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Small molecules not only represent cellular building blocks
and metabolic intermediates, but also regulatory ligands and
signaling molecules that interact with proteins. Although these
interactions affect cellular metabolism, growth, and develop-
ment, they have been largely understudied. Herein, we describe
a method, which we named PROtein–Metabolite Interactions
using Size separation (PROMIS), that allows simultaneous,
global analysis of endogenous protein–small molecule and of
protein–protein complexes. To this end, a cell-free native lysate
from Arabidopsis thaliana cell cultures was fractionated by
size-exclusion chromatography, followed by quantitative meta-
bolomic and proteomic analyses. Proteins and small molecules
showing similar elution behavior, across protein-containing
fractions, constituted putative interactors. Applying PROMIS
to an A. thaliana extract, we ascertained known protein–
protein (PPIs) and protein–metabolite (PMIs) interactions and
reproduced binding between small-molecule protease inhibi-
tors and their respective proteases. More importantly, we pres-
ent examples of two experimental strategies that exploit the
PROMIS dataset to identify novel PMIs. By looking for similar
elution behavior of metabolites and enzymes belonging to the
same biochemical pathways, we identified putative feedback
and feed-forward regulations in pantothenate biosynthesis and
the methionine salvage cycle, respectively. By combining
PROMIS with an orthogonal affinity purification approach, we
identified an interaction between the dipeptide Tyr–Asp and
the glycolytic enzyme glyceraldehyde-3-phosphate dehydroge-
nase. In summary, we present proof of concept for a powerful
experimental tool that enables system-wide analysis of PMIs
and PPIs across all biological systems. The dataset obtained here
comprises nearly 140 metabolites and 5000 proteins, which can
be mined for putative interactors.

Small molecules represent cellular building blocks and met-
abolic intermediates and also regulatory ligands and signaling
molecules, exerting their functions via interaction with macro-
molecules, most commonly proteins. In fact, one way to see the
cell is as “an entity in which proteins are embedded in a sea of
metabolites” (1). In line with this, it has been speculated that
many more small molecules than known today interact, and by
doing so they modulate the function of their protein partners
(2, 3).

Until very recently, protein–metabolite interaction (PMI)3

studies were hindered by a lack of simple, in vivo-like methods
for fishing out the interactors. Recent years have seen signifi-
cant technological advances, allowing for “omics”-scale analysis
of PMIs, starting either from a protein or a metabolite of inter-
est that is used to capture the respective metabolite or protein
partners from native cellular lysate. Advances in proteomics
and metabolomics, increased sensitivity, and better compound
identification helped in improving PMI studies. The most
promising approaches include the following: 1) purification
and characterization of protein–metabolite complexes using
affinity-tagged protein baits (4, 5); 2) identification of protein
partners using small molecules as affinity baits (6); 3) drug-
affinity–responsive target stability assay (DARTS) (7) and ther-
mal proteome profiling (8, 9), both exploiting differences in the
stability between unbound and small-molecule– bound pro-
teins to find protein targets of drug compounds; and 4) chemo-
proteomic methods (10), taking advantage of chemically mod-
ified small molecules, which upon binding covalently label their
protein partners.

While showing certain success, these methods are limited to
the metabolite or protein bait, and thus are not suitable for
global analysis of PMIs. We therefore set out to test other
approaches that allow a system-wide detection of metabolite–
protein complexes and that thereby obviate the need for metab-
olite or protein bait (11).
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Our starting point was the notion that the small-molecule
pool of each biological system is distributed between two states:
either bound to a protein (subsequently called “bound”) or not
bound to a protein (subsequently called “free”). These two
forms differ in one main and simple parameter, size. Thus,
employing size-separation methods should separate free small
molecules in low-molecular weight fraction(s) and metabolite–
protein complexes in high-molecular weight fraction(s). We
have proven this assumption by demonstrating that the appli-
cation of a simple size-filtration to a native cellular lysate is
sufficient to separate bound from free small molecules (11).
Building on this observation, we have additionally shown that
size-exclusion chromatography (SEC) can be used to separate
small-molecule–protein complexes based on their molecular
weight. We detected nearly 100 different polar metabolites co-
eluting with the protein fraction and displaying one or several
discrete peaks across the chromatographic separation range,
indicating the presence of specific protein–small-molecule
complexes (11).

Our previous work provided a proof of concept but lacked
final experimental confirmation, i.e. the identification of known
as well as previously unknown small-molecule–protein com-
plexes. Combining SEC separation with parallel metabolomic
and proteomic analysis of the fractions using co-elution to indi-
cate interaction, we here demonstrate that SEC is suitable for
the identification of protein–small-molecule complexes. This
is on par with studies demonstrating SEC applicability for
the characterization of protein–protein complexes (12–14).
We believe that our approach, which we named PROtein–
Metabolite Interactions using Size separation (PROMIS),
describes a generic method that allows system-wide detection
of protein–small-molecule interactions across different biolog-
ical systems.

Results

Size-exclusion chromatography of soluble plant cell extracts
separates protein–small-molecule complexes

The goal of this study was to develop a workflow to allow
global monitoring of protein–small-molecule complexes. The
overall strategy is outlined in Fig. 1, A and B and in Ref. 11. In
brief, a native cellular extract (soluble fraction) was prepared
from Arabidopsis thaliana cell cultures. Protein and small-
molecule complexes were separated by size-exclusion chroma-
tography (SEC).

A total of 57 fractions (A01–D04) collected from four inde-
pendent biological replicas were subjected to metabolomic
analysis, as described previously (11). These fractions com-
prised 37 protein-containing fractions (A04 –C10), referred to
as “separation range” (1215 to 13 kDa), and 17 protein-free
fractions collected up to one total mobile-phase volume of the
column. As expected, the majority of the metabolic features
(signal from LC-MS analysis representing specific m/z and
retention time; putative small molecule) were detected in frac-
tions outside the protein separation range, as nonprotein
bound. However, 4229 unique metabolic features eluted in the
protein-containing fractions, displaying one or several discrete

peaks across the separation range, indicating their presence in
specific protein complexes (Dataset S1A).

In total, 342 metabolic features could be annotated to a
metabolite using the exact mass and retention time of a refer-
ence-compound library, of which 158 (46%) were present in
the protein fractions (Dataset S1B). These 158 metabolites
included 18 nucleosides and nucleotides, 8 amino acids, 12
cofactors, and 106 dipeptides. Note that the remaining meta-
bolic features correspond to hundreds of additional small mol-
ecules, but as we could not assign their identity, we removed
these from the analysis.

Figure 1. Experimental workflow. A, schematic representation of the
PROMIS experiment. B, schematic representation of the data analysis for
metabolites and proteins detected in the protein-containing fractions. P, pro-
tein; M, metabolite. In addition, examples of proteins and metabolites filtered
out from the final dataset are shown. C, data reproducibility calculated using
deconvoluted protein and metabolite data. Heat map of Pearson correlation
calculated between corresponding fractions between replica 1 and replica 2.
Results are comparable with any other comparison, e.g. between replica 1
and replica 3.
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Next, the same fractions were analyzed for their protein
composition using our proteomics platform. Proteins were
analyzed in the 37 fractions from three of the four independent
biological replicas spanning the entire separation range. In
total, we identified 7214 proteins (Dataset S2). Subcellular
localization analysis using SUBA 4.0 (15) confirmed that these
were mainly of cytoplasmic origin (cytosol, mitochondrion, and
plastid), with a significant under-representation of membrane-
associated proteins (Fig. S1).

