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Abstract

The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-pos-

itive bacterial pathogens, including species of Staphylococcus, Streptococcus and Entero-

coccus. This modification to peptidoglycan protects these pathogens from the lytic action of

the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor.

The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particu-

lar challenge to biochemical study since it is a membrane associated protein whose sub-

strate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular,

being comprised of an N-terminal integral membrane domain linked to a C-terminal extracy-

toplasmic domain. We present herein the first biochemical and kinetic characterization of

the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococ-

cus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel

biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate

specificities for the two enzymes. In addition, the high resolution crystal structure of the

C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino

acids but with a non-canonical oxyanion hole structure. Site-specific replacements con-

firmed the identity of the catalytic and oxyanion hole residues. A model is presented for the

O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cyto-

plasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of

OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the struc-

ture-function relationship of OatA provides a molecular and mechanistic understanding of

this bacterial resistance mechanism opening the prospect for novel chemotherapeutic

exploration to enhance innate immunity protection against Gram-positive pathogens.
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Author summary

Multi-drug resistance amongst important human pathogens, such as methicillin-resistant

Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and drug-resis-

tant Streptococcus pneumoniae (DRSP), continues to challenge clinicians and threaten the

lives of infected patients. Of the several approaches being taken to address this serious

issue is the development of antagonists that render the bacterial infection more susceptible

to the defensive enzymes and proteins of our innate immunity systems. One such target is

the enzyme O-acetyltransferase A (OatA). This extracellular enzyme modifies the essential

bacterial cell wall component peptidoglycan and thereby makes it resistant to the lytic

action of lysozyme, our first line of defense against invading pathogens. In this study, we

present the first biochemical and structural characterization of OatA. Using both the S.

aureus and S. pneumoniae enzymes as model systems, we demonstrate that OatA has

unique substrate specificities. We also show that the catalytic domain of OatA is a struc-

tural homolog of a well-studied superfamily of hydrolases. It uses a catalytic triad of Ser-

His-Asp to transfer acetyl groups specifically to the C-6 hydroxyl group of muramoyl resi-

dues within peptidoglycan. This information on the structure and function relationship of

OatA is important for the future development of effective inhibitors which may serve as

antivirulence agents.

Introduction

Multi-drug resistance amongst important human pathogens, such as methicillin-resistant

Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and drug-resistant

Streptococcus pneumoniae, continues to challenge clinicians and threaten the lives of infected

patients to the extent that the United Nations recently endorsed a “Global Action Plan on anti-

microbial resistance” (http://www.who.int/antimicrobial-resistance/publications/global-

action-plan/en/). With the pipeline of traditional antibiotics all but dried up, alternative strate-

gies are now being considered [1]. One novel approach to address future antimicrobial therapy

is to exploit a well-established antimicrobial target in a new way that works synergistically with

the natural host defenses, while minimizing deleterious effects on the beneficial community of

commensal bacteria. An example of this involves sensitizing the cell walls of bacterial patho-

gens to attack by either host immune systems or endogenous lysins (autolysins) through the

inhibition of a specific metabolic target enzyme.

The peptidoglycan (PG) sacculus is a key component of bacterial cell walls. PG encloses the

cytoplasmic membrane to counter the turgor pressure of the cytoplasm thereby maintaining

cell viability. Being both essential and unique to bacteria, PG is a prime target for the innate

immune system, specifically through the production and release of lysozymes [2]. These

enzymes hydrolyze the β-(1!4) linkage between the repeating N-acetylmuramoyl (MurNAc)

and N-acetylglucosaminyl (GlcNAc) residues that form the glycan chains of PG (Fig 1A)

thereby leading to rapid cell rupture and death. In the early stages of an infection, released PG

fragments circulate in the host and serve as a critical activator of the immune system [3]. To

defend against this host innate immune response, many pathogenic bacteria chemically mod-

ify their PG through O-acetylation.

The O-acetylation of PG occurs at the C-6 hydroxyl group of MurNAc residues and thereby

sterically inhibits the productive binding of lysozyme [4,5] in a concentration dependent man-

ner (reviewed in [6–9]). This PG modification exists in many Gram-positive and Gram-
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negative bacteria, but it appears to be particularly prevalent in pathogenic species. For exam-

ple, only pathogenic species of Staphylococcus, including S. aureus, possess O-acetylated PG

and each is highly resistant to lysozyme. On the other hand, non-pathogenic species lack this

modification and they are lysozyme sensitive [10]. The extent of PG O-acetylation varies with

species and strain, and typically ranges between 20% and 70% [6–9]. The age of a bacterial cul-

ture also appears to influence PG O-acetylation. For example, increases in O-acetylation of

10–40% were observed with cultures of Enterococcus faecalis entering stationary phase and a

further 10–16% when cells become viable but non-culturable [11]. The increased susceptibility

of PG with decreased levels of O-acetylation to host lysozyme has been demonstrated to corre-

late directly with the decrease in pathogenicity of, e.g., S. aureus [10,12,13], Streptococcus suis
[14], S. pneumoniae [15], Streptococcus iniae [16], E. faecalis [17,18], Listeria monocytogenes
[19–21], Helicobacter pylori [22], and Neisseria meningitidis [23]. With each of these pathogens,

the enzyme directly responsible for PG O-acetylation and/or its regulator(s) was identified as a

critical virulence factor.

