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Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and its aetiology involves a complex interplay between genetic,
epigenetic, and environmental factors. In recent years, evidences from both human and animal experiments have correlated
early life factors with programming diabetes risk in adult life. Fetal and neonatal period is crucial for organ development. Many
maternal factors during pregnancy may increase the risk of diabetes of offsprings in later life, which include malnutrition, healthy
(hyperglycemia and obesity), behavior (smoking, drinking, and junk food diet), hormone administration, and even stress. In
neonates, catch-up growth, lactation, glucocorticoids administration, and stress have all been found to increase the risk of insulin
resistance or T2DM.Unfavorable environments (socioeconomic situation and famine) or obesity also has long-termnegative effects
on children by causing increased susceptibility to T2DM in adults. We also address the potential mechanisms that may underlie the
developmental programming of T2DM. Therefore, it might be possible to prevent or delay the risk for T2DM by improving pre-
and/or postnatal factors.

1. Introduction

Type 2 diabetes (T2DM) is a metabolic disease caused by
genetic and multiple environmental factors. Epidemical and
experimental studies have found that detrimental early life
factors may predispose high incidence of cardiovascular
disease and metabolic diseases in later life, which is also
termed as “barker hypothesis.” Organs are under develop-
ment and functional maturation from fetal stage to child-
hood; disturbance of the homeostasis during crucial periods
might predispose increased risk of insulin resistance and even
T2DM in late life.

2. Part I: Prenatal Factors (Figure 1)

2.1. Diet and Nutrition. It has been suggested that the quality
and quantity of the nutrition during pregnancy may cause
strong and permanent effects on the fetus. The altered
structure of chromosome during this procedure might be

the cause of cell dysfunction and increased susceptibility to
diseases through altered gene expression [1].

2.1.1. Malnutrition and Low Protein Diet. The associations
between maternal malnutrition, low protein diet, and T2DM
have been widely studied. Typical epidemical studies from
the population born during the Dutch famine period [2] or
in some poor countries [3] have found that those who had
been exposed to maternal malnutrition may have increased
morbidity ofmetabolic diseases including T2DM in adult life.

The mechanisms responsible for the prenatal malnu-
trition programming insulin resistance or T2DM remain
unclear. Orozco-Soĺıs et al. [4] have found that low pro-
tein diet during pregnancy and lactating may cause per-
manent altered hypothalamic expression of genes in rat
offspring involved in insulin signaling and lipid and glucose
metabolism, which may programme metabolic diseases.

In addition, the effect of low protein diet during preg-
nancy on postnatal 𝛽 cell has also been noticed recently.
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Figure 1: Prenatal factors mentioned in recent years that might correlate with insulin resistance and/or T2DM. Data from human and
animal studies have shown that malnutrition or overnutrition, metabolic disorders, exposure to hypoxia, some chemicals and hormones,
and unhealthy lifestyle such as smoking and alcohol drinking during pregnancy might predispose detrimental long-term effects on offspring,
leading to increased risk of insulin resistance or T2DM. TFA: transfatty acids; BPA: biophenol A.

Low protein diet

DNA methylation in P2 
promoters 

Mitochondria dysfunction  

HNF4a expression ↓

Increased cell differentiation ↑

Oxidative stress ↑
Fibrosis ↑

Figure 2: The effect of low protein diet during pregnancy on postnatal 𝛽 cell. Low protein diet during pregnancy may lead to increased
oxidative stress, fibrosis, decreased HNF4a expression, defected mitochondriogenesis, and mitochondria dysfunction, and increased cell
differentiation instead of proliferation was found in 𝛽 cell of adult animal offspring, which may participate in 𝛽-cell dysfunction and
consequently increase the incidence of T2DM.

Increased oxidative stress and fibrosis [5], decreased HNF4a
expression with increased DNAmethylation in P2 promoters
[6], defected mitochondriogenesis and mitochondria dys-
function [7], and increased cell differentiation instead of
proliferation [8] were found in𝛽 cell of adult animal offspring
whose mothers were under low protein diet during preg-
nancy. These may cause 𝛽-cell dysfunction and consequently
increase the incidence of T2DM in postnatal life (Figure 2).

