the samples were embed-

ded in an epoxy resin. Ultrathin sections that were not stained

with uranyl acetate and lead nitrate were directly observed.

Measurement of mitochondrial DNA contents

Total genomic and mitochondrial DNA were purified from

wild-type, Atg7 ) ⁄ ) or p62) ⁄ ) MEFs expressing GFP-Parkin

using Gentra Puregene Kit (QIAGEN) according to recom-

mended protocols, and total DNA was adjusted to a concentra-

tion of 0.1–1 ng ⁄ lL in TE buffer was used as a PCR template.

Real-time quantitative PCR was carried out using QuantiTect

SYBR Green PCR kit (QIAGEN) with a set of primers for a

reference gene, GAPDH (5¢-AAC GAC CCC TTC ATT GAC

-3¢ and 5¢-TCC ACG ACA TAC TCA GCA C-3¢), or for the

target gene, mitochondrial 12s ribosomal RNA (5¢-AAC TCA

AAG GAC TTG GCG GTA CTT TAT ATC-3¢ and 5¢-GAT

GGC GGT ATA TAG GCT GAA TTA GCA AGA G-3¢). To

prevent carry-over contamination, 0.5 unit of Uracil DNA

Glycosylase (Invitrogen) was added during PCR, and samples

were prepared in triplicate for each condition. PCR was carried

out with a 7900HT Sequence Detection System (Applied Biosys-

tems) under the following conditions: initial activation at 50 �C
for 2 min and 95 �C for 15 min, amplification by 40 cycles of

95 �C for 20 s and 60 �C for 60 s. Data acquisition and analysis

were carried out on a 7900HT SDS 2.0 (Applied Biosystems).

Immunocytochemistry

To depolarize the mitochondria, HeLa cells were treated with

10 lM CCCP, and MEFs were treated with 30 lM CCCP for

appropriate times. To depolymerize microtubules, HeLa cells

were pre-treated with 50 lg ⁄ mL colchicine or 10 lg ⁄ mL

nocodazole for 16 h and then were treated with 10 lM CCCP

plus each inhibitor for 4 h. To check the specificity of link-

age-specific anti-ubiquitin antibodies, Lys 48- or Lys 63-linked

polyubiquitin chain (Enzo Life Sciences) was used as a positive

control and subjected to immunoblotting.

For immunofluorescence experiments, cells were fixed with

4% paraformaldehyde, permeabilized with 50 lg ⁄ mL digitonin

and stained with primary antibodies described in the next section

and with the following secondary antibodies: mouse, rabbit

and ⁄ or guinea pig Alexa Fluor 488, 568 and 647 (Invitrogen).

The N-terminal 34 amino acids of PINK1 were fused to GFP to

stain mitochondria in some triple staining experiments. Cells

were imaged using a laser-scanning microscope (LSM510

META; Carl Zeiss, Inc.) with a Plan-Apochromat 63 · NA 1.4

oil differential interference contrast objective lens. Image contrast

and brightness were adjusted in Photoshop (Adobe).

To inhibit the autophagic and lysosomal pathway, 0.1 lM

bafilomycin A1 (Calbiochem) or a mixture of 10 lg ⁄ mL

E64d, 10 lg ⁄ mL pepstatin A and 10 mM NH4Cl (Sigma) was

added with CCCP.

Antibodies

Antibodies used in this study are as follows: anti-GFP (3E6;

Wako chemical), anti-HA [12CA5 (Roche); or F7 (Santa

Cruz)], anti-Parkin (#2132; Cell Signaling), anti-Tom20

(FL-145 and F-10; Santa Cruz), anti-Ubiquitin [P4D1 (Santa

Cruz) for immunoblotting; or FK2 (MBL) for immunocyto-

chemistry], anti-K48-linked polyubiquitin (Apu2; Millipore),

anti-K63-linked polyubiquitin [HWA4C4 (BIOMOL); or

Apu3 (Millipore)] and anti-p62 (PROGEN).
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