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Abstract

BioC is a simple XML format for text, annotations and relations, and was developed to

achieve interoperability for biomedical text processing. Following the success of BioC in

BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an as-

sistant system for BioGRID curation. In this paper, we describe the framework of the col-

laborative BioC task and discuss our findings based on the user survey. This track con-

sisted of eight subtasks including gene/protein/organism named entity recognition,

protein–protein/genetic interaction passage identification and annotation visualization.

Using BioC as their data-sharing and communication medium, nine teams, world-wide,

participated and contributed either new methods or improvements of existing tools to

address different subtasks of the BioC track. Results from different teams were shared in

BioC and made available to other teams as they addressed different subtasks of the track.

In the end, all submitted runs were merged using a machine learning classifier to pro-

duce an optimized output. The biocurator assistant system was evaluated by four

BioGRID curators in terms of practical usability. The curators’ feedback was overall posi-

tive and highlighted the user-friendly design and the convenient gene/protein curation

tool based on text mining.

Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/

Background

Understanding the organization of molecular interactions

is fundamental for comprehending how cellular networks

regulate homeostasis and cellular response to external

stimuli (1). Thus, many efforts have been made to system-

atically capture published experimental evidence and make

it available for computational approaches through data-

bases such as BioGRID (http://thebiogrid.org) (2), IntAct

(3, 4) and DIP (4). In order to facilitate the annotation pro-

cess a number of text-mining approaches have been at-

tempted with various degrees of success at different stages

of the annotation pipeline (5).

The purpose of the BioC (6) track in BioCreative V was

to create BioC-compatible modules which complement

each other and can be seamlessly integrated into a system

that assists BioGRID curators. BioC is a minimalist ap-

proach to interoperability for biomedical text mining. It is

an XML format to share text data and annotations and

comes with a simple library to read/write that data in mul-

tiple languages (http://bioc.sourceforge.net). In previous

BioCreative workshops, great emphasis was given to the

identification of protein–protein interactions (PPI). The

PPI track (7–9) was divided into subcategories and each

task was addressed independently, i.e. article classification,

interaction pair extraction, interaction sentence classifica-

tion and experimental method identification. The user

interactive track (IAT) (10–12) promoted the development

of annotation systems that can assist in biocuration tasks

by bringing text mining tool developers and database

curators together. Nonetheless, probably due to lack of

interoperability or sub-optimal performance, no attempt

was made to integrate such modules into a single annota-

tion tool.

With this in mind, and considering that the previous

BioC track focused on releasing BioC resources such as

datasets and biomedical NLP tools, the BioCreative V

BioC track was focused on a more practical problem: the

collaborative creation of a biocurator assistant tool tail-

ored for BioGRID database curators.

The main goals of the BioC track were:

• Define a collaborative task for molecular interaction infor-

mation extraction, so each team can develop a module in-

dependently, but can also use other modules’ outputs.

• Develop practical BioC-compatible molecular inter-

action tools by combining or improving existing methods

for full-text articles.

• Combine interoperable BioC components to produce a

biocurator assistant tool guided by BioGRID curators.

• Generate annotated full-text benchmark datasets for the

development and the final evaluation of the curation

interface.

The BioC track was organized into eight different tasks.

Eight teams created the modules that were cooperatively

used to identify and annotate molecular interaction infor-

mation from full-text documents. Using these results, one

team implemented a visual interface that was then eval-

uated by BioGRID curators.
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The paper is organized as follows. In the next section, we

describe the tasks for the BioCreative V BioC track. This is

followed by the description of how interoperability was

achieved among teams, participants’ system descriptions, and

a description of our machine learning-based merging process

for submitted predictions. Finally, user feedback from

BioGRID curators is discussed and conclusions are drawn.

Tasks, data and interoperability

One distinctive feature of the BioC track was the focus on

collaboration and synergy among participating teams. The

organizers promoted a collaborative framework and

helped each team to collaborate with the others for build-

ing an integrated annotation system. Figure 1 outlines the

tasks defined for the BioGRID biocurator assistant tool:

• Task 1, ‘Gene/protein named entity recognition (NER)’—

Identification of gene/protein mentions. Participating

teams combine results from existing tools or develop their

own methods to improve NER performance.

• Task 2, ‘Species/organism NER’—Identification and nor-

malization of species/organism names. Participating

teams either combine results from existing techniques or

propose a new way for identifying species/organisms.

• Task 3, ‘Normalization of gene/protein names’—

Identification of gene/protein IDs based on gene/protein

names and species/organisms mentioned in surrounding

text. Previous BioCreative datasets may be used for sys-

tem development. Systems can optionally use prediction

results from Tasks 1 and 2.