2.1.2. Overnutrition

High Protein. A study fromMaurer and Reimer [9] in Wistar
rats has found that high protein diet during pregnancy and
lactating may cause increased resistin and IL-6 mRNA levels
in brown fat tissue in 35-day-old offspring; both factors were
included in the pathogenesis of insulin resistance [10, 11].

High Fat Diet.Both human and animal studies have identified
that fat diet may cause obesity and insulin resistance [12, 13].
Intriguingly, the effect of high fat diet on metabolic disorders
seemed to be programmative. The prenatal period is a key
developmental window for nutrition status. Masuyama and

Hiramatsu [14] found that mice offspring exposed to high
fat diet during pregnancy developed insulin resistance and
hyperlipidemia at 24wks of age, which was associated with
altered levels of leptin in adipose tissue. The experiment
conducted in C57BL/6 mice by Liang et al. [15] has also
showed that high saturated fatty acids diet during pregnancy
led to insulin resistance, hyperglycemia in adult offspring
under normal diet condition.Themechanisms underlying are
still under investigation. Evidences from animal study have
indicated that overexposure to high fat diet in utero may lead
to elevated mRNA level of hypothalamic signal transducer
and activator of transcription-3 and suppressor of cytokine
signalling-3 in the offspring [16]. Both of these two factors
are found to participate in obese and insulin resistance cases
[17]. In addition, prenatal exposure to high saturated fats may
cause increased hepatic phosphoenolpyruvate carboxykinase
expression, fatty liver, reduced basal acetyl CoA carboxy-
lase phosphorylation, and insulin signalling [18]. Impaired
Wnt/𝛽-catenin signaling pathway in skeletal muscle has also
been found [19], which may also participate in pathogenesis
of insulin resistance in adult life, since the insulin sensitivity
can be improved by activating Wnt/𝛽-catenin [20].
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2.1.3. Transfatty Acids and Junk Food. Transfatty acids are
unsaturated fatty acids that contain nonconjugated double
bond in the trans-configuration. So far, data that correlated
transfatty acids diet with insulin resistance or diabetes is weak
and inconsistent [21–23]. However, it is still worth noting that
prenatal exposure to transfatty acids might cause impaired
insulin resistance and increased content of abdominal fat
after birth [24]. No similar effects can be observed in mice
exposed to transfatty acid during lactating.

Data about long-term effects of prenatal junk food
taking is quite limited; experiment from Bayol et al. [25]
has indicated that junk food taking during prenatal and
lactating period may cause reduced insulin sensitivity in
female offspring rats. More intensive studies still need to be
performed for the convincing conclusion.

2.1.4. Alcohol. Studies have already correlated chronic alco-
hol intake with insulin resistance even T2DM [26, 27]. In
the series of studies performed by Chen and Nyomba they
have found that SD rats with alcohol intake (4 g/kg/day)
during pregnancy may have hyperglycemia and reduced
glucose transporter type 4 (GLUT4) content in muscle
in adult offspring after a reduced birth weight and then
catch up growth [28]. In addition, in this animal model,
impaired inhibition effects of insulin on hepatic gene expres-
sion of phosphoenolpyruvate carboxykinase and peroxisome
proliferator activated receptor gamma coactivator-1 mRNA
[29] and reduced phosphorylation of protein kinase C zeta
isoform [30] were exhibited in the offspring. Yao et al. [31]
have found prenatal alcohol intake elevated expression of
Tribbles 3 and phosphatase and tensin homolog deleted on
chromosome 10 in both liver and muscle [32, 33], leading to
impaired insulin sensitivity [34, 35]. In addition, increased
11beta-hydroxysteroid dehydrogenase type-1 level in liver and
adipose tissue [36] may also partly contribute to the insulin
resistance caused by prenatal alcohol taking though elevating
local glucocorticoid levels.

2.2. Environmental Factors

2.2.1. Biophenol A. Biophenol A, a biochemical material used
in plastic containers that are widely used in daily life [37], has
been found that it may achieve similar effects with estrogen
[38, 39]. Studies have supported that biophenol A might be
correlated with the pathogenesis of T2DM [40, 41]. A human
study performed by Lang et al. [42] has shown that the
biophenol A concentration in urine positively correlated with
cardiovascular diseases and diabetes.