The enzyme catalyzing the O-acetylation of PG in Gram-positive bacteria was first identi-

fied in S. aureus over ten years ago as O-acetyltransferase (Oat) A [12]. Homologs of OatA

from several other Gram-positive bacteria have since been characterized genetically and phe-

notypically, including those from: clinical isolates of S. pneumoniae [15,24], Bacillus cereus
[25], E. faecalis [26], Lactobacillus plantarum [27] and L. monocytogenes [20]. In addition to

providing increased resistance to lysozyme [10,12–22], OatA activity is known to attenuate

resistance to ß-lactam antibiotics [15], control endogenous autolytic activity [11,21,26,27], and

control cell septation [27]. Despite this recognition and its importance as a major virulence

factor [10–23], little is known about OatA at the molecular level. It is predicted to be bimodu-

lar, being comprised of an N-terminal integral membrane domain linked to a C-terminal

extracytoplasmic domain [28]. Based on analogy to the two component PG O-acetylation sys-

tem in Gram-negative bacteria, which involves an integral membrane acetyltransporter (PatA)

and a cytoplasmic O-acetyltransferase (PatB) [6,8,29], the surface-exposed C-terminal region

of OatA is postulated to function as the O-acetyltransferase. There is minimal sequence simi-

larity between the C-terminal domain of OatA and the well-characterized PatB [29–32] (eg.

15.4% identity and 18.3% similarity between N. gonorrhoeae PatB and the C-terminal domain

Fig 1. Activity and domain structure of OatA. A. PG is comprised of alternating GlcNAc (G) and MurNAc (M)

residues with stem peptides (small circles). The lysozymes of innate immunity systems (LYZ) hydrolyze the linkage

between M and G residues which results in cell rupture and death. OatA O-acetylates the C-6 hydroxyl group of

MurNAc residues (red triangles) in PG of pathogenic Gram-positive bacteria which sterically inhibits the action of the

lysozymes, thereby conferring resistance to this first line of the innate immune response. B. Domain organization of

OatA. This bimodular protein is comprised of two domains, a predicted N-terminal Acyl_transferase_3 (Pfam

PF01757) transmembrane domain and a C-terminal SGNH/GDSL extracytoplasmic domain. The genes encoding

OatA from S. aureus and S. pneumoniae were engineered to produce the 25 kDa C-terminal SGNH/GDSL domains

(OatAC) as shown.

https://doi.org/10.1371/journal.ppat.1006667.g001
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of S. aureus OatA). Moreover, no biochemical analysis of OatA has been reported. A lysine

rich region in the C-terminal domain was postulated to contain the active site [10] but closer

analysis of its predicted amino acid sequence suggests that it has the fold of SGNH/GDSL

hydrolases with a signature catalytic triad of Asp, His and Ser residues [6,28]. However, to date

the crystal structure of peptidoglycan O-acetyltransferase (i.e., PatB, OatA) from any bacterium

remains unknown.

Results

The extracytoplasmic domain of OatA (OatAC) functions as an O-

acetyltransferase

To provide soluble forms of OatA homologs suitable for in vitro studies, the recombinant

C-termini of the proteins from S. aureus (SaOatAC; residues 435–603) and S. pneumoniae
(SpOatAC; residues 423–605) (Fig 1B) were produced and purified to apparent homogeneity,

as judged by SDS PAGE (S1 Fig). The amino acid sequences of these homologs share 28.5%

identity and 54.1% similarity. We investigated their catalytic activity using our previously

described qualitative assay for PG O-acetyltransferases [30,31] with pseudosubstrates p-nitro-

phenylacetate (pNP-Ac), 4-methylumbelliferylacetate (4MU-Ac) or acetyl-CoA as acetyl-

donors, and chitotetraose (GlcNAc4) as the acetyl acceptor. We used electrospray ionization-

mass spectrometry (ESI-MS) analysis of reaction products to identify a single predominant O-

acetylated chitotetraose product ion (m/z = 873.35 [M+H]+) produced by both enzymes only

when pNP-Ac or 4MU-Ac were used (Fig 2), suggesting that acetyl-CoA is not a suitable

donor. The respective reaction products were analyzed further by MS/MS which showed that

both enzymes modified the terminal non-reducing GlcNAc residue of chitotetraose (S2 Fig).

We observed a second O-acetylation by SpOatAC when using pNP-Ac as acetyl donor that

occurred on one of the two internal GlcNAc residues which could be discerned by MS/MS.

These data demonstrated that the extracytoplasmic C-terminal domains of OatA homologs

function as O-acetyltransferases in vitro and that the activities are coupled to the turnover of

the pseudosubstrates pNP-Ac or 4MU-Ac.

Fig 2. SpOatAC and SaOatAC-catalyzed O-acetyltransferase reactions. ESI-MS analysis of reaction products of 2 mM chitotetraose (G4) in 50 mM

sodium phosphate buffer pH 6.5 incubated at 37 oC for 1 h in the absence (control) and presence of enzymes (5 μM, final concentration) with 1 mM

concentrations of A, acetyl-CoA; B, 4MU-Ac; or C, pNP-Ac as potential donor acetyl substrates.

https://doi.org/10.1371/journal.ppat.1006667.g002
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In the absence of acceptor substrate, SpOatAC and SaOatAC exhibited weak hydrolase activ-

ity toward pNP-Ac and 4MU-Ac. We used this esterase activity to determine that the pH-activ-

ity optimum for both enzymes was 6.8 (Fig 3A). Steady-state kinetic analyses provided similar

Michaelis-Menten parameters for hydrolysis of pNP-Ac by each enzyme with SpOatAC being

approximately 3-fold more efficient than SaOatAC, as reflected by kcat/KM values (Fig 3B, 3C

and 3E). However, as esterases the two enzymes were 252 and 45-fold less efficient, respec-

tively, than authentic O-acetyl-PG esterase (Ape) from N. gonorrhoeae under similar condi-

tions [33].