• Task 4, ‘Passages with PPIs’—Identification of passages

describing PPIs, e.g. ‘Aip1p interacts with cofilin to dis-

assemble actin filaments’. Physical interactions may

appear in single or several sentences. Participating

team(s) may use the PPI corpora (http://corpora.informa

tik.hu-berlin.de) such as BioCreative, BioNLP Shared

Task, AIMed and LLL for training, but they also can de-

velop additional training data.

• Task 5, ‘Passages with genetic interactions (GIs)’—

Identification of passages reporting GIs, e.g. ‘UBP2 inter-

acts genetically with RSP5, while Rup1 facilitates the

tethering of Ubp2 to Rsp5 via a PPPSY motif’. GIs may

appear in single or several sentences. The BioGRID set

may be used for creating a training set.

• Task 6, ‘Passages with experimental methods for phys-

ical interactions (PPI evidence passages)’—Identification

of passages describing experimental methods used for

the discovery of physical interactions, e.g. ‘A two-

hybrid-based approach using cofilin and actin mutants

identified residues necessary for the interaction of actin,

cofilin and Aip1p in an apparent ternary complex’.

There are 17 experimental methods defined in BioGRID

(Table 1). For this task, BioGRID, MINT and/or IntAct

databases may be used for training data.

• Task 7, ‘Passages with GI types (GI evidence pas-

sages)’—Identification of passages describing GI types,

e.g. ‘Synergy of FLAP1 and p300 for enhancement of

transcriptional activation by beta-catenin, LEF1/TCF

and AR’. These passages may overlap with the ones from

Task 5. However, for Task 7, a type of GI should be

clearly shown. There are 11 interaction types defined in

BioGRID (Table 1). The BioGRID set may be used for

training data.

• Task 8, ‘Visual tool for displaying various annota-

tions’—Development of a visualization tool for high-

lighting annotation results from other tasks above. The

Figure 1. Overview of BioCreative V BioC track. The track consists of named entity recognition (NER), protein–protein interaction (PPI), genetic inter-

action (GI) and visual tool tasks. The NER tasks include gene/protein NER, species/organism NER and gene/protein normalization. The PPI/GI tasks in-

clude finding passages with PPI/GI information (PPI/GI Passages), passages with PPI experimental methods (PPI Evidence Passages) and passages

with GI types (GI Evidence Passages).

Database, Vol. 2016, Article ID baw120 Page 3 of 13

Deleted Text: Last
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013;
Deleted Text:  
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://corpora.informatik.hu-berlin.de
http://corpora.informatik.hu-berlin.de
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 
Deleted Text: &hx201C;
Deleted Text: ,
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D; &hx2013; 


tool should allow easy navigation and display user-

selected annotations. A participating team should work

closely with biocurators in BioGRID in order to develop

a visualization tool that curators find most useful.

Unlike other BioCreative tasks, no official training/test set

was released for the BioC track. This highlighted the nature

of this challenge in encouraging its participants to develop

practical tools by combining or improving existing resources.

Table 2 summarizes the resources that each team utilized for

the development and optimization of their methods.

Participating teams proposed a method for each task

and created new training data or selected from existing

training sets. Ten teams submitted task proposals in

March, however, one team later withdrew. By the July sub-

mission deadline, eight teams had contributed 24 runs ad-

dressing Tasks 1–7 and one team built the visualization

tool. A submitted run contains predicted text, e.g. gene/

protein/organism names or PPI/GI passages, optionally

with normalized IDs for gene/protein/organism names.

Task 5 was not performed specifically, but it was con-

sidered covered by Task 7. Table 3 shows submitted runs

for each task for each team. The number of runs varied

from 3 to 6 except for the visual interface task.

Achieving interoperability and improving

collaboration

One of the goals of the BioC track was to provide a me-

dium where different teams could work independently to

produce a more advanced and a more sophisticated sys-

tem in the given time. This track started with a series

of webinars describing the BioC format and the BioC tools,

and then continued with regular online conferences

where teams shared their progress, questions and sugges-

tions. Figure 2 describes how BioC communication facili-

tated the sharing of data and annotations produced.

Materials and Methods

All teams were invited to provide data processed with their

individual systems optimized for the tasks detailed above.

Here, we give brief descriptions of the individual systems

that contributed to the BioC track.

