## Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## 4,5-Dichloro-2H-1,3-oxazine-2,6(3H)dione

## Damon Parrish, Brian Glass, Gretchen M. Rehberg and Margaret E. Kastner*

Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
Correspondence e-mail: kastner@bucknell.edu
Received 13 August 2009; accepted 28 August 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.034 ; \omega R$ factor $=0.100$; data-to-parameter ratio $=15.3$.

In the title compound, $\mathrm{C}_{4} \mathrm{HCl}_{2} \mathrm{NO}_{3}$, the essentially planar (maximum deviation $=0.023 \AA$ for the ring O atom) molecules form $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between molecules lying about inversion centers, forming eight-membered rings with an $R_{2}^{2}(8)$ motif in graph-set notation.

## Related literature

For synthetic background, see: Warren et al. (1975); Rehberg \& Glass (1995). For related structures, see: Copley et al. (2005); Parrish, Leuschner et al. (2009); Parrish, Tivitmahaisoon et al. (2009). For graph-set notation in hydrogen bonding, see: Bernstein et al. (1994).


## Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{4} \mathrm{HCl}_{2} \mathrm{NO}_{3} & \text { Monoclinic, } P 2_{1} / c \\ M_{r}=181.96 & a=10.2290(16) \AA\end{array}$

$$
\begin{aligned}
& b=5.2549(8) \AA \\
& c=12.2766(16) \AA \\
& \beta=112.359(11)^{\circ} \\
& V=610.28(16) \AA^{3} \\
& Z=4
\end{aligned}
$$

## Data collection

Siemens R3m/V diffractometer
Absorption correction: none 1566 measured reflections
1405 independent reflections 1235 reflections with $I>2 \sigma(I)$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.100$
$S=0.95$
1405 reflections

Mo $K \alpha$ radiation
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.38 \times 0.33 \times 0.15 \mathrm{~mm}$

## $R_{\text {int }}=0.053$

3 standard reflections every 97 reflections intensity decay: none

## 92 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$ | 0.86 | 1.99 | $2.845(2)$ | 174 |

Symmetry code: (i) $-x+2,-y+1,-z$.
Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Science Foundation for grant No. ILI8951058.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2198).

## References

Bernstein, J., Etter, M. C. \& Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi \& J. D. Dunitz, Vol. 2, p. 431-507. New York: VCH. Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Copley, R. C. B., Deprez, L. S., Lewis, T. C. \& Price, S. L. (2005). CrystEngComm, 7, 421-428.
Parrish, D., Leuschner, F., Rehberg, G. M. \& Kastner, M. E. (2009). Acta Cryst. E65 o2354.
Parrish, D., Tivitmahaisoon, P., Rehberg, G. M. \& Kastner, M. E. (2009). Acta Cryst. E65, o2355.
Rehberg, G. M. \& Glass, B. M. (1995). Org. Prep. Proced. Int. 27, 651-652.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Warren, J. D., MacMillan, J. H. \& Washburne, S. S. (1975). J. Org. Chem. 40, 743-746.

## supplementary materials

## 4,5-Dichloro-2H-1,3-oxazine-2,6(3H)-dione

D. Parrish, B. Glass, G. M. Rehberg and M. E. Kastner

## Comment

The synthesis of derivatives of 3-oxauracil has previously been reported (Warren et al., 1975) and an improved synthesis of the unsubstituted 3-oxauracil was reported by Rehberg \& Glass (1995). The structure of the unsubstituted 3-oxauracil and its monohydrate have been reported (Copley et al., 2005). Three derivatives of 3-oxauracil (4-methyl, 4-bromo, and 4,5 -dichloro) have been prepared in our laboratory in route to the synthesis of 1-aza-1,3-butadienes. In this paper, we report the crystal structure of the title compound, (I).

Unlike the hydrogen bonding observed in 4-methyl derivative (Parrish, Leuschner et al., 2009) resulting in staggered chains of molecules, in the crystal structure of of the title compound (Fig. 1), the molecules of (I) are held together by classical intermolecular hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ resulting in dimeric units about inversion centers, forming eight membered ring systems which may be described in terms of graph set notation (Bernstein et al. 1994) as $\mathrm{R}_{2}{ }^{2}(8)$ ring motif (details have been given in Table 1 and Figure 2). The molecular dimensions in (I) agree well with the corresponding bond distances and angles reported for the above mentioned structures and 4-boromo derivative of 3-oxauracil (Parrish, Tivitmahaisoon et al., 2009).