Fig 3. Kinetic analysis of SpOatAC and SaOatAC-catalyzed O-acetyltransferase reactions. A. pH dependence of

the esterase activity catalyzed by SpOatAC (red) and SaOatAC (blue). The specific activities of the enzymes were

determined in 20 mM sodium citrate-phosphate-borate buffer at the pH values indicated at 25 oC. B, C. Determination of

the steady-state parameters for the esterase activities of SaOatAC and SpOatAC, respectively. Initial velocities of

pNP-Ac hydrolysis were determined for the respective enzymes (5 μM) in 50 mM sodium phosphate buffer pH 6.5

containing 5% (v/v) ethanol at 25 oC. D. Determination of the steady state-parameters for the O-acetyltransferase

activity of SpOatAC on chitooligosaccharides. The initial velocities of acetyl transfer to the chito-oligosaccharides at the

concentrations indicated were determined using 5 μM enzyme in 50 mM sodium phosphate buffer pH 6.5 at 25 oC with

pNP-Ac fixed at 2 mM. E. Michaelis-Menten parameters determined for SpOatAC and SaOatAC from the experiments

presented in panels B, C and D. All of the enzymatic experiments were performed in triplicate, with the s.e. noted.

https://doi.org/10.1371/journal.ppat.1006667.g003
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OatAC has specificity for glycan chains

Accounting for the slower rates of hydrolysis in the absence of acceptors, we could determine

the kinetics of O-acetyl transfer to various acceptors [31] (S3 Fig). We used this assay to inves-

tigate the specificity of the enzymes for acceptor chain lengths. Initial experiments involved

chito-oligosaccharides with degrees of polymerization (DP) between 2 and 6 as acceptors.

With SpOatAC, its specific activity did not increase above the rate of hydrolysis when incu-

bated in the presence of chito-oligosaccharides with a DP� 3. However, the inclusion of oligo-

mers with a DP� 4 significantly enhanced the rates of donor acetyl turnover. Confirmation

that these GlcNAc oligomers served as acceptors was obtained by MS analysis (S4 Fig). We

attempted to determine the steady-state kinetics of the O-acetyltransferase activity with these

chito-oligosaccharides but their limited solubility precluded our ability to provide saturating

concentrations (Fig 3D). Consequently, the kinetic parameters presented in Fig 3E were

obtained by extrapolation of the Michaelis-Menten regression curves. Despite this limitation,

the data suggested that SpOatAC has specificity for longer acceptor substrates as increased kcat/

Km values were obtained with increasing acceptor DP. Furthermore, comparison of kcat values

indicated that SpOatAC functions at least an order of magnitude faster as an O-acetyltrasferase

than as an esterase. In contrast, reactions catalyzed by SaOatAC were not significantly influ-

enced by any of the chito-oligosaccharide acceptors tested (S3B Fig) suggesting this homolog

may have a higher specificity for more complex acceptor substrates.

Preparation of a muroglycan-based homopolymer substrate

In an attempt to confirm that both SaOatAC and SpOatAC function as PG O-acetyltransferases,

we tested their activity using our MS-based assay developed previously for the study of PatB

[30,31]. This assay uses a pool of soluble muroglycans prepared by the limited mutanolysin

digestion of purified PG as acceptor substrate. To our surprise, we could not detect any O-acet-

ylated products in reaction mixtures following incubation of either OatAC with this heteroge-

nous pool of muroglycans and either pNP-Ac or 4MU-Ac as acetyl donor. With the failure of

this assay, we wondered if OatA has a more rigid specificity for muroglycans compared to

PatB with respect to composition and/or DP. Unfortunately, it is technically challenging to

prepare defined muroglycan substrates from natural sources of PG in sufficient quantity for

study given the inherent heterogeneity of stem peptide composition, extent of cross-linking,

and post-synthetic modifications. To circumvent this, we prepared a novel substrate in vitro
that is a linear homopolymer of the natural precursor for PG biosynthesis, Lipid II. Recombi-

nant penicillin-binding protein (PBP) 2a from S. pneumoniae was produced [34] and used to

polymerize Lipid II under varying buffer conditions. The resulting linear homopolymers

(muroglycan-5P) consisted of repeating units of GlcNAc-MurNAc-L-Ala-D-Glu-L-Lys-D-Ala-

D-Ala (GM-pentapeptide) linked to an undecaprenyl pyrophosphate (UndP) through C1 of

the reducing MurNAc residue (S5 Fig). Muroglycan-5P remained uncrosslinked because the

transpeptidase domain of S. pneumoniae PBP2a is only active on stem pentapeptides contain-

ing amidated D-Glu residues (iso-D-Gln); this amidation is conferred in vivo by Lipid II amido-

transferase [34].

