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Abstract

inhibitors bortezomib and PR-957.

upstream of irreversible cell death and tissue damage.

Background: Astrocytes expressing the aquaporin-4 water channel are a primary target of pathogenic, disease-
specific immunoglobulins (IgG) found in patients with neuromyelitis optica (NMO). Immunopathological analyses

of active NMO lesions highlight a unique inflammatory phenotype marked by infiltration of granulocytes. Previous
studies characterized this granulocytic infiltrate as a response to vasculocentric complement activation and localized
tissue destruction. In contrast, we observe that granulocytic infiltration in NMO lesions occurs independently of
complement-mediated tissue destruction or active demyelination. These immunopathological findings led to the
hypothesis that NMO IgG stimulates astrocyte signaling that is responsible for granulocytic recruitment in NMO.

Methods: Histopathology was performed on archival formalin-fixed paraffin-embedded autopsy-derived CNS tissue
from 23 patients clinically and pathologically diagnosed with NMO or NMO spectrum disorder. Primary murine
astroglial cultures were stimulated with IgG isolated from NMO patients or control IgG from healthy donors.
Transcriptional responses were assessed by microarray, and translational responses were measured by ELISA.
Signaling through the NFkB pathway was measured by western blotting and immunostaining.

Results: Stimulation of primary murine astroglial cultures with NMO IgG elicited a reactive and inflammatory
transcriptional response that involved signaling through the canonical NFkB pathway. This signaling resulted
in the release of pro-granulocytic chemokines and was inhibited by the clinically relevant proteasome

Conclusions: We propose that the astrocytic NFkB-dependent inflammatory response to stimulation by NMO
IgG represents one of the earliest events in NMO pathogenesis, providing a target for therapeutic intervention
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Background

Neuromyelitis optica (NMO) is a severe, generally re-
lapsing disease of the central nervous system (CNS)
characterized by optic neuritis and transverse myelitis
with longitudinally extensive spinal cord lesions [1, 2].
The identification of an NMO-specific autoantibody
(NMO IgG) and aquaporin 4 (AQP4) as an antigenic tar-
get of this antibody defined NMO as a distinct disease
with unique pathogenic and pathological characteristics
[3]. AQP4, the principle water channel in the CNS, is
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densely expressed on perivascular astrocytic endfeet and
is crucial for bidirectional water transport and normal
CNS homeostasis [4, 5]. The AQP4 expression pattern
and distribution of NMO-specific lesions [6] suggest that
astrocytes are a cellular target of NMO IgG and that
NMO is a primary astrocytopathy [7].
Immunopathological analyses of active NMO lesions
define a unique vasculocentric pattern of complement
activation and granulocytic infiltration involving both
eosinophils and neutrophils [8, 9]. Characteristic IgG de-
position and complement activation on the adluminal
surface of the vasculature corresponds to the location of
the astrocyte endfeet that envelop the blood vessels [8].
Evidence from ex vivo and in vitro studies is currently
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interpreted in support of a model for NMO pathogenesis
wherein NMO IgG gains entry into the CNS, binds to
AQP4 on astrocytic foot processes, and induces comple-
ment activation and deposition of the terminal membrane
attack complex, resulting in astrocyte injury and death
that leads to recruitment of eosinophils and neutrophils
into the lesions [4, 10]. In this model, complement-
mediated astrocyte death is the key driver of chemokine,
cytokine, and toxic effector production in lesions that
results in the recruitment of macrophages that then in-
duce demyelination and the death of oligodendrocytes
and neurons [11]. This model defines granulocytic recruit-
ment as a consequence of complement-mediated astrocyte
death. However, recent evidence from human tissue indi-
cates that many NMO lesions are non-destructive but
highly inflammatory, with prominent activation of paren-
chymal microglia and perivascular macrophages, infiltra-
tion of neutrophils, and degranulation of infiltrated
eosinophils in the absence of astrocyte death, terminal
complement deposition, or overt tissue destruction [9, 12].
This suggests that alternative mechanisms may be respon-
sible for granulocytic recruitment in early NMO lesions.
Astrocytes are central mediators of general CNS
homeostasis, participating in and controlling key meta-
bolic cascades that are vital for normal neuronal func-
tion. Astrocytes are also active participants in the
pathogenesis of numerous CNS diseases, modulating
local inflammatory responses, controlling blood—brain
barrier function, and serving as a source of chemokines
and cytokines [13, 14]. Such astrocyte-initiated inflam-
matory responses set the stage for leukocyte-mediated
feedback loops that elicit profound neuropathology dur-
ing infection, inflammation, autoimmunity, and trauma.
Recently, we observed that stimulation of primary rat
astrocyte cultures with serum or IgG isolated from
NMO patients resulted in the release of the potent pro-
granulocytic chemokine CCL5, with essentially no re-
lease stimulated by serum from MS or systemic lupus
erythematosus (SLE) patients [7]. These data suggest
that astrocytes respond directly to NMO patient-derived
IgG, and that the stimulated chemokine response is
disease-specific and pro-granulocytic. Based on these ob-
servations, we hypothesize that the astrocytic inflamma-
tory response to stimulation by NMO IgG represents
one of the earliest pathogenic events in NMO, preceding
severe and irreversible cell death and tissue damage.

Methods

Histopathology analysis

Histopathology was performed on archival formalin-fixed
paraffin-embedded autopsy-derived CNS tissue from 23
patients clinically and pathologically diagnosed with NMO
or NMO spectrum disorder. Five-micrometer-thick sec-
tions were stained with hematoxylin and eosin (H&E),
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luxol fast blue, and periodic acid—Schiff or Bielschowsky
silver impregnation. Immunohistochemistry was per-
formed using primary antibodies against proteolipid
protein (PLP) (1:500, Serotec), glial fibrillary acidic protein
(GFAP) (1:100, Dako), and AQP4 (1:250, Sigma). C9neo
was detected using monoclonal clone B7 (1:200) or poly-
clonal anti-C9neo (1:200), both a gift of Prof. Paul
Morgan, Cardiff, UK.