Analysis of the data revealed that in a number of cases there
was only one peak for a given metabolite or a given protein and
in other cases multiple peaks for one given metabolite or pro-
tein. In the case of proteins, this can be easily explained by the
presence of the given protein in mono- and oligomeric state
and/or in homo- and hetero-oligomers. As for metabolites, sev-
eral of them, such as co-factors, will have multiple protein part-
ners and thus would be present in several protein complexes,
eluting at different times from the size-exclusion column.

As stated above, a first approach of assigning a given metab-
olite to a potential protein partner is based on the assumption
that if present as one complex their chromatographic behavior
should be highly similar. To be able to apply this criterion also
in case of multiple protein or metabolite peaks, as described
above, we split the data profiles into single peaks by finding
local valleys in the data; this is referred to as deconvolution.

We then applied three additional filters to the dataset. We
first only took into further account proteins and metabolites
that were found in all three/four replicas. Second, to exclude
spurious signals, we limited the analysis to proteins and metab-
olites that appeared at least in three consecutive fractions.
Third, we removed proteins and metabolites that peaked near
the start (1215 kDa) or the end (13 kDa) of the protein separa-
tion range, respectively. Applying these three filters plus the
deconvolution resulted in a final dataset of 4627 proteins
(appearing in 5527 protein peaks) and 137 metabolites (appear-
ing in 212 metabolite peaks) (Dataset S3, A and B, and Dataset
S4). A median calculated from the independent experiments
was used to calculate a Pearson correlation between metabo-
lites and proteins to delineate potential interactors (Dataset
S5). To define potential interactors, we used a Pearson correla-
tion of �0.7 and allowed deviation of peak maxima of �1 frac-
tion (COR �0.7 and MAX � one fraction) (for rationale, see
below). By doing so, we found �300 –500 proteins co-eluting
with every metabolite peak, thus representing the potential
binding partner.

One important observation was the remarkable reproduc-
ibility between the independently performed experiments. The
Pearson correlation calculated between corresponding frac-
tions between any two replicas was on average �0.95 for both
proteins and metabolites (Fig. 1C and Dataset S6, A and B).

Finally, we inspected the quality of our experimental dataset
by checking the co-elution of the proteasome subunits, as done
previously (12). The 26S proteasome holoenzyme consists of
two regulatory particles (RPs) capping each end of the barrel-
shaped catalytic 20S core particle (CP) (16, 17). CP and RPs are
composed of multiple subunits, all sized roughly 25–30 kDa,
and eluted as two separate complexes. In our experiment we
identified 23 and 29 CP and RP subunits, respectively, of which

23 and 27 co-fractionated together (COR �0.9), with the max-
imum intensity measured in the two neighboring fractions cor-
responding to complexes of 574/650 kDa and 735/835 kDa (Fig.
2A). Proteasome co-elution demonstrated that allowing devia-
tion of peak maxima by �1 adjacent fraction is a rationale cri-
terion to define potential interactors. Importantly, the protea-
some is just one of the multiprotein complexes present in the
PROMIS dataset (Fig. 2B). In this study, we focused on the
PMIs. However, our dataset can be used to query protein–
protein complexes on par with the study of Ref. 12.

In summary, we generated a highly reproducible dataset
comprising roughly 140 annotated metabolites and 5000 pro-
teins, which can be used to investigate protein–protein and
protein–small-molecule complexes.

Confirmation of the PROMIS approach using known
protein–small-molecule interactions

The data described above demonstrate that our experimental
procedure retains the integrity of protein–protein complexes.
We next aimed to confirm the presence of small-molecule–
protein interaction partners by querying the data for the pres-
ence of known small-molecule–protein complexes as defined
by the co-elution criterion. To this end we used the Stitch data-
base (18) to identify known protein–metabolite interactions,
however, restricting our analysis to cases that were experimen-
tally proven in Arabidopsis. Moreover, we restricted the analy-
sis to cases where both metabolite and protein were detected
anywhere in our dataset. This resulted in 51 interactions
reported for 48 proteins and 13 metabolites detected in our
PROMIS experiment (Table S1). We subsequently asked
whether or not, by applying the criterion of co-elution, we
would retrieve a significant number of the metabolite–protein
complexes from the results of the PROMIS experiment. Indeed,
this was clearly the case. Of the 51 interactions we could have
potentially found in our dataset, 21 interactions were retrieved
when applying a Pearson correlation cutoff of 0.7 between pro-
tein and metabolite elution (Fig. 3A). This is five times more
than expected and thus is statistically significant (Fisher exact
test �0.05), greatly supporting our experimental approach (Fig.
3B). Examples include interaction between enzymes involved in
oxylipin metabolism, 12-oxophytodienoate reductase 1 (OPR1)
and OPR3, and the cofactor flavin mononucleotide (FMN) (19),
and between amino acid biosynthetic enzymes, cysteine syn-
thase 1 (OASA1) (20) and diaminopimelate aminotransferase
(21), and the cofactor pyridoxal phosphate (PLP).

To see how a shift in the Pearson correlation influences the
detection of true (known) interactions, we performed an anal-
ysis where we varied the Pearson correlation between 1 and �1
(Table S1). As shown in Fig. 3B, lowering the correlation cutoff
drastically reduced the true positives to false positives ratios,
leading us to decide against it. Based on these results, we
decided to apply a Pearson correlation value of 0.7 for the anal-
ysis of the entire dataset. The same result is also reflected in the
receiver operating characteristic (ROC) curve.

Finally, we were interested in finding out whether or not
there is a relation between binding affinity and our results. To
this end, we tried to gather Kd data for the 51 known interac-
tions. However, only for six examples are Kd values reported,
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ranging from low millimolar to mid nanomolar. Obviously, this
dataset is too small to allow any further conclusion with respect
to the applicability of our experimental approach to specific
(high-affinity) binding events, for example.

Co-elution supports the existence of a number of
protein–cofactor interactions previously not demonstrated in
A. thaliana

In the previous paragraph we asked whether the co-elution
criterion can be used to retrieve proven metabolite–protein
interactions. As the Stitch database contains a comprehensive

listing of essentially all proven metabolite–protein interactions,
we next wondered whether the SEC data would allow gaining
additional support for metabolite–protein interactions vali-
dated in systems other than A. thaliana based on protein ho-
mology. To this end, we decided to test eight cofactors present
in our metabolomics dataset (Table S2).

PLP (22) will be described here as an example. Of the 138
proteins annotated in the Stitch database as interacting with
PLP, we found 76 in our proteomics data of the PROMIS exper-
iment (Table S3). For only six of these 76 proteins, the interac-
tion with PLP had been demonstrated previously for A. thali-

Figure 2. Presence of known protein–protein complexes confirms the PROMIS approach. A, co-elution of 26S and 20S proteasome subunits (left panel,
figure generated by Stitch) presented as a heat map. Protein abundance was normalized to the maximal intensity measured across the separation range. Red,
presence; black, absence. B, identity of the known protein–protein complexes across PROMIS separation range inferred by querying Stitch database with lists
of co-eluting proteins. Note, for complexes of �960 kDa, see Table S2.