We found that the PBP2a-catalyzed polymerization of Lipid II could be controlled by deter-

gent concentration (S6 Fig). With 0.04% (v/v) Triton X-100, a pool of muroglycans-5P

enriched with DP 2–10 was generated. Whereas these muroglycans presented a suitable poten-

tial substrate for subsequent O-acetylation reactions, the presence of the residual UndP moiety

at their reducing ends interfered with their MS analysis. Consequently, we digested samples

with a muramidase (mutanolysin) prior to MS.

Biochemical characterization of the antivirulence target OatA

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006667 October 27, 2017 6 / 26

https://doi.org/10.1371/journal.ppat.1006667


SpOatAC and SaOatAC have different specificities for muroglycans

We used muroglycan-5P to characterize the substrate specificity of the two OatAC homologs.

MS analysis of a sample of muroglycan-5P (DP 4–10) incubated with SaOatAC in the presence

of pNP-Ac followed by mutanolysin digestion revealed a new prominent ion (m/z = 1009.45

[M+H]+) 42.01 mass units larger than GM-pentapeptide (m/z = 967.44 [M+H]+) which corre-

sponds to an O-acetylated product (Fig 4A). MS/MS analysis verified this O-acetylation and

that it occurred only on MurNAc residues (Fig 4B and 4C). The O-acetylated product was not

Fig 4. Stem peptide specificity of SpOatAC and SaOatAC. A. Stacked and offset ESI-mass spectra of mutanolysin-treated products from reactions of

10 μg�mL-1 of (left to right) muroglyan-5P, muroglycan-4P, and muroglycan-3P in 50 mM sodium phosphate buffer pH 6.5 incubated with 0.5 mM pNP-Ac in

the absence (control) and presence of the respective enzyme (10 μM). The major O-acetylated products are labeled in blue which are 42.01 m/z units larger

than the respective unmodified PG monomer. B. MS/MS analysis of the major product ions identified in the respective panels above and C, interpretation of

the corresponding fragment ions.

https://doi.org/10.1371/journal.ppat.1006667.g004

Biochemical characterization of the antivirulence target OatA

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006667 October 27, 2017 7 / 26

https://doi.org/10.1371/journal.ppat.1006667.g004
https://doi.org/10.1371/journal.ppat.1006667


observed in reactions with monomeric GM-pentapeptide that had been generated in situ by

mutanolysin digestion prior to incubation with SaOatAC. Similarly, commercially available

GM-dipeptide did not serve as an acceptor substrate for the enzyme. These data confirmed

that SaOatAC functions as a PG O-acetyltransferase, and that it has specificity for the MurNAc

residues within PG glycan chains.

Given the lack of apparent activity toward the heterogeneous mix of sacculus-derived mur-

oglycans (as described above), we wondered if the substrate specificity of SaOatAC extended to

the stem peptide of PG strands. To investigate this, samples of the muroglycan-5P were incu-

bated with recombinant D,D-carboxypeptidase DacA (PBP3) [35] to provide uniformly tailored

muroglycans of GM-tetrapeptide repeats (muroglycan-4P). Samples of these muroglycans-4P

were then treated with L,D-carboxypeptidase DacB (LdcB) [35] to provide further trimmed

muroglycans with GM-tripeptide repeats (muroglycan-3P). ESI-MS confirmed the production

of the respective muroglycan pools. Interestingly, neither muroglycan-4P nor muroglycan-3P

served as effective acceptors for SaOatAC as very little product was observed with each (Fig

4A). These results showed that this O-acetyltransferase has specificity for the pentapeptide

stems on PG, a form of the muropeptide unit that would present in very low concentrations

within mature PG.

Parallel assays with SpOatAC revealed that it too only O-acetylates the MurNAc residues of

muroglycans, but its substrate specificity with respect to stem peptide composition was dis-

tinctly different. In contrast to SaOatAC, SpOatAC was inactive against muroglycan-5P (Fig

4A). Instead, it had a strong preference for muroglycan-4P and, like SaOatAC, was only weakly

active on muroglycan-3P. Again, MS/MS analysis confirmed the specific O-acetylation of

MurNAc residues (Fig 4B and 4C). Taken together, these experiments demonstrated that the

stem peptide composition of PG glycan chains has a significant effect on substrate recognition

by the extracytoplasmic domains of OatA.

SpOatAC has an SGNH/GDSL hydrolase fold with a canonical catalytic

triad

To gain insight into the mechanism of action of OatAC, we undertook structural analysis of

the enzyme using X-ray crystallographic techniques. Although, both SaOatAC and SpOatAC

were subjected to crystallization trails, SaOatAC proved recalcitrant to crystallization. SpOatAC

crystallized in both the native and SeMet derivative forms and crystals diffracted to 1.12 Å and

1.8Å resolution, respectively (S1 Table). We solved the structure using single-wavelength

anomalous dispersion method and it was subsequently used as a search model for phasing the

native high resolution diffraction data using molecular replacement method. The native

enzyme was refined to Rwork/Rfree values of 15.0/16.8% (S1 Table).