A topographical map was made in order to define re-
gions of interest based on the following: (1) stage of
demyelinating activity (active demyelination, inactive de-
myelination, remyelination, periplaque white matter, or
normal appearing white matter); (2) the extent of tissue
damage, graded as none, mild (tissue vacuolation with
mild microglial reaction), moderate (damaged and disor-
ganized parenchymal cell components with obvious
macrophage infiltration), or marked (prominent paren-
chymal cell loss or cystic lesions); (3) the nature of the
astrocytic reaction based on GFAP staining and hyper-
trophy of astrocytic processes or the presence of dys-
trophic astrocytes [15]; (4) the presence or absence of
complement deposition; and (5) the loss of AQP4
expression.

Eosinophils and neutrophils were identified based
on morphological characteristics using H&E-stained
sections. Eosinophil infiltration was measured semi-
quantitatively in regions of interest and categorized as
follows: mild =1-3 cells per high power field (HPF)
(40x objective lens); moderate =4—10 cells/HPF; or
marked >10 cells/HPF. Neutrophil infiltration was
categorized as follows: mild =1-3 cells/HPF; moder-
ate = 4-20 cells/HPF; or marked >20/HPF.

All features of interest were captured as categorical
data. Each feature was summarized in a contingency
table and cross-classified according to the semi-
quantitative assessment of granulocyte infiltration. To
test for associations, the contingency tables were ana-
lyzed using log-linear regression models in the frame-
work of generalized estimating equations that employed
an “exchangeable” correlation structure in order to ac-
count for repeated observations among patients [16].
Each contingency table summarized region-level data
such that an individual patient could contribute multiple
regions to the data set. Intra-patient regional correla-
tions were controlled for in the generalized estimating
equations. All analyses were performed using R statis-
tical software package version 3.0.2.

Patient serum processing and IgG purification

Blood was drawn from patients or healthy volunteers
and IgG was isolated from sterile-filtered, heat-
inactivated serum samples as previously described [7].
For the present study, results were generated using puri-
fied IgG from five different pools prepared since 2011
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(Additional file 1: Table S1). Representative results were
generated from NMO patient sera pooled from 5 males
and 36 females ranging in age from 14 to 79, with a
median age of 48 (Additional file 2: Table S2). Control
sera were pooled from age- and sex-matched donors
(Additional file 3: Table S3). All treatments with human
IgG were at 100 pg/mL [7].

Mouse primary mixed glial cultures

Mixed glial cultures were prepared from P1-P3 Balb/c
mouse pups, as described [17]. Cells were plated at
1.3x10° cells/cm®* on poly-L-lysine hydrobromide.
After 4 days in vitro, flasks were shaken to remove
microglia and oligodendroglia. The astrocyte-enriched
cultures were incubated for an additional 22 days and
were then replated at 5.2 x 10* cells/cm® on poly-D-
lysine. For all biochemical measurements, cells were
stimulated starting at 31 days in vitro.

Immunostaining and imaging

Cells were immunostained with mouse anti-GFAP anti-
body (Millipore, MAB360) at 1:200 and anti-NFxB p65
antibody (Cell signaling, 8242) at 1:400, as described [7].
Images were acquired using an LSM780 inverted con-
focal microscope (Carl Zeiss) and Zen software. Z-stacks
were rendered into maximum intensity projections in
Image]. All images were collected under identical condi-
tions within a given experiment.

Microarray

RNA samples were assessed by Agilent for integrity, pur-
ity, and concentration. Samples passing quality control
were analyzed on Illumina mouse WG-6 v 2.0 expres-
sion BeadChips in the Mayo Clinic Medical Genome Fa-
cility Gene Expression Core. Expression data were
analyzed using Excel and MatLab [7]. Heatmaps and
hierarchical clusters were derived using Gitools v2.2.2
and pathway identification was performed using Ingenuity
Pathway Analysis.

Immunoblotting

Cells were serum-starved overnight prior to stimulation
with NMO IgG or control IgG then lysed in RIPA buffer
containing protease/phosphatase inhibitors. Cell lysates
(10-30 pg) were run on 4—15 % Criterion Tris—HCI gels
(Biorad). After transfer, blots were probed using anti-
IxkB-a (Cell Signaling 9242), anti-phosphorylated IxB-a
(Cell Signaling 2895), anti-p65 (Cell Signaling 8242),
anti-NUP98 (Cell Signaling 2598), or anti-tubulin (Sigma
T9026) antibodies.

ELISA
Following stimulation of cells, supernatants were col-
lected, clarified, and stored as aliquots at —-80 °C until
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analysis. Mouse CCL5, CCL2, CXCL1, and CXCL2 were
detected in the supernatants using ELISA construction
kits (Antigenix America).

Statistics

a=0.05 and =0.2 were established a priori. Post hoc
power analysis was performed for all experiments and
significance was only considered when power >0.8. Stat-
istical analysis was performed using SigmaStat (Systat
Software). Normality was determined by the Shapiro—
Wilk test and normally distributed data were checked
for equal variance. Parametric tests were only applied to
data that were both normally distributed and of equal
variance. The Student—Newman-Keuls pairwise com-
parison test was used for all post hoc sequential compar-
isons. The figures show representative results from at
least two separate experiments performed in triplicate
using independent cell cultures and purified IgG.
Over the course of this study, five different NMO
patient pools were utilized for the preparation of
purified IgG (Additional file 1: Table S1). As shown
in Additional file 4: Figure S1, similar results were
attained using different patient serum pools.

Study approval

All cell culture-based experiments were performed using
materials approved by the Mayo Clinic institutional ani-
mal care and use committee. All studies were conducted
in accordance with the United States Public Health
Service’s Policy on Humane Care and Use of Laboratory
Animals. The Mayo Clinic institutional review board ap-
proved the use of human materials. All subjects pro-
vided written informed voluntary consent after the
nature and possible consequences of the study were
explained.