## Experimental

Dichloromaleic anhydride (3,4-dichlorofuran-2,5-dione) and trimethylsilyl azide were treated analogously to the syntheses reported for the 4-methyl (Parrish, Leuschner et al., 2009) and 4-bromo derivatives. Crystals of the title compound were grown from a solution of acetone at room temperature by slow evaporation.

## Refinement

Hydrogen atom bonded to N 3 was calculated and refined using a riding model using the $\mathrm{N}-\mathrm{H}$ distance $0.88 \AA$ with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{N})$.

## Figures



Fig. 1. The molecular structure of the title compound, with atom labels and $50 \%$ probability displacement ellipsoids for non-H atoms.

## supplementary materials



Fig. 2. The packing of the title compound viewed along the $b$ axis and showing the H -bonded dimer formed by inversion related molecules.

## 4,5-Dichloro-2H-1,3-oxazine-2,6(3H)-dione

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{HCl}_{2} \mathrm{NO}_{3} \\
& M_{r}=181.96 \\
& \text { Monoclinic, } P 2_{1} / c \\
& \text { Hall symbol: -P } 2 \mathrm{ybc} \\
& a=10.2290(16) \AA \\
& b=5.2549(8) \AA \\
& c=12.2766(16) \AA \\
& \beta=112.359(11)^{\circ} \\
& V=610.28(16) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
F_{000}=360
$$

$$
D_{\mathrm{x}}=1.980 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
D_{\mathrm{m}}=1.92 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
D_{\mathrm{m}} \text { measured by floatation }
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 20 reflections
$\theta=10-12.5^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plates, colorless
$0.38 \times 0.33 \times 0.15 \mathrm{~mm}$

## Data collection

Siemens R3m/V
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293 \mathrm{~K}$
$\theta-2 \theta$ scans
Absorption correction: none
1566 measured reflections
1405 independent reflections
1235 reflections with $I>2 \sigma(I)$

## Refinement

## Refinement on $F^{2}$

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.100$
$S=0.95$
1405 reflections

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0666 P)^{2}+0.3617 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e $\AA^{-3}$

92 parameters
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.042 (5)
Secondary atom site location: difference Fourier map

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.89484(14)$ | $0.7547(3)$ | $0.20549(12)$ | $0.0405(4)$ |
| C2 | $0.9358(2)$ | $0.6588(4)$ | $0.12050(17)$ | $0.0362(4)$ |
| O2 | $1.03514(16)$ | $0.7544(3)$ | $0.10600(14)$ | $0.0474(4)$ |
| N3 | $0.86084(17)$ | $0.4586(3)$ | $0.05845(14)$ | $0.0363(4)$ |
| H3 | 0.8864 | 0.3892 | 0.0062 | $0.044^{*}$ |
| C4 | $0.74604(19)$ | $0.3625(3)$ | $0.07572(15)$ | $0.0325(4)$ |
| C14 | $0.66660(6)$ | $0.11274(10)$ | $-0.01234(4)$ | $0.0453(2)$ |
| C5 | $0.7009(2)$ | $0.4611(4)$ | $0.15609(16)$ | $0.0347(4)$ |
| C15 | $0.55557(6)$ | $0.35198(11)$ | $0.17764(5)$ | $0.0491(2)$ |
| C6 | $0.7780(2)$ | $0.6694(4)$ | $0.22914(17)$ | $0.0366(4)$ |
| O6 | $0.75456(18)$ | $0.7746(3)$ | $0.30575(15)$ | $0.0533(4)$ |

Atomic displacement parameters ( $\AA^{2}$ )