The overall structure of SpOatAC adopts an atypical α/β hydrolase fold (Fig 5A), where the

core parallel β-sheet contains five strands (β1 - β5) sandwiched between seven α-helices (α1–

α7) forming a shallow and solvent exposed putative active site pocket (Fig 5B). A structural

similarity search using the DALI server revealed that SpOatAC most closely resembles Bos tau-
rus platelet-activating factor acetylhydrolase [36] (PDB ID: 1BWQ; RMSD 2.4Å over 158 resi-

dues) and Escherichia coli thioesterase I/ protease I/ lysophospholipase L1 [37] (PDB ID: 1IVN;

RMSD 2.9 Å over 156 residues), two members of the SGNH/GDSL hydrolase superfamily

(cl01053). Notable similarities were also seen with the SGNH/GDSL hydrolase Ape from N.

meningitidis [38] (PDB ID: 4K40; RMSD 2.9Å over 155 residues) and rhamnogalacturonan

acetylesterase from Aspergillus aculeatus [39] (PDB ID: 1DEO; RMSD 3.2Å over 153 residues).

Our identification of SpOatAC as a member of the SGNH/GDSL hydrolases is consistent with

previous predictions regarding the structures of L. plantarum OatA [28] and N. gonorrhoeae
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PG O-acetyltransferase (PatB) [32]. Interestingly however, the DALI algorithm did not identify

isoamyl acetate hydrolyzing esterase from Saccharomyces cerevisiae as a close homolog of

SpOatAC; this other member of the SGNH/GDSL hydrolases was used by the algorithm to pre-

dict the structure of N. gonorrhoeae PatB [32].

That SpOatAC adopts a true SGNH hydrolase fold distinguishes it from the SGNH hydro-

lase-like structures of the alginate O-acetyltransferases of Pseudomonas aeruginosa (PaAlgX

(PDB ID:); identity: 11%, Cα RMSD: 3.6Å over 79 residues) and Pseudomonas putida (PpAlgJ

(PDB ID:); identity: 15%, RMSD: 3.1Å over 92 residues), as well as Bacillus cereus secondary

cell wall polysaccharide O-acetyltranferase (BcPatB1 (PDB ID: 5V8E); identity: 11%, Cα
RMSD: 3.6 Å over 79 residues). Although their folds are similar, topologically these latter

enzymes are different from SpOatAC due to a circular permutation of their amino acid

sequences, which characterizes them as part of the AlgX_N-like superfamily (PaAlgX and

PpAlgJ; cl16774) and the DHHW superfamily (BcPatB1; cl25368), respectively.

Fig 5. Structure of SpOatAC. A. Cartoon representations identifying the seven α-helices (gray), five β-strands (green), and

coils (white) of the atypical α/β hydrolase fold adopted by SpOatAC. Also, shown in stick form are the amino acids

comprising the active-site and oxyanion hole (PDB ID: 5UFY). B. Surface representations of SpOatAC depicting the putative

catalytic triad and oxyanion hole residues within a shallow pocket of the enzyme.

https://doi.org/10.1371/journal.ppat.1006667.g005
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On the whole, the true SGNH hydrolases (esterase or transferase) share low sequence simi-

larity, but they are characterized by four consensus sequence Blocks (I, II, III, V) [40] (Fig 6B).

Almost all members of this family contain a conserved catalytic triad formed by a Ser nucleo-

phile from Block I and conserved His and Asp residues from Block V. The homologous resi-

dues in SpOatAC are indeed aligned appropriately to serve as a catalytic triad (Fig 5A). Ser438

is engaged in an H-bond network with His571 and Asp568 and the triad is positioned in the

center of the putative active-site cleft of the enzyme (Fig 5B). To verify their role as catalytic

residues, we performed site-directed mutagenesis on the oatAC genes and kinetically charac-

terized the recombinant variants. The S438A and H571A SpOatAC variants were devoid of

detectable O-acetyltransferase activity while replacement of Asp568 with Asn resulted in mini-

mal catalytic activity (Table 1). Our replacement of the equivalent residues in SaOatAC pro-

duced similar results. Unequivocal identification of Ser438 in SpOatAC as the catalytic

nucleophile was made using the mechanism-based, irreversible inhibitor of Ser esterases

methanesulfonyl fluoride (MSF) [41]. SpOatAC treated with this reagent lacked detectable

Fig 6. Structural comparison of SpOatAC with representative members of the SGNH/GDSL and

AlgX-N/DHHW families of enzymes. A. The cartoon representation of SpOatAC (gray) is superposed with

Bos taurus platelet-activating factor acetylhydrolase (PAF-AH) (blue) and the N-terminal catalytic domain of

P. aeruginosa AlgX (green). Right inset: Cartoons depicting the respective peptide backbones of the Block II-

loop in the three enzymes. B. Sequence alignments of residues comprising the signature sequence Blocks of

the SGNH/GDSL and AlgX-N/DHHW families of enzymes. Red lettering denotes invariant residues in the

respective families.

https://doi.org/10.1371/journal.ppat.1006667.g006
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catalytic activity and X-ray crystallographic analysis of a native crystal soaked with MSF

revealed the formation of a covalent adduct to Ser438 (described further below).

SpOatAC possesses an atypical two-residue oxyanion hole

A characteristic of the SGNH/GDSL hydrolases is the presence of an oxyanion hole comprised

of the signature residues as H-bond donors: (i) the backbone NH of the Ser nucleophile; (ii)

the backbone NH of Gly from consensus Block II, and (iii) the side chain amide of Asn from

Block III (Fig 6B). The residues of Block II form a type-II β-turn, which positions the back-

bone NH of the conserved Gly toward the active site so that it, together with the Ser and Asn

residues, can serve its role in the oxyanion hole as an H-bond donor to stabilizes the oxyanion

of the tetrahedral intermediate. The AlgX-like enzymes possess a similar Block II geometry,

but lack the Asn in Block III that functions as the third H-bond donor (Fig 6A and 6B).