Results

Granulocytic infiltration in NMO pathology is not
dependent on terminal complement complex formation,
active demyelination, or tissue destruction

To determine whether granulocytic infiltration in NMO
is dependent on formation of the terminal complement
complex, demyelination, or tissue destruction, as the
conventional model of NMO pathogenesis suggests, we
semi-quantitatively assessed the extent of eosinophil and
neutrophil infiltration in 1048 regions in 337 blocks
from 23 NMO patients. In a subset of lesions, we
observed granulocyte infiltration (Fig. la, b, e) in the
absence of terminal complement complex formation,
demyelinating activity, and tissue destruction (Fig. 1).
C9neo served as a marker for terminal complement
deposition, and although granulocyte infiltration was
statistically associated with the presence of complement
deposition (p=0.012), 31 % of regions with mild
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Fig. 1 (See legend on next page.)
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Fig. 1 Granulocytic infiltrate occurs in the absence of demyelination, terminal complement complex formation, and overt tissue destruction in
NMO white matter. a H&E staining reveals robust perivascular inflammation in the white matter of autopsy tissue collected from an NMO patient
(scale bar =100 uM). b An enlarged view of (a) and the magnified inset confirm the presence of eosinophils as a component of this perivascular
infiltration (scale bar =50 puM). ¢ Staining for the astrocyte marker GFAP demonstrates the presence of reactive astrocytes with abnormal morphology
in close association with granulocytic perivascular infiltration in a section consecutive to a. The inset highlights the increased size of a GFAP+ astrocyte
(scale bar =100 uM). d The perivascular granulocytic infiltration and astrocyte reactivity are present in a non-demyelinating NMO lesion as shown by
the presence of intact proteolipid protein (PLP) staining in a section consecutive to a and c (scale bar=100 uM). e A second example
of perivascular granulocytic infiltration involving neutrophils and eosinophils (inset) in the white matter of an NMO patient is shown by
H&E staining. The inset highlights the presence of eosinophils (scale bar =50 uM). f Staining for the astrocyte marker GFAP in a section consecutive to
e confirms the presence of numerous reactive astrocytes proximal to the perivascular inflammation (scale bar =50 uM). g PLP staining reveals that in
a section consecutive to (e) and (f) the myelin is intact, indicating that granulocytic infiltrate is found in the absence of demyelination (scale bar =50 uM).
h The complete absence of staining for the terminal complement protein C9neo in a section consecutive to e, f, and g shows that
granulocytic recruitment to this site is not dependent on formation of the terminal complement complex (scale bar=100 uM)

infiltration, 20 % of regions with moderate infiltration,
and 4 % of regions with marked infiltration were nega-
tive for C9neo (Fig. 1h). With regard to demyelinating
activity, we found a statistically significant association
between active demyelination and granulocytic infiltra-
tion (p <0.001). However, the presence of granulocytes
was not entirely dependent on demyelinating activity, as
we observed mild, moderate, or marked infiltration in
9 % of NMO lesions devoid of demyelination (Fig. 1d, g).
Finally, in regions with mild, moderate, or marked gran-
ulocyte infiltration, there was no statistically significant
association between the extent of tissue damage and in-
filtration (p =0.99) (Fig. 1), suggesting that granulocytic
trafficking is not strictly in response to the presence or
extent of tissue damage in NMO. These observations
support the hypothesis that recruitment of neutrophils
and eosinophils into the CNS may be one of the earliest
consequences of NMO IgG binding to the surface of astro-
cytes. Furthermore, we observed profound astrocyte
reactivity in proximity to infiltrating neutrophils and eosin-
ophils (Fig. 1c, f), supporting our hypothesis that early
astrocytic responses to NMO IgG may drive granulocytic
recruitment and infiltration that precedes irreversible
astrocytic death, demyelination, and tissue damage.

Stimulation with NMO IgG elicits an inflammatory and
pro-granulocytic transcriptional response in astroglial
cultures

Considering our observations of early granulocyte re-
cruitment in NMO (Fig. 1), we specifically asked what
constitutes the glial response to stimulation with NMO
IgG and whether this response is associated with gran-
ulocytic recruitment. Previously, we reported the robust
induction of an immunological response in rat astrocyte
cultures to stimulation with both NMO patient serum
and isolated IgG [7]. Here, we utilized a mouse glial cul-
ture system to expand our understanding of the cellular
responses to NMO IgG and to provide a platform for

the identification of potentially targetable inflammatory
signaling pathways that drive such responses.