Figure 3. Presence of known protein–protein and protein–metabolite complexes confirms the PROMIS approach. A, 21 of the 51 known protein–
metabolite interactions that passed �0.7 Pearson correlation cutoff in the PROMIS experiment. B, distribution of the Pearson correlation measured for the 51
known interactions (dark blue) versus 51 random interactions (yellow bars, average n � 10) selected from the PROMIS experiment (left panel) was used to
calculate the ROC curve (right panel). The red dot indicates the ratio of true positives to false positives using a �0.7 Pearson correlation cutoff.
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ana. For the remaining 70 proteins, whose interaction with PLP
had been shown in systems other than A. thaliana, we used the
most homologous proteins for the subsequent analysis. In our
dataset, PLP eluted as two distinct peaks with maxima at 211
and 68 kDa. The list of proteins predicted as potential interac-
tors (COR �0.7 and MAX �1 fraction) totaled 355 and 414
proteins for the two peaks, respectively. Of the 70 proteins
annotated as PLP binding in the Stitch database, 11 and 20 were
contained in the first and second peak, respectively, which is 2.1
and 3.2 times higher than expected by chance (F test � 0.05)
(Fig. 4A). Even more striking, when we overlaid the elution
profiles of PLP and the known and predicted PLP interactors
(76 proteins), we found that 69 of the 76 proteins were con-
tained in the PLP-containing fractions (Fig. 4B). The fact that
only half of the proteins were detected when applying the cutoff
and correlation approach as described above is due to the rela-
tive broadness of the PLP elution peaks, with additional local
maxima (394 and 88 kDa), albeit too minor to be reliably
selected during deconvolution.

In case of the other seven cofactors: for three of them (NADP,
adenosine 5�-phosphosulfate, and nicotinamide), the overlaps
between PROMIS-predicted interactions and the data from the
Stitch database were again significantly higher than expected by
chance (Fig. 4A and Table S2). For the remaining four, we did
not find significant enrichment. In contrast to positive results,
as in the case of PLP, negative results are harder to interpret and
can have a number of reasons as follows: binding predictions
retrieved from Stitch may be false; predictions are correct but
the binding is development- and/or environment-specific and
thus absent in the cell cultures; or the predictions are correct
but the binding is not retained during our experimental
procedure.

In summary, SEC can be used to support predicted PMIs.
PLP is an example of a metabolite that interacts with a large
number of proteins, with a complex elution behavior, which
may require adjusting the criteria by which protein interactors
are selected. Still, it is also an exciting example, as the data
described above clearly demonstrate that a large number of
protein–metabolite complexes are retained during our ex-

perimental procedure, which was not anticipated before (see
“Discussion”).

PROMIS can be used to trace protein partners of exogenously
added small molecules

To further challenge our approach, we tested whether
PROMIS can be used to reproduce known PMIs. Our attention
was drawn to the commercial protease inhibitors present in the
lysis buffer. If PROMIS is effective in separating true protein–
metabolite complexes, we expected to find these in the protein-
containing fractions, co-eluting together with their protease
targets. Both of the above assumptions proved true. Three of
the six commercial protease inhibitors present in the lysis
buffer and known to exhibit reversible binding behavior sep-
arated in the protein-containing fractions in minimum one
and maximum three distinctive elution peaks (Fig. 5; Dataset
S7). Remarkably, in each case the elution behavior of the
protease inhibitor could be traced down to a known protease
target.

More specifically, bestatin is an aminopeptidase inhibitor. Of
the five aminopeptidases present in our dataset and annotated
in Stich as bestatin interactors, all five, including the family of
the three leucine aminopeptidases (LAP1–3), eluted together
with either one of the two bestatin peaks. Pepstatin A, an aspar-
tyl protease inhibitor, eluted as one peak mirrored by the elu-
tion behavior of one of the four aspartyl proteases present in the
PROMIS dataset and annotated in Stich as pepstatin interac-
tors. Leupeptin, a cysteine and serine protease inhibitor, had
three distinct elution peaks. Peak 1 coincided with the elution
behavior of the 20S proteasome complex (23). Peaks 2 and 3
can be explained by the elution behavior of the cysteine pro-
teases. Strikingly, of the seven cysteine proteases found in
our dataset, four had two elution peaks, and for all four, the
two peaks co-eluted with the two peaks of leupeptin (peak 2
and peak 3). These were two cathepsin-like proteases, thiol
protease aleurain, and RD19C. One additional cysteine pro-
tease, RD19A, co-eluted with peak 3 of leupeptin. In conclu-
sion, PROMIS was successful in separating small-molecule pro-
tease inhibitors with their respective proteases. In this way we

Figure 4. PROMIS can be used to confirm predicted protein–metabolite interactions. A enrichment of predicted protein partners for the eight cofactors
present in the SEC experiment, separately for each elution peak. Star indicates significance (Fisher exact test �0.05). Also given is the number of proteins found
as interactors in the PROMIS dataset versus the total number of Stitch-predicted interactors. B, overlay of the PLP elution profile, normalized to the maximum
intensity measured across the separation range, and the number of PLP interactors eluting in different fractions (based on the elution maxima of the protein
peaks). The number indicates interactions confirmed for the Arabidopsis proteins. Red bars represent fractions around the two major elution maxima.
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further validate our approach, but also demonstrate that
PROMIS can be considered as a method for finding protein
interactors of not only endogenous ligands (metabolites), but
also of drugs and agrochemicals.

Putative regulatory mechanisms revealed by co-elution
behavior during PROMIS

As described above, applying correlation between elution
behavior of proteins and metabolites as one criterion to identify
potential candidates for protein–metabolite complexes is help-
ful and enriches in a statistically significant manner for known
protein–metabolite pairs. However, as a rule it does not allow
us to identify the single protein–metabolite pair. In conse-
quence, either a number of PROMIS experiments have to be
performed with varying elution characteristics, thus allowing
narrowing down the potential partners, or orthogonal ap-
proaches need to be used. In the following, we describe the
successful application of one of these orthogonal approaches.
We introduced biochemical knowledge into the query to nar-
row down potential protein candidates for a given metabolite.
To this end we decided to query the dataset for co-elution of
metabolites with proteins belonging to the same biochemical
pathway. The underlying reasoning is that for many biochemi-
cal pathways it is known that metabolites from within the path-
way exert a regulatory function on another enzyme of the same
pathway.

Following this notion, we identified all cases in our dataset
where proteins and metabolites of one given biochemical path-
way fulfill the criterion of co-elution using the plant metabolic
pathway database as reference. Two examples will be discussed
in more detail below, pantothenic acid and methylthioadenosine.