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0479(8)$ | $0.0401(8)$ | $0.0369(7)$ | $-0.0084(6)$ | $0.0199(6)$ | $-0.0094(6)$ |
| C2 | $0.0401(10)$ | $0.0363(9)$ | $0.0321(9)$ | $-0.0007(8)$ | $0.0138(8)$ | $0.0003(7)$ |
| O2 | $0.0479(8)$ | $0.0484(9)$ | $0.0515(9)$ | $-0.0126(7)$ | $0.0251(7)$ | $-0.0079(7)$ |
| N3 | $0.0405(8)$ | $0.0411(9)$ | $0.0317(8)$ | $-0.0050(7)$ | $0.0188(6)$ | $-0.0060(7)$ |
| C4 | $0.0366(9)$ | $0.0333(9)$ | $0.0256(8)$ | $-0.0020(7)$ | $0.0097(7)$ | $0.0002(7)$ |
| C14 | $0.0530(3)$ | $0.0453(3)$ | $0.0375(3)$ | $-0.0132(2)$ | $0.0172(2)$ | $-0.0125(2)$ |
| C5 | $0.0387(9)$ | $0.0387(10)$ | $0.0286(8)$ | $-0.0019(8)$ | $0.0148(7)$ | $0.0005(7)$ |
| C15 | $0.0526(3)$ | $0.0587(4)$ | $0.0464(3)$ | $-0.0136(2)$ | $0.0303(3)$ | $-0.0082(2)$ |
| C6 | $0.0442(10)$ | $0.0362(9)$ | $0.0317(9)$ | $-0.0008(8)$ | $0.0171(8)$ | $-0.0007(7)$ |
| O6 | $0.0691(10)$ | $0.0521(9)$ | $0.0484(9)$ | $-0.0073(8)$ | $0.0334(8)$ | $-0.0166(7)$ |

## supplementary materials

Geometric parameters $\left({ }_{A},^{\circ}\right)$

| $\mathrm{O} 1-\mathrm{C} 2$ | $1.360(2)$ |
| :--- | :--- |
| $\mathrm{O} 1-\mathrm{C} 6$ | $1.406(2)$ |
| $\mathrm{C} 2-\mathrm{O} 2$ | $1.206(2)$ |
| $\mathrm{C} 2-\mathrm{N} 3$ | $1.353(3)$ |
| $\mathrm{N} 3-\mathrm{C} 4$ | $1.367(2)$ |
| $\mathrm{N} 3-\mathrm{H} 3$ | 0.8600 |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6$ | $125.02(15)$ |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3$ | $124.69(18)$ |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$ | $118.79(18)$ |
| $\mathrm{N} 3-\mathrm{C} 2-\mathrm{O} 1$ | $116.51(16)$ |
| $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$ | $122.41(16)$ |
| $\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3$ | 118.8 |
| $\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3$ | 118.8 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$ | $121.82(17)$ |
| $\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$ | $177.41(18)$ |
| $\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3$ | $-3.1(3)$ |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$ | $-177.81(19)$ |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$ | $2.7(3)$ |
| $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$ | $-0.3(3)$ |
| $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 44$ | $179.47(15)$ |
| $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $-2.0(3)$ |
| $\mathrm{C} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $178.29(14)$ |


| $\mathrm{C} 4-\mathrm{C} 5$ | $1.342(3)$ |
| :--- | :--- |
| $\mathrm{C} 4-\mathrm{C} 4$ | $1.698(2)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.444(3)$ |
| $\mathrm{C} 5-\mathrm{Cl} 5$ | $1.706(2)$ |
| $\mathrm{C} 6-\mathrm{O} 6$ | $1.192(2)$ |
|  |  |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl} 4$ | $123.46(15)$ |
| $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 4$ | $114.72(14)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $119.33(17)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5$ | $123.23(15)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 15$ | $117.44(14)$ |
| $\mathrm{O} 6-\mathrm{C} 6-\mathrm{O} 1$ | $117.20(18)$ |
| $\mathrm{O} 6-\mathrm{C} 6-\mathrm{C} 5$ | $127.99(19)$ |
| $\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$ | $114.81(16)$ |
| $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 5$ | $178.26(14)$ |
| $\mathrm{C} 14-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 5$ | $-1.5(3)$ |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 6$ | $-179.15(19)$ |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$ | $1.0(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6$ | $-178.2(2)$ |
| $\mathrm{C} 5-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6$ | $1.5(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$ | $1.6(3)$ |
| $\mathrm{C} 15-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$ | $-178.62(13)$ |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$ | 0.86 | 1.99 | $2.845(2)$ | 174 |

Symmetry codes: (i) $-x+2,-y+1,-z$.

Fig. 1


Fig. 2