The transcriptional response to astroglial stimulation
with NMO IgG (NMO) for 24 h was measured using an
[llumina mouse WG-6 v2.0 Beadchip (Fig. 2). Compared
to cells stimulated with IgG isolated from healthy con-
trols (CON), 3628 genes of the 22,640 genes detected on
the array were significantly altered by NMO IgG (Fig. 2a),
suggesting a strong transcriptional response to stimula-
tion. A key response included the upregulation of nu-
merous C-C and C-X-C motif chemokine genes,
including CCL2, 3, 4, 5, 6, 7, and 9 and CXCL1, 2, 4, 8,
10, 12, and 16 (Fig. 2b). Consistent with our previous
findings [7], CCL5 was upregulated 60-fold in astrocytes
stimulated with NMO IgG relative to CON IgG. Other
significantly upregulated genes of interest were cytokines
such as IL-1a, IL-1p, IL-6, and TNFa, suggesting the in-
duction of a broad inflammatory program in astrocytes
stimulated with NMO IgG. Genes for several B cell fac-
tors, such as B cell activating factor (BAFF), a prolifera-
tion inducting ligand (APRIL), and glucocorticoid-
induced tumor necrosis factor receptor-related ligand
(GITRL) were also upregulated following stimulation
with NMO IgG, suggesting a potential interaction be-
tween IgG-stimulated astrocytes and localized support
for B cell function within the CNS. A large number of
canonical NFxB-dependent and NFxB-associated tran-
scription factors (Fig. 2c) and stress response genes
(Fig. 2d) were also upregulated in astrocytes stimulated
with NMO IgG. Interestingly, the transcript for RELB,
the chief transcription factor associated with the alterna-
tive NFkB signaling pathway, was strongly upregulated,
suggesting that multiple NFkB pathways may be in-
volved in the glial response to NMO IgG over time. Of
the stress genes induced by NMO IgG, lipocalin 2
(Len2) and ceruloplasmin (Cp) are canonical reactive
astrocyte response factors that were strongly upregulated.
Indeed, Lcn2 was increased 40-fold in astrocytes stimu-
lated with NMO IgG relative to CON IgG. The induction
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Fig. 2 NMO IgG induces expression of inflammatory and reactive astrocyte genes in mouse astroglia. a—f Gene expression was assessed by
microarray analysis of astroglia after 24 h of stimulation with 100 pg/mL NMO IgG (NMO) or control IgG (CON). Changes in expression were
calculated by comparison to untreated cultures. a A heatmap reveals robust up- and downregulation of numerous genes only in cells stimulated
with NMO IgG. Of 22640 genes detected on the microarray, 3628 differed between NMO and CON IgG stimulation at p < 0.05. Fold changes for
these genes are mapped on a log2 scale, with values downregulated to <—0.5-fold in green and values upregulated to >+0.5 shown in red. Note that
because only significantly changed genes are mapped, there is a discontinuity between the upregulated and downregulated genes. b A subset of
chemokine and cytokine genes are shown on a log2 scale, with downregulation <—2-fold in green and upregulation >+2-fold shown in red. White
represents zerofold change relative to untreated samples. ¢ A subset of genes encoding canonical NFkB-dependent factors are shown on a log2 scale,
with downregulation <—2-fold in green and upregulation >+2-fold shown in red. d A subset of NFkB-dependent stress response genes sorted by gene
name on log?2 scale, with downregulation <—2-fold in green and upregulation >+2-fold shown in red. White represents zerofold change relative to
untreated samples. e A published reactive astrocyte transcriptional response pattern (‘reactive”) [18] was compared to the changes induced by astroglial
stimulation with NMO IgG or CON IgG. These factors were mapped on a log2 scale with <0-fold change shown in white and >+5-fold induction shown
in red. f Published data reporting the astrocyte transcriptional response to LPS, middle cerebral artery occlusion ("MCAQ"), or PBS [18] were compared to
our data for NMO IgG or CON IgG stimulation. The heatmap shows all genes detected on our array; genes with fold change values between —0.26 and
+0.26 on a log2 scale following NMO IgG stimulation are excluded from the figure (discontinuity in the NMO lane). Genes downregulated <—2-fold are
in green, unchanged genes are black, and genes upregulated >+2-fold are shown in red. A hierarchical cluster analysis showing Euclidean distance and
average linkage score was performed in Gitools. The published data used for these comparisons were accessed via the GEO database at NCBI. g The
NFkB canonical pathway was identified as a top response pathway (p =4.14E-07) using the Ingenuity Pathway Analysis package. Top upstream regulators
in this pathway were identified as Stat1 (z= 5.530), MyD88 (z= 5.603), Ripk2 (z=2486), and IRF3 (z=2.804). Likewise, IFNy (z=9.203), IFNB1 (z=2412),
CSF2 (z=2.789), and TNFa (z=2.121) were identified as top response factors possibly involved in NFkB activation following NMO IgG stimulation. The
microarray data were generated in two separate experiments performed with triplicate samples; the purified IgG used for these two experiments were
derived from separate patient serum pools (Additional file 1: Table S1). The initial inclusion criteria for detection on the microarray were based on lllumina
Beadchip significance calls. Genes exhibiting significant differences between NMO IgG- and CON IgG-stimulated samples were identified using Storey's

positive false-discovery rate for multiple hypothesis testing

of a reactive program is further supported by com-
parison of the NMO IgG-induced response to previ-
ously published microarray data from Barres and
colleagues [18] characterizing the astrocyte reactome
(Fig. 2e). Of note, NMO IgG stimulation induced only
a subset of the reactive genes induced by lipopolysac-
charide (LPS), suggesting that the NMO-specific re-
sponse shares some downstream signaling events with
LPS-induced reactivity, but does not utilize the same
upstream initiators. This conclusion is further sup-
ported by comparison of the entire transcriptional re-
sponse pattern elicited in our system by NMO IgG or
CON IgG to the published response induced by LPS, mid-
dle cerebral artery occlusion (MCAO), or a phosphate-
buffered saline (PBS) control (Fig. 2f) [18]. While NMO
IgG stimulation clearly induced a subset of the genes that
are also induced by LPS or MCAO, a unique pattern of
activation exists in response to the autoantibody. Hier-
archical cluster analysis confirmed that LPS and MCAO
induced reactive responses that are more closely related to
each other than to the NMO IgG-induced response, but
that the NMO IgG-induced response is unique from the
controls (CON and PBS) (Fig. 2f). Finally, Ingenuity Path-
way Analysis [19] revealed that NF«B signaling was a top
canonical pathway engaged by stimulation with NMO IgG
(Fig. 2g), highlighting the role of this pathway in the
observed inflammatory and stress response. We con-
clude that stimulation of astroglial cultures with NMO
IgG induces a distinctive reactive, inflammatory, pro-
granulocytic response.

Stimulation with NMO IgG activates the canonical NFkB
signaling pathway in astroglial cultures