Pantothenic acid (pantothenate, vitamin B5) is a precursor of
the important co-factor coenzyme A (CoA). The pantothenate
pathway is best described in Escherichia coli and was used as a
blueprint to elucidate pantothenate metabolism in plants
(24). Two panB genes encoding ketopantoate hydroxymeth-

yltransferase (KPHMT) 1 and 2, a single panC gene encoding
pantothenate synthetase (PS), and two panK genes encoding
pantothenate kinase (PANK) 1 and 2 were reported in Arabi-
dopsis (Fig. 6A). In the SEC experiment, pantothenic acid elutes
as a single, sharp peak with the maximum at 348 kDa (Fig. 6A).
Not surprisingly, but reassuringly, PANK2 is one of the 434
proteins co-eluting with pantothenate. PANK2, which cata-
lyzes the first step of CoA synthesis, uses pantothenate as a
substrate, which is likely the reason for the co-elution behavior
(25). Two more enzymes of the pantothenate pathway,
KPHMT1 and KPHMT2, catalyzing the first committed step of
pantothenate biosynthesis, upstream of PS (Fig. 6A), also dis-
play co-elution behavior with pantothenic acid (24). We next
decided to test directly whether pantothenate binds to either
KPHMT. To this end, we produced recombinant KPHMT1
from A. thaliana in E. coli and tested the purified protein for its
binding to pantothenate using microscale thermophoresis
(MST). MST is a fairly new biophysical analysis tool for analyz-
ing interactions between proteins and metabolites, building on
the principle that microscopic temperature gradients lead to
movement of biological molecules (26). Changes in size, con-
formation, charge, and/or hydration shell, which are likely to
occur during complex formation, alter the movement and are
thus indicative of a binding event. Using this approach, we
could demonstrate that indeed pantothenate binds KPHMT1
with a Kd of 500 �M (Fig. 6B), suggesting its involvement in
feedback regulation controlling the rate of pantothenate syn-
thesis. Importantly, this would be a conserved mechanism as
PanB, a bacterial homolog of KPHMT1, was shown to be sub-
jected to the allosteric pantothenate inhibition in concentra-
tions above 500 �M (27).

Methylthioadenosine (MTA) is a naturally occurring sulfur-
containing nucleoside, a by-product of ethylene, polyamine,
and nicotinamide synthesis. MTA is rapidly metabolized in the
cell by the activity of 5�-methylthioadenosine nucleosidase (28).

Figure 5. Proteinase inhibitors co-elute with their respective protease targets in the PROMIS experiment. Shown is a heat map of the elution profiles
measured for proteinase inhibitors and their protease targets. Data were normalized to the maximum intensity of given small molecule or protein measured
across the separation range. Also given is the Pearson correlation.
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The product of this reaction, 5�-methylthioribose (MTR), is
further recycled into methionine in the so-called methionine
salvage pathway. In the SEC experiment MTA elutes in two
peaks with maxima at 835 and 68 kDa (Fig. 6C). Again, not
unexpectedly, we found MTN1 among the 444 proteins co-
eluting with MTA (68 kDa peak). More interestingly, MTA also
co-fractionated with methylthioribose-1-phosphate isomerase
(MTI) (29, 30), catalyzing a downstream reaction of the methi-
onine salvage pathway in which 5�-methylthioribose-1-phos-
phate (MTR-1-P) is converted into 5�-methylthioribulose-1-
phosphate (MTRu-1-P) (Fig. 6C). Again, using recombinant
Arabidopsis MTI protein and MST, we could demonstrate
MTI–MTA interaction with Kd of 4 �M (Fig. 6D), suggesting
possible regulation, a putative feed-forward loop, controlling
the rate of the methionine salvage pathway. MTA was shown
previously to act as an allosteric inhibitor in the ethylene,
polyamine, and nicotinamide synthesis pathways (31), which
release MTA as a by-product, but its regulatory function in
the methionine salvage pathway has not been described so
far.

In summary, we could demonstrate that querying co-elution
of small molecules and enzymes from the same metabolic path-
way is an efficient way to look for new regulatory mechanisms.

Novel interaction between dipeptide Tyr–Asp and glycolytic
enzyme glyceraldehyde-3-P dehydrogenase (GAPC) revealed
by combination of PROMIS and affinity purification (AP)

The pantothenate–KPHMT1 and MTA–MTI interactions
were selected using a combination of PROMIS together with
existing biochemical knowledge. However, for many metabo-
lites this would be impossible because there is no sufficient
information regarding either their metabolism or biological
function. Diverse dipeptides, which we see present in protein-
containing fractions, are just one example of such small mole-
cules. In such instances, PROMIS needs to be supported with
an orthogonal experimental method.

Based on its reproducible and specific elution profile, we
selected a dipeptide, Tyr–Asp, to test a combination of PROMIS
with an AP approach. For this purpose, we used agarose beads
coupled to Tyr–Asp either via the NH2 group of tyrosine or the
COOH group of aspartic acid. After incubation of the beads
with total soluble-protein lysate, referred to as input, unspecific
binders were removed by washings with tyrosine and aspartic
acid, followed by specific elution with Tyr–Asp. The eluate was
analyzed by LC-MS (LC-MS/MS) proteomics. A total of 108
proteins were reproducibly identified in the eluate coming from
the N� and C� beads, constituting putative Tyr–Asp binders

Figure 6. Putative feedback regulatory mechanism disclosed by the PROMIS analysis. A, schematic overview of pantothenate synthesis in plants (upper
panel) (24). Enzymes highlighted in yellow co-eluted with pantothenate in the SEC experiment (lower panel). Blue indicates a putative feedback regulation. B,
MST measurements testing the interaction between KPHMT1 and pantothenate. Data are presented as difference in normalized fluorescence (	FNorm)
calculated between bound and nonbound KPHMT1. Data are mean � S.D., n � 3. His6 peptide was used as negative control. C, schematic overview of the
methionine salvage pathway in plants (upper panel) (29). Enzymes highlighted in yellow co-eluted with MTA in the SEC experiment (lower panel). Blue indicates
a putative novel feed-forward regulation. D, MST measurements testing the interaction between MTI and MTA. Data are presented as normalized fluorescence
(FNorm). Data are mean � S.D., n � 3–5 (technical replicates). His6 peptide was used as negative control.
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(Fig. 7A; Dataset 8). In comparison and based on co-elution,
PROMIS identified 452 putative Tyr–Asp interactors. Testing
either 452 or 108 proteins for Tyr–Asp binding would be unre-
alistic. However, when we compared PROMIS and AP results,
we found an overlap of 20 proteins (Fig. 7A; Table S4). Among
these proteins, cytosolic glyceraldehyde-3-phosphate dehydro-
genase (GAPC1) stood out as its elution profile almost perfectly
mirrored the elution profile of Tyr–Asp (Fig. 7B). This pointed
to a strong association between Tyr–Asp and the GAPC1 pro-
tein. Notably, other members of the GAPC family (GAPC2,
GAPCP1, and GAPCP2) also co-fractionated with Tyr–Asp as
shown in Fig. 7B, suggesting a shared binding specificity for the
Tyr–Asp dipeptide.

To validate the binding, we first tested a commercially avail-
able human homolog of GAPC1, GAPDH. Subsequently, plant
GAPC1/2, GAPCP1, and GAPCP2 were overexpressed and
purified from E. coli. Binding was probed using nano-DSF tech-
nology from Nanotemper (Prometheus NT.48; see under

“Experimental procedures”). Prometheus NT.48 traces protein
thermal stability by recording changes in the tryptophan resi-
dues during protein unfolding in an increasing temperature
gradient. The melting temperature (Tm) of GAPDH was calcu-
lated as 60 °C, GAPC1/2 to 54 °C, GAPCP1 to 55 °C, and
GAPCP2 to 55 °C (Fig. 7, C–F; Tables S5 and S6). As expected,
addition of the substrate, glyceraldehyde 3-phosphate (3PGA),
significantly shifted the Tm of all tested proteins, which is indic-
ative of binding (Table S5). Analogous results were obtained
for Tyr–Asp. More specifically, 500 �M Tyr–Asp stabilized
GAPDH by �1.1 °C, whereas 25–50 �M Tyr–Asp destabilized
GAPC1/2, GAPCP1, and GAPCP2 by �1, 2, and 1.5 °C, respec-
tively (Fig. 7, C–F; Tables S5 and S6). The obtained results val-
idate the interaction between Tyr–Asp and plant glyceralde-
hyde-3-P dehydrogenases. The interaction is conserved in the
human enzyme.