In rats, 50𝜇g/kg⋅d biophenol A intake during pregnancy
and lactating period may lead to insulin resistance in adult
offspring, and this effect can be largely enhanced by high fat
diet after birth [43]. Similar results have also been described
by Alonso-Magdalena et al. [44] who further found that the
altered Ca2+ signaling pathway and reduced cell numbers
in pancreas might contribute to reduced insulin sensitivity.
However, controversial conclusions have also been raised
out by Ryan et al. [45] in CD-1 mice, which indicate that
perinatal exposure to ecologically relevant dose of BPA could
not impair the glucose tolerance in the offspring. Therefore,

different biophenol A dosages applied in different animal
models may vary the conclusion.

2.2.2. Maternal Hypoxia. Data from animal experiment has
found that exposure to hypoxia during pregnancy leads to
insulin resistance, impaired glucose homeostasis, and altered
expression of genes involved in insulin-signaling pathways in
the offspring [46]. Mechanisms underlying this relationship
are unclear since intrauterine hypoxia may partly correlate
with undernutrition. However, Camm et al. [47] found that,
compared to prenatal undernutrition, prenatal hypoxia may
cause different gene expression patterns in the liver and
muscle in adult offspring, including reduced expression of
hepatic insulin receptor substrate 1, phospho-Akt, andmuscle
Akt2, indicating that prenatal hypoxia may promote markers
of insulin resistance independent of undernutrition.

2.2.3. Maternal Smoking. Studies have reported the unfa-
vorable effects of smoking on diabetes in adult [48, 49].
However, a clearly causal relationship has only been found
betweenmaternal smoking and increased risk of T2DMin the
offspring. A human study performed by Thiering et al. [50]
had found increased insulin levels in 10-year-old children
after prenatal smoking, and breast milk feeding made this
alteration even more magnificent. This finding is consistent
with the study performed previously by Bruin et al. [51] in
animals which indicated that both conception and lactation
periods were needed for nicotine exposure that may result
in permanent 𝛽-cell loss and subsequent impaired glucose
tolerance. In addition, Holloway et al. [52] found that fetal
and neonatal exposure to nicotine has transgenerational
effects and insulin resistance can be found in the F2 offspring.
Exact mechanism still remains largely unknown; reduced
pancreas cell numbers and size and reduced expression of
𝛽-cell marker genes such as pdx-1, Pax-1, and Nkx6.1 [53]
all have been addressed. In addition, data from Chen et al.
have indicated that nicotine may also downregulate gene
expression of appetite regulators neuropeptide Y and pro-
opiomelanocortin in the arcuate nucleus of the hypothalamus
in fetal brain, which may consequently lead to unhealthy
eating habits in the offspring and predispose high risk of
obesity or diabetes [54].

2.3. Prenatal Psychological Stress. It is already known that
exposure to high levels of maternal stress hormones during
pregnancy may produce detrimental effects on the offspring
[55]. The effect of prenatal stress in programming T2DM
has been found in both human and animal studies [56–58].
A retrospective study has shown that children exposed to
stress caused by bereavement during their prenatal life had
more risk to T2DM later in life [57]. Another human data
from Entringer et al. [58] found that maternal stressful life
experiences may cause significantly elevated 2-hour insulin
and C-peptide levels under glucose tolerance test in young
adult offspring, indicating insulin resistance, which is inde-
pendent of birth weight and family history of diabetes. The
elucidation of the mechanism underlying this relationship is
still not clear. A finding from a human study has shown that
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prenatal stress leads to shorter leukocyte telomere length in
adult offspring [59], which has also been found to positively
correlate with the pathogenesis diabetes [60] and children
obese [61].