System descriptions

Named entity recognition systems

The following teams contributed runs for named entity rec-

ognition for Tasks 1, 2 and 3. Neji (13) and Argos (14)

were previously equipped with modules to read and write

data in BioC format, while the NTTMUNSW system (15),

newly developed for this task, created a C# library for

reading/writing data in BioC format. Full text articles were

processed for gene, protein and species mention recogni-

tion and normalization, and the outputs were submitted to

the task organizers for availability to the teams working on

the other tasks and inclusion in the complete biocurator as-

sistant system.

Neji

Team members: Sérgio Matos, André Santos, David

Campos and José Lu�ıs Oliveira.

Neji is a biomedical concept recognition framework

that uses efficient dictionary-matching, machine learning

models, and multi-threaded document processing (13). The

gene/protein mention recognition system (Task 1) con-

sisted of a second-order conditional random fields model

with orthographic, morphological, dictionary-matching

and local context features, as described in (16). This model

was trained and tested on the BioCreative II gene mention

recognition corpus (17). The species/organism mention rec-

ognition system (Task 2) consisted of a dictionary-

matching approach using the dictionary provided by

LINNAEUS (18), with post-processing rules to remove

ambiguities. For the normalization of gene/protein names

(Task 3), the system applied a dictionary lookup strategy

where two gene dictionaries were checked in sequence.

The dictionaries were created from the BioLexicon gene

dictionary (19), the first one containing only the preferred

name of each gene, and the second one containing all the

Table 1. PPI experimental methods and GI interaction types

defined in BioGRID

PPI experimental methods GI interaction types

Affinity Capture-Luminescence

Affinity Capture-MS

Affinity Capture-RNA

Affinity Capture-Western

Biochemical Activity

Co-crystal Structure

Co-fractionation

Co-localization

Co-purification

Far Western

FRET

PCA

Protein-peptide

Protein-RNA

Proximity Label-MS

Reconstituted Complex

Two-hybrid

Dosage Growth Defect

Dosage Lethality

Dosage Rescue

Negative Genetic

Phenotypic Enhancement

Phenotypic Suppression

Positive Genetic

Synthetic Growth Defect

Synthetic Haploinsufficiency

Synthetic Lethality

Synthetic Rescue

Detailed information can be found in http://wiki.thebiogrid.org/doku.php/

experimental_systems.
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synonyms. Species annotations were used to filter out am-

biguous genes, so that an ambiguous gene mention is as-

signed the gene identifier according to the nearest species

recognized in the same sentence, passage and/or full-

document context. When no organism mention was found,

the human gene identifiers were kept.

Argo

Team members: Riza Batista-Navarro, Jacob Carter and

Sophia Ananiadou.

Argo is a workbench for building text-mining solutions

with a rich graphical user interface (14). Central to Argo

are customizable workflows that users compose by arrang-

ing available elementary analytics to form task-specific

processing units. For the BioC task, Batista-Navarro et al.

focused on developing new methods for the recognition

and normalization of mentions denoting genes/proteins

and organisms. These methods were trained on these cor-

pora: the CHEMDNER corpus of patents containing gene/

protein name annotations (20), and the S800 corpus of

PubMedVR abstracts annotated for organism mentions (21).

The Argo system leveraged these previously developed

tools for data pre-processing: the LingPipe sentence splitter

for detecting sentence boundaries (http://alias-i.com/ling

pipe), OSCAR4’s tokenizer for segmenting sentences into

tokens (22) and the GENIA Tagger for lemmatization as

well as part-of-speech and chunk tagging (23). The recog-

nition of gene/protein (F-score 70%) and organism men-

tions (F-score 73%) in text was addressed by training

Conditional Random Fields models on lexical and

Table 2. Datasets used and created by participating teams

Teams Tasks Datasets URL

Matos et al. (T2) NER (Gene/protein) þ normalization BioCreative II Gene Mention

Recognition corpus

http://www.biocreative.org/

resources/corpora

NER (Species/organism) þ normalization LINNAEUS http://linnaeus.sourceforge.net/

Batista-Navarro

et al. (T3)

NER (Gene/protein) þ normalization CHEMDNER GPRO http://www.biocreative.org/

resources/corpora/chemdner-

patents-gpro-corpus/

NER (Species/organism) þ normalization S800 http://journals.plos.org/plosone/

article?id¼10.1371/journal.

pone.006539

Singh et al. (T4) NER (Gene/protein) þ normalization BioCreative II Gene Mention

Recognition corpus

http://www.biocreative.org/

resources/corpora

NER (Species/organism) þ normalization S800 http://journals.plos.org/plosone/

article?id¼10.1371/journal.