Finally, to explore the specificity of the binding, several
dipeptides (Gly–Pro, Pro–Glu, Leu–Phe, Thr–Met, His–Tyr,

Figure 7. Identification and validation of a novel protein–metabolite interaction by means of PROMIS, AP, and nanoDSF. A, Venn diagrams comparing
putative Tyr–Asp interactors derived from PROMIS and AP experiments. B, elution pattern of Tyr–Asp and the GAPC family enzymes in the PROMIS dataset. C,
nano-DSF analysis of the melting profile of GAPDH protein with and without Tyr–Asp (500 �M). D, nano-DSF analysis of the melting profile of GAPC1/C2 protein
with and without Tyr–Asp (25 �M). E, nano-DSF analysis of the melting profile of GAPCP1 protein with and without Tyr–Asp (25 �M). F, nano-DSF analysis of the
melting profile of GAPCP2 protein with and without Tyr–Asp (50 �M). Protein concentration of 0.2– 0.25 mg/ml was used for the nano-DSF experiments. For the
binding assays (C–F) one representative replicate of the unfolding curve (with and without Tyr–Asp) was selected (Tm indicated with the vertical line was
calculated using default settings in the Prometheus NT.48 software); for the complete data (n � 4; independent experiments) see Table S5.
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and Tyr–Leu) and single amino acids (Tyr and Asp) were
tested. Although no binding was measured for plant glyceral-
dehyde-3-P dehydrogenases, the Tm of the human GAPDH was
affected by the presence of two other Tyr-containing dipep-
tides, His–Tyr and Tyr–Leu (Table S6).

In summary, by combining PROMIS and AP ,we revealed a
novel interaction between dipeptide Tyr–Asp and a family of
Arabidopsis glyceraldehyde-3-P dehydrogenases. Importantly,
Tyr–Asp binding is also conserved for human GAPC. Glycer-
aldehyde-3-P dehydrogenases are glycolytic enzymes but have
been also implicated in transcriptional regulation, signal trans-
duction cascades, DNA repair, and apoptosis (so-called moon-
light functions) (32). Considering recent reports pointing to the
regulatory functions of dipeptides (33), it will be extremely
interesting to investigate physiological consequences of the
Tyr–Asp– glyceraldehyde-3-P dehydrogenase interaction.

Discussion

Most common strategies to elucidate protein–small-mole-
cule interactions start with a single protein or metabolite bait
and exploit affinity purification in combination with MS detec-
tion (5, 6). These methods are labor-intensive, often require
transgenic lines, and provide information restricted to the used
bait. In consequence, although recent literature suggests a still
unexplored wealth of protein–metabolite interactions, their
true extent remains unknown (1).

As described here, using co-elution behavior during SEC
offers an attractive means to obtain a much more comprehen-
sive view of potential protein–metabolite complexes. SEC is an
accepted method to separate and characterize protein–protein
complexes. Herein, and to our knowledge for the first time, we
report its suitability for the global identification of protein–
small-molecule interactions. We could previously demonstrate
that small molecules are retained in the protein complexes dur-
ing lysate preparation and size separation, without the need for
prior chemical cross-linking (11). This approach seems to be
surprisingly robust given the time it takes to complete the sep-
aration (�3 h), the various dilutions introduced both during
lysate preparation and subsequent fractionation step, and the
largely polar nature of the small molecules that can easily dis-
solve in the used buffer. This would indicate that many of the
cellular PMIs are in fact very stable, possibly due to a combina-
tion of low Kd values and long dissociation time. However, this
seems to be in contrast with the Kd value of 500 �M measured
for the pantothenate–KPHMT1 interaction. Therefore, one
has to assume that additional factors also may contribute to the
observed stability that is not reflected when determining Kd
values in a binary system. Such factors may be additional pro-
tein partners, post-translational modifications, or even co-elut-
ing RNAs.

As PROMIS is a novel approach, we were careful in perform-
ing a number of positive and negative controls that will be sum-
marized here. 1) Already in our preceding study, protein-free
small-molecule extract was used as a negative control to
exclude the unlikely possibility that free metabolites would
elute in the high-molecular weight fractions. Indeed, this was
not the case (11). 2) As described under “Results,” when query-
ing how many of the known protein–metabolite interactions

would be represented in our data, we showed that our approach
retrieves five times more of the known PMIs than expected by
chance. 3) We could separate exogenously added proteinase
inhibitors together with their respective protease targets.

In a follow-up experiment, we could also demonstrate that
PROMIS can be used to discover novel protein–small molecule
interactions. 1) By combining the co-elution data with bio-
chemical knowledge, we were able to predict two novel PMIs,
namely KPHMT1–pantothenate and MTI–MTA, for which we
could trace down the binding and determine the Kd value of the
binary complex. 2) By combining PROMIS with AP, we identi-
fied a novel interaction between Tyr–Asp and the glyceralde-
hyde-3-P dehydrogenase enzyme. It is worth mentioning that
an analogous combination of PROMIS and AP experiments led
to the discovery of a novel interaction between 2�,3�-cAMP
small molecule and Rbp47b protein (34). Importantly, we could
show that the 2�,3�-cAMP binding to the Rbp47b is relevant in
vivo-promoting stress granule formation.

Based on the above evidence, we are convinced that our
method, named PROMIS, provides a reliable means to isolate,
separate, and characterize protein–metabolite interactions
from native cellular lysate, close to the in vivo situation. Most
importantly and in contrast to other methods, a single PROMIS
experiment can be used to deduce interactions between many
metabolites and many proteins, enabling a system-wide view
into the interactome. Notably, both protein–protein and pro-
tein–small-molecule complexes can be traced in a single exper-
iment. The PROMIS method is generic and can be used in any
organism and sample type without the need for transgenic lines,
as is the case for the tandem affinity approaches (5). In contrast
to DARTS (7) and cellular thermal shift assay/thermal pro-
teome profiling (TPP) (35), PROMIS operates in near-cellular
metabolite concentrations and does not require small-mole-
cule modifications such as attachment to agarose beads (6). As
such, PROMIS is less likely to generate false positives related to
a high concentration of either protein or metabolite bait, as well
as false negatives related to small-molecule modifications.

On the down side, PROMIS is in its nature poorly predictive,
as co-elution is an indication, and not evidence for interaction.
Predictive power is related to the resolution, which depends on
the separation range of the column, number of collected frac-
tions, and sensitivity of the proteomic and metabolomic plat-
form. In an experiment like ours, every metabolite is correlated
with several hundred proteins, of which merely a handful con-
stitute true binders. As with any other omics study that relies on
correlation to define associations, a larger dataset comprising
multiple PROMIS experiments covering developmental, envi-
ronmental, and/or genetic diversity, will improve predictive
power. Nevertheless, even a single experiment such as the one
provided here allows meaningful hypothesis without the need
for additional experiments. Looking at the co-elution of a
metabolite with the enzymes involved in its metabolism proved
successful to find novel putative regulatory mechanisms.