The oxyanion hole structure in SpOatAC is distinct from other SGNH hydrolases. Whereas

SpOatAC possesses the Ser nucleophile and an Asn in Block III (Asn491 in SpOatAC), the con-

served Gly of Block II is replaced with a Ser (Ser461) (Fig 6B). Moreover, rather than forming

a type-II β-turn, the residues of Block II in SpOatAC adopt a type-I β-turn resulting in 180˚

rotation of the peptide bond (Fig 6A). This orients the backbone carbonyl oxygen of Val460

(rather than backbone NH of Ser461) toward the active center where, together with the car-

bonyl oxygen of Val462, it coordinates a water molecule (w1) (Fig 7A). This water serves as an

H-bond acceptor for Nδ2 of Asn491and thereby stabilizes the resting conformation of this

oxyanion hole residue.

Another distinguishing feature of the oxyanion hole in SpOatAC is the positioning of its

two component residues, Ser438 and Asn491 (Fig 7A). The Nδ2 of Asn491 is positioned 3.4Å
from Ser438 Oδ, a distance significantly closer than the average 5.4 Å reported for the equiva-

lent distance between the homologous residues in SGNH/GDSL hydrolases. We confirmed the

Table 1. Specific activities of SpOatAC and SaOatAC variants.

Enzyme Specific activity (nmol⋅min-1⋅mg-1)1

Hydrolysis2 Transfer3

SpOatAC

Wild-type 14.6 ± 2.4 (100%) 163 ± 3.3 (100%)

D568N 1.9 ± 0.3 (13%) n.d. (0%)

H571A n.d. (0%) n.d. (0%)

S438A n.d. (0%) n.d. (0%)

N491A 6.1 ± 0.15 (41.8%) n.d. (0%)

V460G 21.6 ± 0.82 (148%) 16.1 ± 1.1 (9.9%)

V460A 17.6 ± 0.97 (121%) 34.4 ± 3.3 (21.1%)

V460I 21.6 ± 0.76 (148%) 291 ± 8.8 (178%)

SaOatAC

Wild-type 29.2 ± 0.3 (100%) – –

D575A 3.1 ± 0.1 (10.6%) – –

H578A n.d. (0%) – –

S453A n.d. (0%) – –

1Presented as means ± standard error (n = 3).
2 Reactions conducted in 50 mM sodium phosphate buffer, pH 6.5 at 25˚C with 1 mM pNP-Ac.
3Same conditions as above but including 5 mM chitopentaose as acceptor.

n.d., not detected; (—), not determined.

https://doi.org/10.1371/journal.ppat.1006667.t001
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importance of Asn491 in catalysis by generating an N491A variant of SpOatAC which lacked

detectable transferase activity under the conditions tested (Table 1). Unexpectedly, however,

the variant retained 45% activity as a hydrolase.

Asn491 is positioned differently in resting and active conformational

states

The methylsulfonyl (MeS) adduct resulting from the inactivation of SpOatAC by MSF

(described above) represents a transition-state analogue mimicking the attack of water on the

acetyl-enzyme intermediate during hydrolysis. To confirm the identification of the catalytic

nucleophile and gain further insight into the enzyme’s mechanism of action, we determined

the structure of MSF-inactivated SpOatAC (SpOatAC-MeS) at 2.1 Å resolution (S1 Table) fol-

lowing modification of the native enzyme in cyrstallo with MSF. The MeS group is seen to

form a covalent bond to the Oδ of Ser438 in a tetrahedral configuration (Fig 7B) and it is well

defined in the electron density map (Fig 7C, S7 Fig). The overall structures of SpOatAC and

SpOatAC-MeS are very similar (Cα RMSD: 0.327 Å over 178 residues), but several side chain

displacements were observed in the active site on MeS binding. The most significant structural

change involved the side chain of Asn491 (Fig 7D). The presence of the MeS adduct opens the

active site, shifting the Nδ2 of Asn491 2Å from its initial position away from Ser438 and dis-

placing the water molecule w1 (Fig 7A, 7B and 7D). Other minor displacements occur in

Ser438, Ser461, and His571 as a consequence of the steric effects imposed by the bound MeS.

Fig 7. Active site structure of SpOatAC. The H-bonding network of catalytic and oxyanion hole residues in A,

resting SpOatAC and B, SpOatAC in complex with MeS (SpOatAC-MeS). The water molecule w1 and the

potential inter-residue interactions are depicted as a red sphere and black dashed lines, respectively. C. The

2Fo-Fc electron density map of the MeS-Ser438 adduct contoured at 1.0 σ. D. Superposition of the SpOatAC

and SpOatAC-MeS active sites.

https://doi.org/10.1371/journal.ppat.1006667.g007
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The methyl group of the MeS adduct appears to face the solvent adjacent to Val460, and the

sulfonyl O2 (the structural mimic of an attacking water for hydrolytic activity; labeled O11 in

the coordinate file) forms a weak H-bond (3.3 Å) to the imidazolium group of His571 while

protruding into a hydrophobic pocket formed by Val490 and Val570 (Fig 7B). Additionally,

two H-bonds are made with the O1 of MeS (the structural mimic of the carbonyl O of a bound

acetyl group; labeled O12 in the coordinate file), one involving the backbone NH of Ser438

and the other with Nδ2 of Asn491. These interactions are consistent with our earlier identifica-

tion of Ser438 and Asn491 as comprising the oxyanion hole.