2.4. The Metabolic Situation during Pregnancy

2.4.1. Obesity. Maternal obesity has risen dramatically over
the past 20 years. Evidences from human and animal stud-
ies suggest that maternal obesity in pregnancy predisposes
hyperinsulinemia, insulin resistance, and T2DM in the off-
spring [62–65]. Shankar et al. [66] have found in mice that
the male offspring with overweight mother may exhibit mag-
nificent increase in body weight and adipose tissue content,
which also combined with insulin resistance and increased
levels of insulin, leptin, and resistin. The precise underlying
mechanisms that contribute to increased susceptibility of
offspring to develop insulin resistance in later life remain
poorly understood. Both increased number of apoptosis of
the fetal pancreas 𝛽 cell [67] and accelerated fetal 𝛽-cell
growth and cell proliferation (whichwas regarded as overload
working and consequently end up to 𝛽 cell failure) [68]
were observed in animal offsprings with obesemother, which
may all contribute to the increased blood glucose level after
birth. In addition, increased hepatic lipogenesis and fatty liver
disease [69, 70] found in the offspring exposed to maternal
obesity also contribute to hepatic insulin resistance.

2.4.2. High Gestational Glucose Concentration. Exposure to
elevated intrauterine glucose environment has been found
to cause alterations in fetal growth patterns, which predis-
pose these infants to developing obesity, insulin resistance,
and diabetes later in life. So far the effects of intrauter-
ine hyperglycemia on the offspring have been studied in
human in pregnant mothers with T2DM or with gestational
diabetes and in diabetic animal models mainly caused by
streptozotocin treatment. Data accumulated from theses
studies uniformly show glucose intolerance in the offspring.
Human study performed by Boerschmann et al. [71] has
indicated that, compared with those children with T1DM and
normal glycemia mothers, children with mothers with ges-
tational diabetes mellitus exhibit overweight and increased
HOMA-IR. Another study from Bush et al. [72] in 5–
10-year-old children also found that maternal gestational
glucose concentration was inversely associated with offspring
insulin sensitivity. Insulin resistance was also observed in
rodent offspring prenatally under hyperglycemia environ-
ment caused by streptozotocin injection [73, 74]. It seems
that in utero “diabetic” environment in which the fetus
develops can increase the risk of diabetes in the child. In
addition to genetic susceptibility, blunted insulin sensitivity
in the offspring might largely contribute to this correlation.
Relative gene expression was only explored in animal models
which indicated that intrauterine hyperglycemia induced
by streptozotocin injection resulted in increased hepatic
gluconeogenic gene expression of glucose-6-phosphatase and
phosphoenolpyruvate carboxykinase in the offspring [74]
and the adult offspring of this cohort are prone to develop
insulin resistance under high fat diet [73]. A human study

found that maternal diabetes might cause an inherent defect
in 𝛽-cell glucose sensitivity in the adult offspring [75].

2.5. Maternal Hormone Levels during Pregnancy

2.5.1. Prenatal Testosterone. Prenatal testosterone overexpo-
sure has been considered to be correlated with polycystic
ovary syndrome in adult female and was widely studied [76,
77]. Animal experiments performed in sheep [78, 79], rodents
[80–82], and even monkeys [83] have all confirmed that
prenatal testosterone overexposure leads to insulin resistance
in the offspring. Testosterone overexposure during fetal
development may impair insulin sensitivity pathways in both
liver and muscle [79], increase hepatic gluconeogenesis [84],
and impair pancreas islet response to glucose [80] in the
offspring.

2.5.2. Prenatal Glucocorticoids. Synthetic glucocorticoids
have been used in pregnant women who are at risk of
preterm delivery to promote fetal lung maturation. How-
ever, concerns have already emerged about the metabolic
disorders caused by prenatal glucocorticoids excess. Studies
from animalmodels have found that prenatal glucocorticoids
treatment leads to increased hepatic gene expression of
hepatocyte nuclear factor 4 alpha [85], phosphoenolpyruvate
carboxykinase [86], and glucose-6-phosphatase [87] in the
offspring, indicating elevated hepatic gluconeogenesis and
hepatic insulin resistance. Nyirenda et al. also found that
prenatal dexamethasone administration during late gestation
may result in elevated 11 beta-HSD1 [88] and glucocorticoids
receptor [86] expression in the liver, which may cause insulin
resistance by increasing local glucocorticoids level [89] or
activity.

Similar phenomenon has also been foundwhen increased
endogenous glucocorticoids pass through maternal to fetus.
So far, maternal nicotine [90], food or energy restriction [91],
and alcohol intake [92] have all been found to impair pla-
cental barrier and consequently cause increased endogenous
glucocorticoids in utero.