As presented herein and using Tyr–Asp as an example, when
combined with orthogonal experimental approaches, PROMIS
allows us to trace protein interactors also in the absence of
literature knowledge. A point of criticism may be that when
deciding for a targeted approach such as AP or TPP anyway,
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PROMIS is needless. But as evident from the above, had it not
been for the PROMIS experiment, we would never have
selected Tyr–Asp for further analysis. In other words, a PROMIS
experiment delineates a set of small molecules that are retained
in the protein complexes and thus are (i) likely involved in reg-
ulation and signaling, and (ii) are accessible to biochemical
characterization. Moreover, as described previously, both AP
and TPP, however successful in retrieving true targets, are also
known to generate numerous false positives. A combination of
the methods (AP, TPP, and PROMIS) can be seen as a logical
way to distinguish true from false interactors.

As any other approach that starts with a cellular lysate, there
are other points to be considered. The choice of buffering con-
ditions will affect measured interactions with higher salt con-
centrations favoring hydrophobic over ionic bindings. Many
weak and transient interactions may be lost. Crushing organ-
elles may lead to formation of false interactions, which do not
occur in vivo. Using isolated organelles may circumvent the last
issue, but as with the other mentioned approaches that look
into protein–protein interaction and PMI, it is rarely done as it
is laborious, time-consuming, and often simply infeasible. As a
much simpler alternative, we propose to filter the interaction
data, taking advantage of the subcellular localization available
for a majority of the Arabidopsis proteins (15) but increasingly
for the small molecules (36). Finally, a modification of the pro-
tocol would be required to tap into membrane proteins. For
instance, it was demonstrated (8) that inclusion of the mild
detergent during cell extraction liberates membrane proteins
without affecting protein–ligand interactions, as determined in
the TPP study.

One last issue is data analysis. Following the approach taken
for protein–protein complexes, we applied deconvolution to
split elution profiles into single peaks. This was necessary as we
expected that a single metabolite can interact with different
proteins, resulting in multiple elution maxima across the sepa-
ration range. We anticipated that the majority of the small
molecules, e.g. dipeptides or cyclic nucleotides, will have few
specific protein partners, which would justify using Pearson
correlation cutoff and peak maxima to define candidate inter-
actors. A single protein peak is expected to correspond to a
single metabolite peak, and thus they should mirror each other
with respect to their elution pattern. The choice of Pearson
correlation of �0.7 was based on the ROC curve, and it seemed
to be a good compromise between true positives and the false
positives ratio.

Nevertheless, there are metabolites for which multiple pro-
teins would contribute to a single elution peak, obscuring elu-
tion profile and data analysis. The extreme case presented here
is PLP, which is a cofactor for more than a 140 different enzy-
matic reactions (22). PLP’s elution profile spans 21 of the 37
protein fractions (from 506 to 42 kDa), with two major elution
peaks, but also with additional minor maxima that were not
selected during deconvolution. If we consider only the major
peaks and use our prediction cutoff (COR � 0.7 and MAX �1
fraction), we retrieve 34 of the 76 experimental protein interac-
tors found in the Stitch database and present in our dataset. But
if we consider the whole elution span, we would increase the
identification to 69 proteins, which is nearly 90%. Therefore, in

cases of metabolites like PLP, co-presence may be a better cri-
terion to define interaction.

In conclusion, PROMIS, based on the co-elution of proteins
and metabolites, offers a novel, powerful tool to explore the
protein–metabolite interactome, and it could prove essen-
tial to understand how differences in the small-molecule
interactome contribute to the developmental, environmen-
tal, and/or genetic readouts.

Experimental procedures

All chemicals were acquired from Sigma unless otherwise
noted.
Plant cell cultures

Cell suspension culture PSB-L of A. thaliana (L.) Heynh.
ecotype Landsberg erecta, derived from MM2d cells (38) was
grown in MSMO medium, in a continuous photoperiod, at
21 °C, on orbital shaker (110 –120 rpm). MSMO medium con-
sists of 4.43 g/liter Murashige and Skoog basal salts with mini-
mal organics (Sigma), 30 g/liter sucrose, 0.5 mg/liter of 1-naph-
thaleneacetic acid, 0.05 mg/liter of kinetin, pH 5.7, adjusted
with 1 M KOH. Cells were harvested at the logarithmic growth
phase (7 days after last passage) by filtration and immediately
frozen in liquid nitrogen. Experiments were conducted using
four independently inoculated, grown, harvested, and extracted
cultures.

Native Arabidopsis lysate preparation

Plant material was collected as described above and pulver-
ized using a liquid nitrogen mortar, and pestle. 1 ml of a lysis
buffer was added per 1g of material (25 mM Tris-HCl, pH 7.5,
0.5 M NaCl, 15 mM MgCl2, 0.5 mM DTT, 1 mM NaF, 1 mM

Na3VO4, 1
 protease inhibitor Mixture, Sigma catalog no.
P9599, Steinheim, Germany). Cellular debris was removed by a
10-min centrifugation at 4000 rpm (4 °C). The crude lysate was
then subjected to a 1-h ultracentrifugation at 35,000 rpm (4 °C)
to obtain a soluble fraction referred to as the native Arabidopsis
lysate.

Size-exclusion chromatography

Size-exclusion chromatography was performed at 4 °C as
described previously (11). 2.5 ml of soluble fraction corre-
sponding to 50 mg of protein, as determined by Bradford assay,
were used for the separations. SEC was performed with a
HiLoad 16/600 Superdex 200 preparation grade column (GE
Healthcare Life Science, Little Chalfont, UK) connected to an
ÄKTA Explorer 10 (GE Healthcare Life Science) operating at
4 °C. The flow rate was set to 0.8 ml/min. 57 fractions of 1.5 ml
were collected from a 40- to 125.5-ml elution volume of which
1 ml was dried in a speed vac overnight and stored at �80 °C for
metabolomic analysis.

Extraction and LC-MS analysis of small molecules

Metabolites were extracted from SEC fractions as described
previously (11). In short, the collected fractions were extracted
using methyl tert-butyl ether/methanol/water solvent system
to separate proteins, lipids, and polar compounds into pellet,
organic, and aqueous phase, respectively (39). After extraction,
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the aqueous phase was dried in a speed vac and stored at �80 °C
until LC/MS analysis. Samples were measured using ultra-per-
formance LC coupled to an Exactive mass spectrometer (Ther-
moFisher Scientific) in positive and negative ionization mode as
described previously (39).