Conserved Val460 promotes transferase activity

Our alignment of Block II sequences of OatA homologs revealed the existence of an invariant

Val/Ile residue at position five (Val460 and Val475 of SpOatA and SaOatA, respectively) (S8

Fig) that is not conserved in SGNH-GDSL esterase members. We probed the importance of

Val at this position in SpOatAC by its site-specific replacement with the amino acids located in

the same position in the esterases, platelet-activating factor acetyl hydrolase (Gly) and rhamno-

galacturonan acetyl esterase (Ala) (Fig 6B). The specific activity of both the V460G and V460A

SpOatAC variants as esterases was slightly increased compared to the wild-type enzyme while a

10- and 5-fold reduction in transferase activity was observed, respectively (Table 1). Interest-

ingly, replacement of Val460 with Ile, the only other residue found in this position in some

OatA homologs, resulted in an increase in both activities, but the enhancement of O-acetyl-

transferase activity was significantly greater. Taken together, these data suggest that Val460

contributes to the effective binding of carbohydrate acceptor substrates.

Discussion

One of the most common structural variations of PG produced by Gram-positive pathogens to

protect them from lysis by innate immunity systems is the O-acetylation of MurNAc

[6,7,42,43]. This modification to PG was first discovered almost 60 years ago [44] but the

molecular details of the O-acetylation pathway remained unknown until now. In the current

study, we show experimentally for the first time that the extracytoplasmic domains of OatA

homologs from two important human pathogens function catalytically as O-acetyltransferases

with specificity for both: i) the C6 hydroxyl group of MurNAc residues within muroglycan

chains, and ii) the specific length of associated stem peptides. Additionally, our elucidation of

the SpOatAC crystal structure has identified structural elements that are required for its cata-

lytic mechanism.

The likely natural source of the acetyl groups for PG O-acetylation, acetyl-CoA, does not

serve as a donor substrate for OatAC. Given this, we postulate that the putative membrane-

spanning, N-terminal OatA domain functions like PatA of Gram-negative bacteria [6,8,29] to

translocate acetyl groups from a cytoplasmic source, presumably acetyl-CoA, across the mem-

brane for their transfer to PG by OatAC (Fig 8). Whether the acetyl group is transferred

directly from the N-terminal membrane domain to OatAC or via an exogenous carrier has yet

to be determined. It is also not clear whether or not the two domains remain attached as a sin-

gle bimodular protein following translation and insertion into the cytoplasmic membrane.

Indeed, S. aureus OatA possesses a non-canonical type I signal peptidase cleavage site between

the two domains, and the C-terminal domain alone has been detected in spent culture media

[45].

Considering the kinetic and structural data presented above, we propose that OatAC

employs a double-displacement mechanism of action involving a covalent acetyl-enzyme

intermediate (Fig 9). As we have shown that the enzyme exists in both a resting and
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catalytically-active state, we suggest that binding of an acetyl donor molecule induces a con-

formational change involving the side chain of Asn491 to form the oxyanion hole which,

together with the backbone amide of Ser438, would serve to: (i) increase the electrophilicity

of the carbonyl C to facilitate nucleophilic attack by the Ser438 hydroxyl group, and (ii) sta-

bilize the negatively charged oxyanion of the tetrahedral transition state [46]. The nucleo-

philic attack on the carbonyl carbon of the acetyl donor by the Oδ of Ser438 is aided by

abstraction of its proton by His571 and leads to a tetrahedral oxyanion, which is stabilized

by the oxyanion hole residues Ser438 and Asn491 (Figs 6 and 7). The oxyanion collapses to

the covalent acetyl-enzyme intermediate concomitant with the release of the donor product.

A MurNAc residue of a PG glycan strand would then bind into the active site cleft and

His571 again functions as a base to abstract the proton from the C6 hydroxyl group of the

acceptor and render it nucleophilic. Attack by this C6 alkoxide on the carbonyl center of the

acetyl-Ser438 leads to the formation of a second tetrahedral oxyanion, which then collapses

to generate the O-acetyl MurNAc.

Previous phylogenetic analysis of OatA had shown that homologs are distributed between

three distinct clades [28], where each cluster includes primarily proteins from a single bacterial

order (Lactobacillales and Bacillales). The exception is the genus Streptococcus (belonging to

the Lactobacillales) for which the homologs of this group have branched into their own clade.

Until now, only the two consensus motifs GDSV and Dx(I/V)H harboring the predicated cata-

lytic triad residues had been identified in the C-terminal domain of OatA [28,47]. Our struc-

tural and biochemical characterization of SpOatAC demonstrated experimentally the

functional significance of these conserved residues. More importantly, it enabled the identifi-

cation of two additional motifs, the G(T/V)N motif containing Asn491 as an H-bond donor to

the oxyanion hole, and the (V/I)(G/S)(R/V) motif as part of the type-I β-turn in the Block II-

Fig 8. Proposed pathway for PG O-acetylation by OatA. (1) An acetyl group from an unidentified donor is

obtained from the cytoplasm by the N-terminal domain of OatA and then it is translocated across the inner

membrane. (2) The extracytoplasmic C-terminal domain of OatA accepts the acetyl group and catalyzes the

acetyltransfer to modify the C6-OH of MurNAc residues within PG. (3) The final product: 6-O-acetyl-MurNAc.

https://doi.org/10.1371/journal.ppat.1006667.g008
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loop (Fig 6B). While lacking the signature Gly of the oxyanion holes in SGNH/GDSL hydro-

lases, the retention of Asn in OatA signifies its closer evolutionary relationship to these

enzymes compared to the PC-Esterases, a GDSL family of bimodular enzymes in eukaryotes

that modify extracellular matrices; the PC-esterases lack both the Gly and Asn residues [48].