To characterize astrocytic NFkB signaling in response to
stimulation with NMO IgG, we assessed the accumula-
tion of phosphorylated IxB-a by Western blot. Under
steady-state conditions, IkB-a is complexed with the
p50:p65 (RELA) heterodimer, preventing nuclear trans-
location and subsequent target gene transcription. Upon
exposure to inflammatory signals, IkB-a is phosphory-
lated by IkB-a kinases (IKK), resulting in IkB-a ubiquiti-
nation and consequent targeting to the proteasome.
Disassociation of phosphorylated IkB-a (pIkB-a) from
the p50:p65 heterodimer exposes a nuclear localization
sequence (NLS) that facilitates translocation into the nu-
cleus and concomitant NF«B binding to the promoter
region of target genes. We assessed the accumulation of
pIkB-a after 20 min of TNFa stimulation as a positive
control and after stimulation with NMO IgG for 30, 60,
and 120 min (Fig. 3a). pIkB-a accumulation was evident
in both TNFa- and NMO IgG-stimulated cells along
with a corresponding decrease of total cellular IkB-q,
consistent with stimulation-induced degradation. The
accumulation of pIkB-a over time was observed as early
as 5-15 min after stimulation with NMO IgG and con-
tinued to increase over 120 min (Fig. 3b). Critically, ex-
posure to healthy control IgG (CON) under identical
conditions did not lead to an increase in IkB-a phos-
phorylation at any time point (Fig. 3b). Nuclear trans-
location of NFkB in astrocytes (red) was determined
by immunofluorescence, revealing that p65 (green)
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against the astrocyte marker glial fibrillary acidic protein (GFAP) (red) and NFkB p65 (green) after stimulation for 20 min with 20 ng/mL
TNFa or stimulation for 60 min with 100 pg/mL NMO IgG (NMO) or CON IgG (CON). In some experiments, NFkB pathway inhibitors were
added to the cells for 2 h prior to stimulation. Robust nuclear translocation of p65 was observed following stimulation with NMO IgG
and this translocation was blocked when cells were pretreated with NFkB inhibitors. Inhibitor concentrations: 50 uM MG132 (MG), 30 uM
BAY 11-7082 (BAY), 30 uM SN50, 30 uM NF-kappa-B essential modulator (NEMO) binding peptide (NBP). These panels are representative of at least 2
independent experiments performed in duplicate. DAPI-labeled nuclei are shown in blue. Scale bar: 50 uM. d Cellular homogenates were fractionated
into nuclear and cytoplasmic components prior to the preparation of lysates. Fractions (10 pg per lane) from unstimulated cells (UNT), cells stimulated for
20 min with 20 ng/mL TNFa (TNF), and cells stimulated for 60 min with 100 pug/mL NMO IgG (NMO) or CON IgG (CON) were probed by immunoblot
for levels of p65. The relative purity of the fractions was determined by immunoblotting for the nuclear marker NUP98 and the cytoplasmic marker
a-tubulin. Increased nuclear p65 protein was observed following stimulation with NMO IgG as compared to UNT and CON IgG-stimulated samples,
consistent with the immunofluorescence in c. This blot is representative of 3 independent experiments. e Lysates (50 g per lane) were probed by
immunoblot with antibodies for either plkB-a or total IkB-a following no stimulation (UNT), after 60-min stimulation with 100 pg/mL of CON IgG or
NMO 1gG, or after stimulation with NMO IgG following pretreatment with NFkB pathway inhibitors. BAY, SN50, and NBP treatments
reduced plkB-a levels following NMO IgG stimulation to the levels observed in unstimulated and CON IgG-stimulated samples. MG132 treatment
resulted in accumulation of plkB-a due to proteasome inhibition, as expected. This blot is representative of at least 2 independent experiments

accumulated in the nucleus (blue) following TNFa  the cells into nuclear and cytoplasmic constituents
stimulation for 20 min and after stimulation with NMO  (Fig. 3d). The nuclear marker NUP98 and the cytoplas-
IgG for 60 min (Fig. 3c). NFkB nuclear translocation in  mic marker a-tubulin were used to confirm isolation of a
response to stimulation with NMO IgG was confirmed by  relatively pure nuclear fraction. An increase in nuclear
immunoblotting for p65 following fractionation of p65 protein was observed following stimulation with
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either TNFa or NMO IgG, confirming the engagement of
NF«B signaling by the autoantibody.

Given the activation of NFkB signaling in astroglial
cultures stimulated with NMO IgG, we sought to iden-
tify pharmacological inhibitors that would block such
signaling and provide insight into the underlying mecha-
nisms of activation. MG132 (MQG) is a peptide aldehyde
that effectively blocks the proteolytic activity of the 26S
proteasome complex, preventing degradation of phos-
phorylated IkB-a and blocking exposure of the NFxB
NLS. BAY 11-7082 (BAY) is an anti-inflammatory com-
pound that inhibits the activity of IKK to prevent phos-
phorylation of IkB-a. SN50 is an inhibitory peptide that
contains the NLS of p50 and blocks nuclear transloca-
tion of the active NFkB complex. NFkB essential modu-
lator (NEMO) binding peptide (NBP) is a cell-permeable
synthetic peptide corresponding to the NEMO amino-
terminal alpha-helical region which blocks the interactions
of NEMO with IKK that are critical for activation of the
IKK complex. Of note, all inhibitors were tested at a range
of concentrations and time points in a standard MTT (3-
(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium brom-
ide) assay to identify non-toxic concentrations appropriate
for treatment (Additional file 5: Figure S2).

Cells were pretreated for 2 h with each inhibitor and
then stimulated with NMO IgG for 60 min. As expected,
MG132 did not block phosphorylation of IkB-a (Fig. 3e)
but did prevent the nuclear translocation of p65 in astro-
cytes in response to stimulation with NMO IgG (Fig. 3c).
The other inhibitors prevented both IkB-a phosphoryl-
ation and p65 nuclear translocation (Fig. 3c, e), although
NBP was less effective than the other inhibitors at block-
ing p65 nuclear translocation. The robust inhibition of
IkB-a phosphorylation in NBP-treated cells coupled to
some evidence of persistent p65 nuclear translocation sug-
gests the parallel activation of an alternative NFkB path-
way that is not dependent upon NEMO activation of the
IKK complex. In contrast to NBD, the other three inhibi-
tors block elements of both the canonical and alternative
NEF«B pathways.

Stimulation with NMO IgG induces NFkB-dependent
production and release of pro-granulocytic chemokines
We tested whether astroglial cultures release pro-
granulocytic chemokines in response to stimulation with
NMO IgG and whether this could be blocked with NF«xB
inhibitors. We focused on four chemokines: CCL5, a
potent chemotactic factor for eosinophils, T cells, and
basophils; CCL2, an attractant for monocytes and poly-
morphonuclear cells; and the neutrophil chemoattrac-
tants CXCL1 and CXCL2. Using ELISAs to quantitate
chemokine release into supernatants, we found that
levels of all four chemokines were significantly higher
following 6 or 24 h of stimulation with NMO IgG
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(NMO) as compared to stimulation with control IgG
(CON) or in the absence of stimulation (UNT) (Fig. 4a).
Levels of induction after 24 h of stimulation ranged from
tens of nanograms per milliliter for CCL5, CXCL1, and
CXCL2, to over 2 pg/mL for CCL2. We then measured
chemokine release following 6 or 24 h of stimulation
with NMO IgG after 2 h of pretreatment with the panel
of NFkB inhibitors used above (Fig. 4b). These data are
expressed as fold inhibition relative to cells stimulated
with NMO IgG in the absence of inhibitor (a larger bar
represents greater inhibition). The proteasome inhibitor
MG132 blocked more than 95 % of the CCL5 response
induced by stimulation with NMO IgG for 24 h and ef-
fectively reduced CCL2 and CXCL1 production at levels
exceeding tenfold inhibition. The IKK inhibitor BAY 11—
7082 was more effective than MG132 at blocking the
production of CCL2 and CXCL1, while SN50 and NBP
only weakly inhibited production of any of the four fac-
tors. Little inhibition of CXCL2 was observed with any
of the inhibitors. While SN50 pretreatment induced
about 80 % inhibition of CXCL2 production in the 6-h
stimulation condition, this effect was overcome by 24 h.
The overall lack of inhibition for CXCL2 production
mediated by MG132 and BAY 11-7082 suggests that
this chemokine is induced by NMO IgG via signaling
pathways that largely do not involve NFkB. In contrast,
NEkB signaling selectively drives the production of
CCL2, CCL5, and CXCL1 following stimulation of astro-
glia with NMO IgG.