LC-MS/MS of proteins

Protein concentration of SEC fractions was determined by
the Bradford assay (Carl Roth GmbH � Co. KG, Karlsruhe,
Germany). An equivalent of 75 �g of protein (if less protein was
available, a maximum of 300 �l was used) from fractions A04 to
C10 was precipitated in 80% acetone at �20 °C overnight. After
pelleting the proteins by centrifugation (4 °C, 20 min, 20,000 

g), pellets were resuspended in 18 �l of urea buffer (6 M urea, 2
M thiourea in 40 mM ammonium bicarbonate). Cysteine reduc-
tion (using DTT) and alkylation (using iodoacetamide) fol-
lowed by enzymatic digest using LysC/trypsin mix (Promega
Corp., Fitchburg, WI) was done following the instruction man-
ual. Peptide samples were desalted on C18 Empore� extraction
discs (3M, Maplewood, MN) STAGE tips using 32.5 �g of
digest, and the eluted peptides were concentrated in a speed vac
to �2 �l and stored at �80 °C until measurement. Dried pep-
tides were resuspended at a concentration of 0.33 �g/�l in 3%
acetonitrile, 0.1% TFA. 2 �g were analyzed on an Easy nLC-
1000 connected to a Q-Exactive Plus mass spectrometer (both
ThermoFisher Scientific Inc.). Peptide samples were separated
on a reversed phase Acclaim� PepMap column (C18, 2 �m, 100
Å, 75 �m inner diameter 
 150 mm) using Buffer A (0.1%
formic acid) and Buffer B (60% acetonitrile, 0.1% formic acid) at
a flow rate of 300 nl/min. The gradient started from 3% aceto-
nitrile increasing to 18% over 60 min and further to 30% after 90
min followed by a washout at 60% acetonitrile for 10 min and
re-equilibration with 6 �l of Buffer A. The Q-Exactive Plus was
interfaced with a Nanospray FlexTM ion source (ThermoFisher
Scientific Inc.) with a spray voltage of �2.1 kV, capillary tem-
perature set to 275 °C, and S-lens to RF level of 50. We used a
data-dependent top-N method that fragmented the top 15
most intense ions per full scan. Full scans were acquired at a
resolution of 70,000 with an AGC target 3e6, maximum injec-
tion time 100 ms, scan range 300 to 1600 m/z in profile mode.
Each dd-MS2 scan was recorded in profile mode at a resolution
of 17,500 with an AGC target of 1e5, maximum injection time
100 ms, isolation window 1.6 m/z, normalized collision energy
25, and an underfill ratio of 20%. Charges below 2 and above 4
were excluded; the peptide match was set to preferred, apex
trigger and exclude isotopes were set to on, and the dynamic
exclusion lasted for 15 s.

Data pre-processing: LC-MS metabolite data

LC-MS metabolite raw data were analyzed using Refiner MS
9.0.4 (Genedata AG, Basel, Switzerland) using the following
activities and settings: removal of chemical noise (chromato-
gram smoothing three scans, estimator moving average, RT
window 51 scans, quantile 50%, intensity threshold for clipping
750, RT and m/z structure removal enabled with a minimum
RT length of 5 scans, and a minimum m/z length of 3 points),
chromatogram alignment (pairwise alignment based tree, RT
search interval 200 scans, m/z window 5 points, RT window 5

scans, gap penalty 1), peak detection (summation window 0.09
min, minimum peak size 0.05 min, maximum merge distance 5
points, peak RT splitting enabled with maximum intensity pro-
filing, gap/peak ratio 90%, smoothing window three points, cur-
vature-based peak detection, peak refinement enabled at a
refinement threshold of 80%, consistency filter at threshold 1).
Positive and negative mode data were processed with the same
settings, combined after export and further analyzed in R. The
initial data matrix for LC-MS metabolites contained 249,893
features (characterized by m/z and RT information) and 301
samples (228 experimental samples, 57 control experiment
samples, eight blanks, and eight nonfractionated samples). The
data were then filtered as follows (excluding nonfractionated
samples). To be further considered in analysis, a metabolic fea-
ture in any fractionated sample was required to be 10 times
above the average blank intensity and to have a maximal inten-
sity greater 5000. The resulting data were then normalized to
the protein content determined for each fraction from which
the sample was extracted. To reduce the feature list to potential
protein-bound features, we filtered features to have in all four
experimental replicates in at least three consecutive protein-
containing fractions (A4 to C12) as deduced from protein mea-
surements and the calibration curve. The resulting features
(4381) were further filtered manually to remove noise features
leaving 4229 features for further analysis.

Data pre-processing: LC-MS metabolite annotation

All features were matched to an in-house library of authentic
standards allowing retention time deviations of 0.05 min and
m/z deviation of 0.002. In addition, a replicate extract of one
experiment was analyzed by MetaSysX GmbH (MetaSysX
GmbH, Potsdam, Germany) using identical chromatographic
settings, and annotations were transferred to in-house mea-
sured data by estimating the RT shifts over the chromatogram
following the most abundant feature in every 0.05-min window.
The higher number of annotations reported here compared
with those described in Ref. 11 results from the growth of our
standard library, e.g. as a result of incorporation of 400 dipep-
tide standards. Granting the request of MetaSysX, RT informa-
tion was removed from the supporting information but will be
shared upon inquiry.

Data pre-processing: LC-MS protein data

Raw data were analyzed using MaxQuant 1.5.2.8 (40) and its
implemented search engine Andromeda (41) using the stan-
dard settings with minor changes: false discovery rate correc-
tion was set to 0.01, first search and MSMS search mass toler-
ance were set to 10 ppm; LFQ ratio count was set to 1; and
variable modifications were set to Met oxidation, N-terminal
acetylation, and Ser, Thr, and Tyr phosphorylation. As data-
bases, we used the common contaminations database com-
ing along with MaxQuant and the Arabidopsis proteome of
canonical and isoform entries from Uniprot (http://www.
uniprot.org/proteomes,4 UPID UP000006548, retrieved on
March 17, 2017, containing 33,037 proteins, last modified on

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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December 18, 2016). The data in the proteinGroups result table
from 111 files were subsequently processed with R. First, we
filtered out proteins that were contaminants and all decoy hits.
Next, we required at least two unique peptides per protein
group or at least one unique and one razor peptide per protein
group if they made up more than 25% sequence coverage. This
decreased the initially 7942 identified protein groups to 7214.
We chose to use protein group raw intensity values as the type
of quantitative data for subsequent analyses based on a compar-
ison of the overall coefficient of variation distributions. We
compared LFQ and raw intensities after different normaliza-
tion scenarios and obtained the best results (lowest overall coef-
ficient of variation) when using normalized raw intensity val-
ues. Therefore, for each sample we normalized raw intensity
values to the sum of the 95 percentile values of all intensities
and further to the maximum in each experimental replicate.

Data pre-processing: Protein and metabolite profile peak
deconvolution

To efficiently correlate peaks of proteins and metabolite fea-
tures, we split the data profiles into single peaks by finding local
valleys in the data. Therefore, we compared averaged profiles
from biological replicates of proteins and metabolites, respec-
tively, with their loess (locally weighted scatterplot smoothed)
curve and filtered the detected valleys with specialized param-
eters as given below. Average profiles were calculated using the
median of separately maximum normalized replicate experi-
ments with missing values replaced by zero values. The param-
eters for the loess smoother were 0.17 span and window of 3.
After that, we kept potential valleys as true if they met the fol-
lowing criteria: a peak width of at least three fractions from the
last valley and a minimum drop in intensity of 30% relative to
the previous peak for proteins and 50% for metabolites. We
additionally required the potential peak to have a minimum of
5% base peak intensity for proteins and more than 10% base
peak intensity and 750 intensity for metabolites. After splitting
the profiles, we filtered the deconvoluted data for having at least
two consecutive complete replicate groups, and for metabolite
data in addition for having a minimal median intensity of 5000.
Furthermore, we removed protein and metabolite feature peaks
that eluted in the first protein fractions (� fraction A04) and
metabolite features that eluted in the last two protein fractions
(� fraction C08). This procedure resulted in a final number of
3325 metabolic feature peaks derived from 2830 unique fea-
tures that we considered as being potentially protein-bound.
The protein data consisted of 5527 peaks derived from 4627
single protein groups that were used for subsequent analyses.