3. Part II: Postnatal Factors

3.1. New Born

3.1.1. Catch-Up Growth. Catch-up growth, which appeared
after lower birth body weight, is the issue that has been
studied for years. Accumulated data suggest that low birth
weight and catch-up growth are strongly associated with
increased risk of insulin resistance and type 2 diabetes
[93–96]. Intriguingly, different periods of catch-up growth
seem to cause different effects on glucose tolerance and
insulin sensitivity. Catch-up growth only in the first year
after birth seems to have no effect on insulin sensitivity
in 7-year-old child [97], while sustained catch-up growth
(more than 1 year after birth) leads to higher insulin levels
in 7-year-old child [97] or insulin resistance in 8-year-old
child [98]. Compelling evidences raise the thrifty “catch-up
fat” mechanisms, indicating that this growth trajectory is
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Figure 3: Lactation and insulin resistance. It has been found that
both early weaning and overfeeding by more milk intake may
lead to insulin resistance in later life. Maternal stress, obesity,
hyperglycemia, and even smoking during lactation might also cause
reduced insulin sensitivity in the offspring, which suggest that
the breast milk can be the “agent,” transferring altered levels of
hormones, insulin, or fatty acid contents from maternal circulation
to neonate.

characterized by a disproportionately higher rate of fat gain
and redistribution of glucose from skeletal muscle to adipose
tissue, contributing to insulin resistance in skeletal muscle
while hyperresponsiveness to insulin in adipose tissue [99–
101].

3.1.2. Lactation. Lactation is also a sensitive period for the
programming of later metabolic disorders (Figure 3).

Early Weaning. Early weaning may lead to undernutrition,
which consequently program metabolic disorders later in
life. Hyperglycaemia, higher insulin resistance index, and
hyperleptinemiawere observed in 6-month-old rats that were
weaned early, which were accompanied with central leptin
resistance [102].

Overnutrition.Overnutrition during lactation period is asso-
ciated with metabolic disorders in later life. An experiment
conducted in male mice by Pentinat et al. [103] has found
that overgrowth mice caused by reduced pups per dams
during lactation may develop metabolic disorders at the
age of 4 months, including obesity, insulin resistance, and
glucose intolerance. Similar results have also been found by
Plagemann et al. in their serial experiments performed on
rats [104, 105]. Strikingly, the effect of neonatal overnutrition
on diabetes risk can be “inherent” to subsequent generations.
Impaired glucose tolerance was found in the adult male mice
offspring with the father overfed neonatally, and periph-
eral insulin resistance was found in the grand offspring,
although these two generations of animals were not exposed
to overnutrition during the neonatal time [103]. Increased
oxidative stress in liver and reduced hepatic insulin signaling
pathways [106] may underlie effects of neonatal overfeeding.
Moreover, early overfeeding leads to permanent dysregula-
tion of hypothalamic circuits in animal models, including
reduced negative feedback to the satiety signal insulin on
medial arcuate neurons in juvenile as well as adult rats
[104] and increased hypothalamic insulin receptor promoter
methylation ratio [105].Thismay lead to functional resistance

to insulin and leptin, which may underlie permanently an
increase in food intake, overweight, and insulin resistance.

Maternal Situation during Lactation. Maternal physical or
pathological situation during lactation may imprint elevated
risk of metabolic diseases in the offspring. Experiments
in animals have showed that mother under stress [107],
with obesity [108], and exposed to nicotine [109] during
lactating period may lead to obesity and insulin resistance in
adult offspring, which implicates that the postnatal maternal
environment is a major effecter of metabolic outcome in
the offspring. It is also found that fostering nondiabetic
offspring to diabetic dams may produce smaller offspring
with altered arcuate nucleus neuropeptide Y, agouti-related
peptide, and pro-opiomelanocortin expression [108]. The
underlying mechanism is still far more conclusive.Therefore,
the breast milk can be the “agent”; altered levels of hormones,
insulin, or fatty acid contents may enter the milk from
maternal circulation and then can be transferred to neonate.

3.1.3. Neonatal Stress. Limited data from animal studies have
found that stress caused by handling during the neonatal
period may also be detrimental. Studies have found that
neonatal mice, which were under maternal separation plus
subcutaneous sham injection during the lactation period,
developed hyperglycemia, hyperinsulinemia, hyperleptine-
mia, and hyperlipidemia in adult under fasting [110, 111].
Increased plasma corticosterone and adrenocorticotropin
were found in these animals [110, 111] which might be
responsible for the “diabetic” alteration.