Bortezomib and PR-957 inhibit NFkB signaling and
pro-granulocytic chemokine release in response to
stimulation with NMO IgG

Although MG132, a constitutive proteasome inhibitor,
was the least specific NFkB inhibitor that we examined,
it showed effective suppression of NMO IgG-induced
NFkB signaling and concomitant chemokine release.
Considering the successful use of proteasome inhibitors
in other diseases, we examined the possible therapeutic
relevance of proteasome inhibition in NMO. We tested
bortezomib, a dipeptide boronate, approved for treat-
ment of multiple myeloma [20], and the highly selective
immunoproteasome inhibitor PR-957, a tripeptide epox-
yketone, shown to be efficacious in mouse models of
rheumatoid arthritis [21] and SLE [22]. As with MG132,
treatment with either bortezomib or PR-957 before
stimulation with NMO IgG resulted in the cellular accu-
mulation of pIkB-a (Fig. 5a) due to inhibition of
proteasome-mediated degradation. Critically, however,
treatment with bortezomib or PR-957 suppressed the
NMO IgG-induced nuclear accumulation of NF«B
(Fig. 5b) and robustly inhibited the release of CCL2,
CCL5, and CXCL1 (Fig. 5¢). Indeed, the suppression of
CCLS5 release by PR-957 approached 99 % inhibition. As
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time point, and inhibitors used for treatment

Fig. 4 The release of pro-granulocytic chemokines in response to stimulation with NMO IgG is NFkB-dependent. a CCL5, CCL2, CXCL1, and CXCL2
release in unstimulated cells (UNT) or following 6- or 24-h stimulation with 100 pg/mL NMO IgG (NMO) or CON IgG (CON) was measured by
ELISA. The release of all four chemokines was significantly increased following stimulation with NMO IgG. Stimulation with control IgG did not
result in release of any of the chemokines above baseline levels. Data shown are from 2 separate experiments performed in triplicate; each dot
represents an individual well. The mean response (solid horizontal bar) and 95 % confidence intervals (error bars) are shown. Significance was
determined by one-way analysis of variance (ANOVA) with Bonferroni's multiple comparison test (****p < 0.0001 versus CON IgG). b Fold inhibition
of CCL5, CCL2, CXCLT, and CXCL2 release following stimulation with NMO IgG (100 pg/mL) for 6 h or 24 h after pretreatment with NFkB pathway
inhibitors was calculated by comparison to cells stimulated with NMO IgG in the absence of inhibitor (amount released with NMO alone/release
with NMO+ inhibitor); larger bars equal more robust inhibition. Inhibitor concentrations: 50 pM MG132, 30 uM BAY 11-7082, 30 uM SN50, 30 uM
NEMO binding peptide (NBP). MG132 and BAY 11-7082 effectively inhibited CCL5, CCL2, and CXCL1 responses. All of the inhibitors exerted only
limited inhibition of CXCL2 release, suggesting that this factor is induced by alternative signaling mechanisms. Data shown are from two separate
experiments performed in triplicate. Error bars represent the 95 % confidence interval. p <0.001 from three-way ANOVA comparing chemokines,

with the other NF«B inhibitors, neither bortezomib nor
PR-957 inhibited CXCL2 production. These data suggest
that inhibition of either the proteasome or immunopro-
teasome has profound effects on astroglial responses to
NMO IgG, leading us to conclude that such inhibition
may serve as a therapeutically relevant strategy for sup-
pressing early pathogenic events in NMO.

Discussion

It is clear that NMO is associated with a unique gran-
ulocytic “footprint.” NMO patients often have CSF pleo-
cytosis that includes the presence of polymorphonuclear
leukocytes [23—-25], an increase in pro-granulocytic che-
mokines in the CSF [25-28], and notable accumulation
of granulocytes in lesions [8, 29, 30] (Fig. 1). In the
current conventional model of NMO pathogenesis, ter-
minal complement deposition following binding of
NMO IgG to astrocyte endfeet precipitates damage and
concomitant granulocyte recruitment into the CNS. This
model considers granulocyte recruitment as a down-
stream effect of terminal complement complex formation
and tissue injury. However, terminal complement depos-
ition is not a universal feature of all NMO lesions, and
therapeutics targeting complement inhibition are effica-
cious in only some patients [31], suggesting that
complement-mediated tissue destruction in NMO le-
sions may represent only one possible pathogenic mech-
anism. We contend that there are also early, sub-lytic,
and highly inflammatory astrocytic responses to NMO
IgG that contribute to early granulocytic recruitment. In
our model, granulocyte recruitment is an upstream
cause of injury and is triggered by astrocyte signaling, ra-
ther than astrocyte death. We observed clear granulo-
cytic accumulation in NMO patient tissue that was not
dependent on complement deposition, active demyelin-
ation, or tissue destruction, along with evidence of react-
ive astrocytes in these regions (Fig. 1). Building on these
observations, we utilized an astroglial culture system to
examine the rapid cellular and molecular events induced
by stimulation with NMO IgG in the absence of

exogenous complement. We found that such stimulation
engaged a highly inflammatory and reactive astrocyte
transcriptional program that included the upregulation
of numerous genes encoding pro-granulocytic chemo-
kines (Fig. 2). Further analysis of the transcriptional pro-
gram initiated by stimulation with NMO IgG revealed
that the NF«B signaling pathway was significantly upreg-
ulated. Confirming engagement of the NF«B signaling
pathway, we observed phosphorylation of IkB-a and nu-
clear translocation of the NF«B transcription factor p65
in astrocytes following stimulation with NMO IgG.
Treatment with a spectrum of NF«kB inhibitors effect-
ively blocked these responses (Fig. 3). Finally, we found
that the potent pro-granulocytic chemokines CCLS5,
CCL2, CXCL1, and CXCL2 were released by cells fol-
lowing stimulation with NMO IgG, and that the release
of all except CXCL2 was effectively blocked by inhibition
of NF«kB (Fig. 4), including inhibition using clinically
relevant proteasome inhibitors (Fig. 5).