pone.0065390

NER (Gene/protein/species) evaluation IGN corpus https://sites.google.com/site/

hongjiedai/projects/the-ign-corpus

Peng et al. (T6) PPI passages 20 in-house full text documents http://proteininformationresource.

org/iprolink/corpora

AIMed corpus ftp://ftp.cs.utexas.edu/pub/

mooney/bio-data

Aydin et al. (T7) PPI experimental method passages In-house developed corpus

Kim and Wilbur (T8) PPI passages BioCreative PPI corpus http://www.biocreative.org/

resources/corpora

Two in-house developed corpora

Islamaj Dogan

et al. (T8)

GI passages Two in-house developed corpora http://bioc.sourceforge.net

Table 3. Submitted runs from nine participating teams

Team Task 1 Task 2 Task 3 Task 4 Task 6 Task 7 Task 8

T1 1

T2 1 1 1

T3 1 1 1

T4 1 1 1

T5 1

T6 4

T7 2

T8 1 2 4

T9 1

Total 4 3 3 6 4 4 1

To boost the synergy effect of using multiple runs, we (T8) produced add-

itional results for Tasks 4 and 6. Only one team was selected for Task 8 as it

was to develop a user interface.
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syntactic features extracted by the above pre-processing

tools over the training corpora, combined with semantic

features drawn from dictionary matches. To facilitate the

normalization of the recognized mentions, the team de-

veloped rules based on string similarity, exploiting the

Jaro-Winkler and Levenshtein distance measures.

NTTMUNSW

Team members: Onkar Singh, Jitendra Jonnagaddala,

Hong-Jie Dai and Emily Chia-Yu Su.

Singh et al. (15) developed three BioC-compatible com-

ponents for processing the full text articles in BioC format,

and generated annotation results for species and gene/pro-

tein names along with their NCBI Taxonomy IDs and

Entrez Gene IDs. The preprocessing NLP pipeline

included: sentence splitting, tokenization, part-of-speech

tagging and abbreviation recognition. The gene mention

recognizer, a conditional random fields model, was trained

on the generated linguistic information and these features

were used as the input for the species mention recognizer.

In addition to the full species terms, the species recognition

component can recognize prefixes in a gene name that

refer to a species (F-score 94% on IGN corpus). For in-

stance, the prefixes ‘h’, ‘Hs’, ‘Sc’ and ‘Ca’ in the gene men-

tions ‘hLysoPLA’, ‘HsUap1p’, ‘ScUAP1’, ‘CaUap1p’ are

recognized by this module, and represent ‘Homo sapiens’,

‘Saccharomyces cerevisiae’ and ‘Candida albicans’, re-

spectively. The team also developed a multistage system

optimized for processing full-text articles (using the

BioCreative II.5 corpus). The multistage algorithm uses the

research article structure, and follows the general distribu-

tion of gene/protein-related information throughout the

article to assign information accurately to each section. For

example, the introduction section generally contains the

key genes described in the article, and these genes when re-

peated in the Results section are usually mentioned in their

abbreviated form. Their module parses the articles in a pre-

defined way, and remembering the already seen instances,

has an increased accuracy.

Molecular interaction recognition systems

The following teams contributed runs for molecular inter-

action passage recognition (Tasks 4, 6 and 7). These teams

made use of the output produced by the previous teams, as

the knowledge of genes/proteins and species in the text is

necessary and informative for the predictions in these

tasks. The outputs of all teams were submitted to the task

organizers and they were processed to compute one inte-

grated output for presentation to the curators. As

Figure 2. BioC Format for BioCreative V BioC track. (A) BioC format to share annotations for named entity recognition tasks: gene/protein and organ-

ism mentions and normalization. OrganismID and GeneID are NCBI Taxonomy ID and Entrez Gene ID, respectively. (B) BioC format to share annota-

tions for the molecular interaction tasks: protein–protein interaction mention and evidence (PPImention, PPIevidence) and genetic interaction

mention and evidence (GImention, GIevidence).
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mentioned earlier, we merged Task 5 with Task 7 after

receiving task proposals from participating teams.

PIPE

Team members: Yung-Chun Chang, Yu-Chen Su, Chun-

Han Chu, Chien Chin Chen and Wen-Lian Hsu.