3.1.4. Neonatal Hormone Exposure. There are evidences indi-
cated that exposure to some hormones during neonatal life
may predispose metabolic disorders in adult life. Glucocor-
ticoids treatment in neonatal rats caused increased fasting
and postprandial blood glucose, which is combined with
magnificent insulin resistance and lipid disorder in later life
[112]. In addition, in newborn female rats, one subcutaneous
injection with 0.35mg oestradiol benzoate led to reduced
insulin sensitivity in adult life by inducing inflammation
and disturbance glucose metabolism in skeletal muscle [113],
while 1mg testosterone injection to female neonatal rats
caused insulin resistance and increased mesenteric adipose
tissue content in adult life [114].

3.1.5. NeonatalMonosodiumGlutamate Intake. Monosodium
glutamate (MSG) is the sodium salt of glutamic acid, and
it is a flavor enhancer that is widely used in Chinese
food. The study of neonatal MSG treatment on neonatal
animals has been performed since the 1970s and so far
there are plenty of animal experiments that have evidenced
detrimental effects of MSG administration during early life
time, including growth retardation, retinal degeneration,
and increased proinflammation in hippocampus [115–117]. In
1997, Hirata et al. found that MSG-treated animals developed
central obesity, altered glucose tolerance, and hyperinsuli-
naemia [118]. More similar evidences have been documented
in later experiments [119–121], indicating that neonatal MSG
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treatment may lead to increased risk of diabetes in adult life.
MSG may cause obesity and nonfatty liver [120, 122] and
increased mRNA level of IL-6, TNF𝛼, resistin, and leptin in
visceral fat tissue [119], which might all predispose insulin
resistance in later life.

3.2. Childhood

3.2.1. Low Socioeconomic Status. Socioeconomic status has
a notable impact on health disparities, including type 2
diabetes risk. Low childhood socioeconomic statuswas found
linked to type 2 diabetes in some studies [123, 124] and
the association remained even after being adjusted for adult
socioeconomic status and obesity. Low childhood socioe-
conomic status was considered to be a robust independent
factor of incidence of type 2 diabetes in adulthood and
the risk was found greater when childhood socioeconomic
status combinedwith adult obesity. Poor nutrition, unhealthy
behaviors, and limited access to material goods and limited
socioeconomic opportunities may contribute to altered body
composition in later life, whichmight explain the relationship
between childhood socioeconomic position and metabolic
disorders in adult.

3.2.2. Famine. Undernutrition during childhood has been
found to be associated with an increased type 2 diabetes risk
in adulthood. Study in women who had experienced Dutch
famine has shown that short period of moderate or severe
undernutrition during childhood increases type 2 diabetes
risk in adulthood [125].

3.2.3. Obesity. Childhood obesity is an issue of serious
medical and social concern.Many studies have demonstrated
the positive correlations between childhood obesity and
adult metabolic disorders, including type 2 diabetes [61, 126,
127]. Obesity, which mostly caused by high caloric food
intake, may always combine with insulin resistance [128].
An unfavorable programming of body composition could be
one mechanism linking early childhood growth with later
increased risk for type 2 diabetes. In addition, a study per-
formed in 793 French children aged 2–17 yr has suggested that
obese children have significantly shorter leukocyte telomeres
than their nonobese counterparts [61]. Leukocyte telomere
length (LTL), a marker of biological age, is associated with
age-related conditions including cardiovascular disease and
type 2 diabetes which highlights a potentially deleterious
impact of early onset obesity on future health.

4. Conclusion

There is increasing recognition that the risk of type 2 diabetes
can be influenced by prenatal, neonatal, and childhood expo-
sures. In the present studies, we have reviewed nutritional,
environmental, and physiological factors from prenatal to
postnatal periods, which have been documented in studies
thatmay correlate with insulin resistance or type 2 diabetes in
adult life. Further investigations are still required. However,
relative knowledge education might be successful in women

of child-bearing age and ultimate to reduce the disease risk in
their potential offspring.
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