NFkB is a well-studied master regulator of autoimmun-
ity that is crucial for both inflammation and immune tol-
erance. While NFkB activation occurs transiently in the
course of a normal immune response, chronic activation
of this signaling pathway in target tissues is associated
with pathogenesis in many autoimmune diseases [32]. Im-
portantly, therapeutic targeting of the NF«B signaling
pathway is clinically feasible and may provide a strategy
for controlling the transition from normal immunity to
autoimmunity. In our model, proteasome inhibition by
MG132, bortezomib, and PR-957 effectively blocked the
release of several pro-granulocytic chemokines (Figs. 3, 4,
and 5). The efficacy of bortezomib is of interest due to its
current therapeutic use in multiple animal models and in
patients. Bortezomib treatment results in decreased in-
flammation in animal models of contact hypersensitivity
[33], allograft rejection [34], and SLE [35]. Bortezomib is
an approved therapy for multiple myeloma patients where
treatment inhibits NFkB and induces myeloma cell apop-
tosis [36]. Bortezomib was also recently shown to halt
autoantibody production and kill plasma cells in a murine
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Fig. 5 The proteasome inhibitor bortezomib and the immunoproteasome inhibitor PR-957 effectively inhibit NFkB-dependent pro-granulocytic
responses induced by NMO IgG. a Lysates (30 pg per lane) from unstimulated cells (UNT), following stimulation for 60 min with 100 pg/mL CON
IgG (CON) or NMO IgG (NMO), or following stimulation with NMO IgG after pretreatment with bortezomib (BRT 1 pM or 2.5 uM) or PR-957 (PR 1 uM
or 10 uM) were probed by immunoblot with antibodies for either plkB-a or IkB-a. As expected, plkB-a accumulated in BRT- or PR-treated cells due to
impaired proteasome and immunoproteasome function. Blot is representative of 2 independent experiments. b Nuclear translocation of NFkB p65
(green) in GFAP-labeled cells (red) was assessed after stimulation for 60 min with 100 pug/mL NMO IgG alone or following 60-min stimulation with NMO
IgG after pretreatment for 2 h with either bortezomib (BRT; 1 uM) or PR-957 (PR; 1 uM). Scale bar: 50 uM. p65 translocation was robustly blocked by
both inhibitors. Panel is representative of 2 independent experiments performed in duplicate. ¢ The fold inhibition of CCL5, CCL2, CXCL1, and CXCL2
release induced after stimulation of cells for 24 h with 100 ug/mL of NMO IgG in the presence of BRT (1 uM or 2.5 uM) or PR (1 uM or 10 uM) was
assessed by ELISA. Both BRT and PR were effective inhibitors of CCL5, CCL2, and CXCL1 responses with little inhibition of CXCL2, as previously observed
for MG132. Fold inhibition was calculated as in Fig. 4. Findings are representative of two separate experiments performed in triplicate. Error bars show
the 95 % confidence interval. p < 0.001 from two-way ANOVA comparing chemokines and inhibitors used for treatment
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model of myasthenia gravis [37]. Of note, long-lived
plasma cells, due to the metabolic demand required by a
high rate of IgG production, are particularly sensitive to
proteasome inhibition [35] but are generally resistant to
immunosuppressive drugs, including anti-CD20 anti-
bodies such as rituximab that are currently used to func-
tionally inhibit or deplete B cell populations [38].
Considering the upregulation of B cell-related factors and
other inflammatory drivers in astrocytes stimulated with
NMO IgG (Fig. 2) and the published evidence for

intrathecal production of IgG in NMO patients [39, 40],
therapeutic proteasome inhibition may provide the
dual advantage of simultaneously targeting both the
inflammatory astrocytic response and plasma cell sur-
vival—essentially blocking both the stimulator and the
concomitant stimulation. Furthermore, the clinical
efficacy of bortezomib coupled with immunomodula-
tors such as lenalidomide or methylprednisolone in
transplant and multiple myeloma patients suggests
that combined drug strategies may confer significant
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therapeutic advantage in complex inflammatory dis-
eases such as NMO.

One complication with bortezomib is the potential for
peripheral neuropathy at therapeutic doses. Therefore,
we expanded our study to include testing of PR-957
(ONX-914), an immunoproteasome inhibitor that has
shown efficacy in an animal model of rheumatoid arth-
ritis (RA) at far lower doses than are employed for the
proteasome inhibitor carfilzomib [21]. Similar results
were found in mouse models of colitis, MS [41], and
SLE [22], where PR-957 treatment significantly inhibited
the production of pro-inflammatory cytokines and re-
duced the severity of disease symptoms. The immuno-
proteasome is mostly found in cells of the immune
system but can be expressed in other cells, including as-
trocytes, upon exposure to various stressors [42]. In a
pro-inflammatory environment, virtually all newly syn-
thesized 20S proteasomes incorporate inducible subunits
associated with the immunoproteasome rather than con-
stitutive subunits [43]. Treatment with PR-957 in our
system resulted in efficient blockade of NF«B p65 trans-
location in astrocytes and inhibited the release of CCL5,
CCL2, and CXCL1 (Fig. 5). These results suggest that
astrocytic inflammatory responses in patients with NMO
may be targeted by specific inhibition of the immuno-
proteasome. Finally, evidence that immunoproteasome
inhibition also suppresses the production of autoanti-
bodies [22] and selectively targets plasma cell survival
[21] further suggests that such a strategy may confer sig-
nificant disease-modifying effects in patients with NMO.
We propose that the use of drugs such as PR-957 in
NMO patients may reduce or block disease pathogenesis
via parallel pathways that reduce astrocyte reactivity,
suppress CNS inflammation, block granulocyte recruit-
ment, reduce production of NMO IgG, and deplete
autoantibody-producing plasma cells that are resistant to
current therapies such as rituximab [38].