Chang et al. (24) contributed one prediction output for

Task 4, detection of full-text passages mentioning protein–

protein interactions. In this work, three PPI corpora: LLL

(25), IEPA (26) and HPRD50 (27) are used to train and de-

velop the method. The PPI extraction system consists of

three main components: interaction pattern generation,

interaction pattern tree construction and convolution tree

kernel. Prior knowledge of PPI was first used to mark the

words in a given corpus, and frequently co-occurring

tuples were collected to generate interaction patterns via a

Probability Graphical Model. Afterwards, a PPI sentence

was represented with the interaction pattern tree structure,

which is the shortest path-enclosed tree of the instance

enhanced by a rewriting procedure. Finally, a convolution

tree kernel was employed to capture the structured infor-

mation in terms of substructures and determine the similar-

ity between sentences. Results showed this method was

effective in extracting PPI and achieved about 70% F1-

Score.

Rule-based extended dependency graph method for

prediction of PPI mentions

Team members: Yifan Peng, Cecilia Arighi, Cathy H. Wu

and K. Vijay-Shanker.

Peng et al. (28) also worked on Task 4, and contributed

four different outputs for different settings of their method.

Their system of detecting passages describing protein–pro-

tein interactions in full text articles utilized the Extended

Dependency Graph as an intermediate level of representa-

tion to abstract away syntactic variations in the sentence

(29). This method made full use of all gene/protein and

species annotations of previous teams, and used open

source available tools such as the Bllip parser (30) to ob-

tain parse trees, and CCProcessed from Stanford tools (31)

to extract dependencies. As a result of the Extended

Dependency Graph construction, the team created three

basic predicate-argument rules to extract PPI pairs in sen-

tences. The team labeled a sentence as positive if it con-

tained PPI pair(s), and two additional rules were used to

detect additional passages with PPI pairs. Experiments on

20 in-house annotated full-text articles showed an F-value

of 80.5. Using only the three basic rules, experiments on

AIMed (32) further confirm that the proposed system can

achieve an F-value of 76.1 for sentence selection and an F-

value of 64.7 for unique PPI detection.

Extraction of passages with experimental methods for

physical interactions

Team members: Ferhat Aydın, Zehra Melce Hüsünbeyi

and Arzucan Ozgür.

Aydın et al. (33) developed a system for identifying evi-

dence passages for protein–protein interactions in full-text

articles based on information retrieval techniques. In add-

ition, their method was refined for the most frequent ex-

perimental methods, and they provided an extra tag that

identified the precise method of interaction. The team

started by selecting the most frequent experimental meth-

ods in the BioCreative III IMT (Interaction Method Task)

data set and manually annotated a set of 13 full text art-

icles containing these methods in BioC format. This data

set was used for system development. Their approach is

based on generating queries for each experimental method

by making use of the Proteomics Standards Initiative-

Molecular Interactions (PSI-MI) ontology and the manu-

ally annotated articles. The terms and synonyms of the

method in the PSI-MI ontology were used for query gener-

ation. The tf–rf (term frequency–relevance frequency)

weighting metric was used to rank the words in the train-

ing documents and determine the salient keywords for

each experimental method. The salient keywords were

used for query expansion. Given a test document, the

queries for all experimental methods were run, and sen-

tences that produced a similarity score higher than a

threshold value for an experimental method were selected

as relevant (F-score 63%). The team submitted two runs

on the evaluation set of 120 articles.

Identification of protein–protein interaction passages and

methods passages

Team members: Sun Kim and W. John Wilbur.

Kim and Wilbur submitted three runs for PPI passages

and PPI method passages. The contribution of PPI passages

is based on the output from PIE the search (34). The PIE

engine utilizes a support vector machine (SVM) classifier

with multiword, substring, MeSHVR term and dependency

relation features. Although the system was designed for a

PPI document triage task, the team found that it worked

reasonably well at identifying PPI informative sentences.

The following two methods were developed with the goal

of identifying passages containing experimental methods

for PPI. The first method incorporated distant supervision

(35) into a classification task. First, candidate sentences

with GI pairs (appearing in BioGRID) were obtained from

1347 PubMed CentralV
R

(PMC) articles. There was no

overlap between these articles and the dataset used for the

BioC task. Among the candidates, sentences with a greater

than 5.0 tf�idf score were selected based on BioGRID gen-

etic interaction descriptions, and were labeled as negatives
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for PPI interaction. This set was merged with the PPI inter-

action method dataset from BioCreative II (8). The com-

bined set contained 21828 sentences, and was used to train

an SVM classifier for PPI method prediction. The team

found that the distant supervision approach was highly ef-

fective for accepting PPI, but also rejecting GI sentences.

The second method began by collecting names from the 17

methods contained in the BioGRID descriptions of meth-

ods for PPI detection. Each name was used to search for lit-

erature containing the name to find recent review articles

describing the method, facets of the method, or updates to

the method. The search was performed in two ways. First,

all the PubMed documents containing the name were used

to perform machine learning to recognize literature that

would be likely to contain the name and then the highest

scoring documents in PubMed based on this learning were

examined. Second, the Google search engine was used to

access literature to look for useful top scoring documents.