Correlation of profiles

Deconvoluted and median averaged profiles of metabolic
features or annotated metabolites and proteins were correlated
using Pearson correlation. This was done in R but can be easily
performed in Excel using either PEARSON and CORREL
function.

Cloning and protein overexpression

Coding sequence (CDS) of A. thaliana kphmt1 gene
(AT2G46110) was cloned into the E. coli expression vector

pET300 containing His6-tag at the N terminus of the Gateway
cassette (ChampionTM pET Expression System, ThermoFisher
Scientific) using specific primers (Table S7). The N-terminal
144 bp of a kphmt1 CDS constituting mitochondrial signal pep-
tide was deleted to increase protein solubility. CDS of A. thali-
ana mti gene (At2g05830) was cloned into the E. coli expression
vector pET300 containing His6-tag at the N terminus of
the Gateway cassette (ChampionTM pET Expression System,
ThermoFisher Scientific) using specific primers (Table S7).
BL21 StarTM (DE3) E. coli cells (ThermoFisher Scientific) were
used for protein overexpression. CDS of gapc1/2, gapcp1,
and gapcp2 were isolated from Arabidopsis cDNA and cloned
into pENTR/D-TOPO (ThermoFisher Scientific) using specific
primers (Table S7). It is important to mention that due to the
high similarity between gapc1 and gapc2 (98%; cytosolic ver-
sions), it was not possible to isolate the single version, and for
this reason it was designated gapc1/2. The gapc1/2, gapcp1, and
gapcp2 genes were cloned as a C-terminal fusion in the
pDEST17 expression vector containing a His6-tag at the N ter-
minus of the gateway cassette (Karlsruhe, Germany). StarTM

and RosettaTM cells expressing His6-kphmt1, His6-mti, His6-
gapc1/2, His6-gapcp1, and His6-gapcp2 were grown in Luria-
Bertani (LB) broth containing the required antibiotics at 28 °C.
Overnight culture was suspended 100 times in fresh media,
grown to OD 0.4, induced by addition of 0.1 mM isopropyl
1-thio-�-D-galactopyranoside, and transferred to 16 °C for
overnight incubation. Cells were harvested by centrifugation
and disrupted with an EmulsiFlex C3 homogenizer (Avestin,
Mannheim, Germany). MTI protein was purified using
imidazole-gradient purification and nickel-nitrilotriacetic
acid-agarose beads (Qiagen, Hilden, Germany). Protein
purity was checked by SDS-PAGE. KPHMT1 bacterial lysate
was used directly for the analysis. To obtain a highly pure
protein, SEC was performed, and 15 fractions were collected.
GAPC1/2, GAPCP1, and GAPCP2 were found in fractions
A8 –A10. Purity of the protein was confirmed by SDS-PAGE
and Prometheus NT.48, and A8 fraction was then further
used to perform protein thermal stability measurements.
The human recombinant GAPDH protein was purchased
from Sigma to perform further protein thermal stability
measurements.

Affinity purification assay

Custom Tyr–Asp–agarose beads were purchased from Cube
Biotech (Monheim, Germany). Tyr–Asp was coupled using the
amine (N� beads) group of tyrosine or carboxylic (C� beads)
group or aspartic acid via an 11-carbon spacer. Beads were
equilibrated (lysis buffer) before incubation with the lysate.
Lysate was divided in three replicates (3 ml each) and incubated
with 200 �l of agarose resin for 1 h on a rotating wheel at 4 °C
(binding). Afterward, the lysate was transferred to a Mobicol
“Classic” (35 �m pore size filter) column and washed with 10 ml
of wash buffer (0.025 M Tris-HCl, pH 7.5, 0.5 M NaCl). The
beads were incubated with 400 �l of 1 mM Tyr and 1 mM Asp for
1 h on a rotating wheel at 4 °C. The beads were incubated with
400 �l of 1 mM Tyr–Asp (Eurogentec, Belgium) for 1 h on a
rotating wheel at 4 °C. Eluate was collected for the analysis.
Proteins were precipitated with pre-cooled acetone (1:4) and
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further dried in a vacuum concentrator and stored at �20 °C.
LC-MS/MS proteomics analysis was done as described above.
Proteins reproducibly pulled with both N� and C� beads were
assigned as putative Tyr–Asp interactors.

Protein thermal stability measurements

GAPC1/2, GAPCP1, and GAPCP2 proteins were obtained as
described above, and the human GAPDH recombinant protein
was obtained from a commercial supplier (Sigma) and stored in
10 mM Tris buffer (pH 7.5, 0.5 M NaCl). Tyr–Asp (25 �M), 3PGA
(250 �M), and other dipeptides (25 �M) were prepared in 1

PBS buffer for the measurements using GAPC1/2 protein. For
GAPCP1 Tyr–Asp (25 �M), 3PGA (250 �M) and other dipep-
tides (25 �M) were prepared in 1
 PBS buffer, whereas for
GAPCP2 Tyr–Asp (50 �M), 3PGA ( 250 �M) and other dipep-
tides (50 �M) were prepared in 1
 PBS buffer. In addition, for
the human GAPDH Tyr–Asp (500 �M), 3PGA (500 �M) and
other dipeptides (500 �M) were prepared in Tris buffer (10 mM

Tris-HCl, pH 7.5, 0.5 M NaCl). In accordance, GAPDH (1 �M)
and GAPCs (0.2– 0.25 mg/ml) were diluted using Tris or PBS
buffer, respectively. Capillaries were loaded into the Prome-
theus NT.48 (Nanotemper). Unfolding was detected during
heating in a linear thermal ramp (2 °C min�1, 20 –90 °C) with
an excitation power of 60 –100%. Temperature-dependent pro-
tein unfolding was determined from changes in tryptophan and
tyrosine fluorescence at emission wavelengths of 350 and 330
nm. Melting temperatures were determined by detecting the
maximum of the first derivative of the fluorescence ratios
(F350 nm/F330 nm) as described previously (43).

MST

MST measurements were performed using a Monolith
NT.115 instrument (NanoTemper, München, Germany). Pro-
teins (KPHMT1 and MTI) were labeled in phosphate buffer
(PBS) using the MonolithTM His-tag labeling kit RED-Tris-
NTA kit (MO-L008) according to the user manual. PBS buffer
was exchanged to Tris, pH 7.5 (binding buffer). Excitation was
optimized by varying the LED power to yield emission intensi-
ties above 200 fluorescence arbitrary units, corresponding to
10 –50 nM labeled protein. Monolith power was set to 40%.
Premium coated capillaries were used to prevent sticking. His6-
tag control peptide provided with the kit was used as a control.
MO Affinity Analysis software was used to analyze (Kd calcula-
tion) and visualize the data. Capillaries were loaded into the
instrument assets of 13–16 point ligand titrations. D-Panto-
thenic acid hemicalcium salt (Sigma catalog no. 137-08 – 6) was
dissolved in Tris, pH 7.5, buffer to 1 mM stock. For measure-
ment, pantothenic acid was diluted to 500 �M working concen-
tration. MTA (Sigma catalog no. D5011) was dissolved to 150
mM stock in DMSO and then diluted with Tris buffer, pH 7.5, to
1 mM working concentration.

Data deposition

The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (42) partner
repository with the dataset identifier. Metabolomics
data were deposited into MetaboLights repository (37) as
MTBLS94.
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