One limitation of our study is the absence of a suitable
animal model in which to test our hypothesis. Existing
mouse models of NMO rely on the concurrent initiation
of active (via immunization) or passive (via transfer of
myelin-specific T cells) EAE [44—46], co-injection of
NMO IgG and human complement factors into the CNS
[47-49], or injection of the proinflammatory cytokine
IL-1p directly into the brain to drive granulocyte recruit-
ment and complement factor production [50]. The “suc-
cess” of these models is due to inflammatory modulation
of the blood-brain barrier and direct induction of
complement-mediated pathology. Unfortunately, the use
of any of these models would compromise the analysis of
early astrocytic responses to NMO IgG and are therefore
not suitable to test our hypothesis. Another area in which
a suitable animal model is necessary but currently unavail-
able is the analysis of antibody-induced granulocytic
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recruitment in the absence of overt tissue destruction or
complement deposition. A pathogenic role for neutrophils
in CNS autoimmune disease was suggested by the occur-
rence of severe exacerbations in some MS and NMO
patients given recombinant granulocyte-colony stimu-
lating factor (G-CSF) which stimulates the function
and proliferation of granulocytes [51]. Although the
presence of neutrophils in typical MS lesions is rare,
studies in the EAE model indicate that neutrophils
are found at high frequency in the CNS parenchyma
during the preclinical phase, increase dramatically in
the meninges both preclinically and at relapse, and
may potentiate the formation of lesions by mediating
the breakdown of the blood-brain or blood-
cerebrospinal fluid barriers or by stimulating the mat-
uration of local antigen-presenting cells [52]. With
regard to eosinophils, degranulated cells are found in
both NMO meninges and early lesions [30]. While
historically recognized as endstage effectors in para-
sitic immunity and allergic diseases, it is quite likely
that eosinophils directly contribute to tissue injury in
NMO via release of cytokines, chemokines, lipid
mediators, oxygen burst components, and cytotoxic
granule cationic proteins [53]. Elucidating and target-
ing the mechanisms that recruit granulocytes to early
NMO lesions and discovering strategies to inhibit the
initial damage triggered by these cells will require the
creation of animal models that do not involve the
tautological induction of complement-dependent in-
jury or the initiation of inflammation that does not
build from a reactive astrocyte response.

Conclusions

The current study provides evidence for an expanded
model of NMO pathogenesis and supports the possible
therapeutic use of proteasome and immunoproteasome
inhibitors in patients with NMO. Although terminal com-
plement deposition-driven granulocyte recruitment and
Iytic tissue destruction are definite components of NMO
pathogenesis, considerable clinical and histopathological
evidence indicates that NMO lesions are potentially re-
versible [8, 54]. Our findings suggest that early events in
disease pathogenesis may involve NMO IgG-induced
NF«B-dependent signaling in astrocytes that results in the
creation of a pro-granulocytic inflammatory milieu, lead-
ing to lesion development that is multimodal and amen-
able to therapeutic intervention at several points. While
complement inhibition will prevent the most tissue de-
structive aspects of NMO lesion development, upstream
interventions that impact the reactive and inflammatory
astrocyte response, reduce granulocyte infiltration, and
short-circuit the functionally disruptive genesis of acute
lesions are needed to reverse symptoms and prevent irre-
versible damage in NMO patients.
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Additional file

Additional file 1: Table S1. NMO serum pools used in this study.
(PDF 284 kb)

Additional file 2: Table S2. Representative NMO serum pool. NMO
patient sera were pooled from 5 males and 36 females ranging in age
from 14 to 79, with a median age of 48. (PDF 37.4 kb)

Additional file 3: Table S3. Control sera were pooled from age- and
sex-matched donors. (PDF 37.9 kb)

Additional file 4: Figure S1. Astrocyte responses are independent of
NMO serum pool provenence. Historical results generated using multiple
different pools of NMO patient serum indicate that the NFkB response
and chemokine production triggered by NMO IgG stimulation are not
restricted to a specific NMO patient pool. Astrocytes were stimulated for
60 min with 100 pg/mL purified CON IgG (A) or NMO IgG (B) from serum
pools prepared in 2012 (see Table S1). Only the NMO IgG induced
nuclear localization of NFkB. Green = NFkB; red = GFAP. (C) Comparison
of CCL5 release from astrocytes, as assessed by ELISA, following
stimulation with pooled serum prepared in 2013 (see Table S1) or IgG
purified from these pools. Only NMO serum and purified NMO 1gG
induced CCL5 production above untreated (UNT) levels. (D) The impact
of proteasome inhibition (MG-132) and NFkB inhibition (BAY 11-7082) on
CCL2 production in response to stimulation with NMO IgG purified from
a 2014 NMO serum pool (see Table S1). (E) Evidence of IkB phosphoryl-
ation at 45 and 60 min after treatment with NMO IgG purified from a
2012 NMO patient serum pool (see Table S1). Control IgG (CON) has no
impact on IkB phosphorylation. By way of comparison, the majority of fig-
ures shown in the main manuscript are representative of treatments with
serum pools prepared in 2014 and 2015. (PDF 276 kb)

Additional file 5: Figure S2. Assessment of cell viability during NFkB
and proteasome inhibitor treatment. A standard colorimetric MTT assay
was used to assess cell viability following treatment with different
concentrations of the NFkB inhibitors employed in our study. (A) Cells
were exposed to high concentrations (10, 50, 100 uM) of MG132, BAY 11-
7082, NBP, and SN50 for 24 hours. (B) Cell viability was determined using
an extended concentration curve (shown in uM) and multiple time points
(2, 6, 24 hours) for BAY 11-7082, NBP, SN50, bortezomib and PR-957. Data
are representative of 1-2 separate experiments performed in duplicate or
triplicate. Each dot represents an individual well. Percent viability was

calculated as (sample absorbance/untreated absorbance)*100. (PDF 116 kb)
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