By examining these documents 415 one and two token

phrases describing PPI experimental methods were manu-

ally collected. Any sentence was then scored by how many

of these phrases were found in the sentence. This simple

sentence ranking scheme was applied to articles believed to

contain sentences describing experimental methods for PPI

detection. In this selected set of documents, these methods

proved useful.

Identification of genetic interaction evidence passages

Team members: Rezarta Islamaj Do�gan, Sun Kim, Andrew

Chatr-Aryamontri, Donald C. Comeau and W. John

Wilbur.

Islamaj Do�gan et al. (36) contributed four different runs

for Task 7. This particular task was novel as there existed

no prior work, and no prior data to help build a new sys-

tem. In addition, text describing genetic interactions is dif-

ficult to identify due to lack of a simple definition for these

interactions. This team therefore prepared two manually

annotated datasets: 1793 sentences from PubMed abstracts

and 1000 sentences from full text articles. The sentences in

the first dataset were annotated for gene, organism and

chemical entities, as well as for trigger words describing

gene and gene function modifications and observed pheno-

typic effects of a genetic interaction. The sentences in the

second dataset were marked yes or no, depending on

whether they described a genetic interaction or not.

Furthermore, the team built two classification systems to

identify genetic interaction evidence (F-score 74%), a

context-feature based SVM using word and context fea-

tures, and an information-retrieval based SVM using

Lucene (https://lucene.apache.org) to obtain feature values.

SVM features were phrases describing gene function and

interaction evidence (e.g. double mutant analysis and

synthetic lethality). The value for a feature as applied to a

given sentence is determined using the feature (phrase) as a

query in Lucene to score against that sentence. Both mod-

els were applied to the BioC track dataset and results were

submitted for inclusion in the complete BioC Track

system.

System prediction

Each BioC task had multiple submissions from participat-

ing teams, but only one prediction set could be shown to

BioGRID curators for evaluation. Thus, we needed a pro-

cess to merge submitted runs. To achieve this goal, we first

created a manually annotated set, and applied a machine

learning approach to combine submitted outputs.

Dataset

For merging multiple outputs from teams and evaluating

the biocurator assistant system, we recruited four curators

from BioGRID to build a gold-annotation set. Since most

of the information in the BioGRID database was from the

yeast or human domain, we randomly chose 60 full-text

PMC articles for each of these organisms. For the selected

documents in the human set, there were 38 Open Access

PMC articles (OAPMCs) with entries in BioGRID contain-

ing both PPI and GI information, 17 OAPMCs with PPIs

and 5 OAPMCs with GIs. Table 4 summarizes the newly

created annotation set for this merging and evaluation

process.

As shown in Figure 3, BioGRID curators used an inter-

face to annotate gene/protein/organism mentions and PPI/

GI passages. This annotation process was straightforward:

first, highlight a piece of text and second, select one of the

annotation types. For gene/protein/organism mentions,

curators were asked to enter a gene/taxonomy ID before

selecting an annotation type. It is time-consuming to curate

all gene/protein names and their corresponding IDs in a

full-text article, hence curators were asked to annotate

only gene/protein/organism names appearing in PPI/GI

passages. Due to the tight schedule, the 120 full-text

Table 4. Evaluation set used for optimizing the merger of sub-

mitted runs

Organisms Documents Molecular interaction information

Yeast 60 PPI and GI

Human 38 PPI and GI

Human 17 PPI

Human 5 GI

Documents were randomly selected from PMC articles relevant to either

yeasts or humans. Of these, 98 documents contained both PPI and GI infor-

mation, the remaining 22 documents contained either PPI or GI.
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articles were divided into four sets and each set was as-

signed to one curator. After the BioCreative Workshop,

the task organizers and the BioGRID curators have worked

closely together to correct and refine the original annota-

tions and have produced a true gold standard corpus of

molecular interaction names and passages useful for curat-

ing the 120 full text articles. This work is described else-

where (37).

Merging process for submitted predictions

To evaluate the biocurator assistant system, we first se-

lected 10 articles for each curator from the annotated full-

text set, and assigned them as a test set (i.e. the test set con-

tained 40 articles in total). The test set articles for each cur-

ator were chosen from among the full-text articles that

curator had not seen during the initial annotation process.

Then, for each curator, the remaining 110 articles were

Annotated passages with PPI information 
(PPImention) 

Annotated gene mentions 
(Gene) 

Annotation types 

Gene/organism normalization 

Figure 3. Annotation Interface for full-text PMC articles. This is a screenshot of our annotation interface that curators used to create a gold-standard

annotation set. For annotations, a curator selects relevant text and chooses an annotation type button on the screen. Gene ID and Tax ID options are

for assigning IDs to gene and organism names.

Annotated 
Ar�cles

Annotated 
Ar�cles

(without scores) (with scores)

Sec�on 
Filter

Sentence
Divider

Preprocessing

Sentence
Labeler

Feature selec�on

Learning

10-fold cross-valida�on

Unigrams Bigrams

SVM with Huber loss func�on

SVM
Merging
Process

Figure 4. Score assigning process for each submission from PPI/GI tasks.
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used as a training set to optimize parameters for merging

the outputs of the submitted runs on their 10 article test

subset. Here we describe this process, which was some-

what different for entity recognition tasks and the inter-

action recognition tasks.

For gene/protein/organism tasks (Tasks 1, 2 and 3), we

measured the performance of team submissions by preci-

sion and overlaps between submitted runs. Since all teams

performed reasonably on these tasks, the merging process

for Tasks 1, 2 and 3 did not include machine learning and

simply took the union of submitted runs to maximize re-

call. This is a reasonable strategy for NER tasks because

curators prefer high recall.

The PPI/GI tasks are somewhat different than NER tasks.

Users expect high recall in general, meanwhile precision

should not be ignored. In order to merge the results, we tried

voting and SVM learning using binary scores as features. The

results were not satisfactory. Thus, we created an SVM-based

approach for each submission that used the annotations of

that submission to assign a score for each sentence (Figure 4).

A final SVM used these scores as features for merging and

optimizing the results. Here are the detailed steps.

Score assigning process.

• Considered all data in the 120 articles.

• Treated each sentence of the text individually.

• Removed sentences in uninformative sections such as ac-

knowledgements and references.

• For each submitted run for each team, assigned a score

to each sentence based on that individual submission’s

predictions.

1. Treated a submission’s predicted sentences as a gold

standard.

2. Used unigrams and bigrams from text as features and

trained an SVM classifier (38) to identify the pre-

dicted sentences of this submission from the rest.

3. Performed a 10-fold cross-validation to learn the best

weights.

Submission merging process.

• For each curator, for all sentences in the corresponding

training set, we learned an SVM classifier using the ob-

tained scores above as feature weights. If there are four

runs for a task, the number of features is exactly four, i.e.

for each training sentence, there are four feature values

from four submissions. This process prioritizes submitted

runs while maximizing the prediction performance.

• Made predictions on each 10 article test set using the

combined results produced by the final SVM.

After this merging and optimization process, the 40 system

annotated articles were uploaded to the BioC viewer

(http://viewer.bioqrator.org) (39) for evaluation, and each

curator curated PPI and GI pairs from his/her 10 assigned

articles.

Results and discussion

After testing the system, BioGRID curators were asked to

rate the usefulness of the system and its functionality on a

Table 5. Questionnaire used for user feedback

Questions Rates

I. Overall reaction

a. Please rate your experience with BioC Viewer. 3.3

b. Overall, I am satisfied with BioC Viewer. 3.0

c. I would recommend BioC Viewer to other PPI/

GI curators.

2.8

II. Overall comparison to similar text mining-based

curation systems

a. It is easy to use BioC Viewer. 5.0

b. I am satisfied with using BioC Viewer. 4.0

c. BioC Viewer is powerful enough to complete

the task.

3.0

III. System’s ability to help complete tasks

a. Speed: the system would reduce annotation

time to reach my curation goal.

3.5

b. Effectiveness: the system would help me get

closer to my curation goal.

3.0

c. Efficiency: I can be both fast and effective with

the system.

2.8

IV. Prediction performance

a. Task 1 (gene/protein NER) 4.3

b. Task 2 (organism NER) 2.7

c. Task 3 (gene/protein name normalization) 3.8

d. Task 4 (Passages with PPIs) 3.3

e. Task 6 (Passages with PPI experimental

systems)

2.5

f. Task 7 (Passages with GI types) 3.0

V. Design of BioC Viewer

a. It was easy to find and read information. 4.0

b. Highlights were adequate and helpful. 3.5

c. Information was well organized. 3.5

VI. Learning to use BioC Viewer

a. It was easy to learn how to operate the

interface.

4.3

b. It was easy to remember features in BioC

Viewer.

4.3

c. It was straightforward to use the interface. 4.3

VII. Usability

a. The interface was fast enough to do my job. 3.5

b. The interface was performed consistently. 4.0

c. The interface provided a means to easily correct

mistakes.

3.0

For each question, BioGRID curators rated on a 1 (bad) to 5 (good) scale.

The scores shown are the average rates from four curators.
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scale of 1 (bad) to 5 (good) and were encouraged to pro-

vide feedback about aspects that would benefit from fur-

ther improvement. Table 5 presents the questionnaire used

for feedback. The questionnaire consists of seven catego-

ries: ‘Overall reaction’, ‘Overall comparison to similar text

mining-based curation systems’, ‘System’s ability to help

complete tasks’, ‘Prediction performance’, ‘Design of BioC

Viewer’, ‘Learning to use BioC Viewer’ and ‘Usability’. In

the table, average ratings from the four curators are shown

for each question. The rating with ‘N/A’ (not available)

was not used for calculating average rates. From the table,

the curators were positive overall for the design (V) and

the learnability (VI) of the curation system. Only two cur-

ators had experience on other text mining tools and their

responses were positive as well (II). However, passage pre-

dictions still need improvement in accuracy to significantly

support the curation process. Other comments noted that

functionalities for the actual curation were limited. This

shows that curators are interested in having the text mining

functionalities incorporated in their systems for easier and

better curation. The BioC biocuration assistant tool inter-

face was designed as a viewer, and this can be changed by

incorporating the curators’ comments and suggestions in

the future. All responses and comments from BioGRID

curators are available in Supplementary material.

Figure 5 depicts the detailed ratings from curators for

‘Prediction performance’. Curators were satisfied with

gene/protein NER and normalization (Tasks 1 and 3) over-

all, whereas they showed less favorable views for the or-

ganism NER and normalization task (Task 2). Curator 4

also did not assign any score for Task 2. This may be partly

because the goal was to curate PPI and GI pairs, not organ-

ism mentions. Organisms are only considered as a part of

the normalization process for gene/protein names and are

not included in BioGRID.

The PPI/GI passage tasks received rather mixed ratings,

and the reactions for finding passages with PPIs and GI

types (Tasks 4 and 7) were slightly better than finding pas-

sages with PPI experimental methods (Task 6). Curators’

comments suggest that this could be a matter of personal

display preference, i.e. some may prefer higher recall, but

others may prefer higher precision. This suggests that an

adjustable function to adjust the prediction output on dis-

play is desirable and may be a useful feature to add to the

biocurator assistant system.

Conclusions

The purpose of the BioC track in BioCreative V was to cre-

ate a set of complementary modules that could be seam-

lessly integrated into a system capable of assisting

BioGRID curators. Specifically, the resulting interactive

system triaged sentences from full text articles in order to

identify text passages reporting mentions and experimental

methods for protein–protein and genetic interactions.

These sentences were then highlighted in the biocuration

assistant system for curators. This task was unique since

participating teams had to produce independent, but col-

laborative modules for the biocuration assistant system.

The task was divided into several smaller tasks that

Figure 5. Curators’ ratings for prediction performance for each task. Tasks 1, 2 and 3 are gene/protein named entity recognition (NER), species/organ-

ism NER and gene/protein name normalization, respectively. Tasks 4, 6 and 7 are passages with protein–protein interactions (PPIs), PPI experimental

methods and genetic interaction types, respectively. Tasks 1 and 3 received positive responses overall, however ratings were mixed for other tasks

depending on curators’ preferences. Curator 4 did not assign a score for Task 2.
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required the identification of passages or sentences describ-

ing genes/proteins/species involved in the interaction as

well as mentions and experimental methods for describing

molecular interactions. Nine teams, world-wide, developed

one or more modules independently, to address the chal-

lenges as outlined by the specific subtasks.

The most important achievement of this task is un-

doubtedly the achievement of interoperability. Data was

received, produced and exchanged in BioC, which was

easy to learn and simple to use. This simple format avoided

many interoperability hurdles. The organizing team also

developed a machine learning process to merge 24 submis-

sions from collaborating teams. Through an evaluation

process, four BioGRID curators judged the integrated out-

put and the biocuration assistant system in terms of its

practical usability. Their feedback indicated that the per-

formance of the text mining results for gene/protein NER

and normalization was adequate to support the biocura-

tion task. Further work remains to be done for improving

suggestions of molecular interaction evidence passages.

The curators gave positive feedback regarding the user-

friendliness and the biocuration assistant system in general.

Future work may also include improving the curation tool

based on curators’ feedback. The dataset annotated during

the execution of this task will also be made available to the

community to encourage development and improvement

of text mining systems assisting biocuration.
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