Replacement of Asn491 with Ala abolished transferase activity while reducing the specific

activity of SpOatAC as an esterase toward pNP-Ac by only 58% (Table 1). Whereas this finding

is consistent with our assignment of Asn491 as comprising the oxyanion hole for the stabiliza-

tion of the transition state leading to formation of O-acetylated product, the level of residual

esterase activity would suggest that Asn491 does not contribute significantly to the stabiliza-

tion of the transition state for the first half of the reaction pathway involving the generation of

the acetyl-enzyme. However, it should be recognized that enzyme-catalyzed hydrolysis of

pNP-Ac proceeds through a transition state that has some tetrahedral character while main-

taining partial carbonyl π bonding [49], thus reducing the need for oxyanion hole stabilization.

Also, it is possible that in addition to comprising the oxyanion hole, Asn491 contributes to the

productive binding of acetyl-acceptor glycans. In this regard, examination of the surface topol-

ogy of SpOatAC (Fig 5B) does not reveal a deep active site pocket/cleft. Moreover, unlike most

carbohydrate-active enzymes, the shallow putative substrate-binding pocket is devoid of any

Fig 9. Proposed mechanism of action of OatA. (i) An acetyl donor binds into the active site and causes Asn491 to align appropriately within the oxyanion

hole. The H-bonding network between the catalytic triad residues increases the nucleophilicity of the Ser438 hydroxyl which attacks the carbonyl center of

the bound acetyl group. (ii) The putative transient tetrahedral oxyanion intermediate is stabilized by the backbone amide of Ser438 and side-chain amide of

Asn491. (iii) An acetyl-enzyme intermediate forms with the departure of the donor group. (iv) A MurNAc residue on PG binds, possibly involving Asn491,

and (v) His571 serves as a base to abstract the proton from the C6 hydroxyl group to permit its nucleophilic attack on the carbonyl center of the acetyl-

enzyme. (vi) The second transient oxyanion intermediate formed is stabilized by the oxyanion hole residues prior to its (vii) collapse releasing the 6-O-

acetylPG product. Not depicted are the transition states that lead to and from each of the oxyanion intermediates. R, the acetyl donor molecule; R’, GlcNAc

residues of a PG glycan chain; R”, lactyl group and associated stem peptide.

https://doi.org/10.1371/journal.ppat.1006667.g009
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aromatic residues. Despite lacking these common features, OatAC is active as a transferase on

only glycans with a DP�4 (Figs 2 and 3) suggesting that the enzyme possesses at least four

carbohydrate-binding subsites. Presumably, these are arranged on its surface and serve to posi-

tion specifically the C6 hydroxyl group of MurNAc residues for O-acetylation.

Whereas OatAC has the capacity to function as an esterase in vitro, this hydrolytic activity

of the extracytoplasmic domain would need to be minimized, if not precluded, in vivo to pre-

vent the wasteful loss of acetyl groups (as acetate) to the external milieu. It is likely that a

water-limiting environment is created by the juxtaposition of the domain with both the cyto-

plasmic membrane and the insoluble PG sacculus though this alone would not be sufficient to

preclude water access. Jiang et al. [50] have observed that the type of β turn of the loop harbor-

ing an oxyanion residue distinguishes between hydrolytic and acyltransferase activities in

some classical α/β hydrolases. Their observations invoke the participation of a bridging water

that is H-bonded to the main-chain of a residue in the β-turn which either activates (type-II)

or deactivates (type-I) the attacking water to promote hydrolase or transferase activity, respec-

tively. However, our analysis of the SGNH/GDSL hydrolases and SpOatAC did not identify a

bridging water molecule. Therefore, the consequences of the β-turn differences observed with

a subset of the classical serine esterases/acyltransferases does not appear to apply to the SGNH/

GDSL enzymes.

More recently, Light et al. [51] have proposed that substrate binding to non-catalytic

domains combined with a conformationally-stable active site promote transfer reactions,

whereas conformational change at the active site is associated with hydrolysis. Their observa-

tions were made with glycosyl transferases, but it is possible that the same principles apply to

esterases/transferases with homologous structures. With SpOatAC, we are unable to assess

such binding contributions to its reaction pathway because the structure of the binding sub-

sites and their associated interactions PG remains unknown. However, we did find through

bioinformatic and protein engineering studies the importance of an invariant Val or Ile resi-

due at the active site of the enzyme for transferase activity (Val490 in SpOatAC). Presumably,

either of these residues serve to stabilize acceptor substrates through hydrophobic interactions

between their alkyl side-chains and the hydrophobic patches associated with carbohydrates.

Also, examination of the MeS adduct (a mimic of the carbonyl O of a bound acetyl group)

depicted in Fig 7 suggests the approach of an acceptor ligand (e.g., water or a carbohydrate) to

the carbonyl C of the bound acetyl group would have to be from a hydrophobic pocket formed

by Val490 and Val570. Thus, it is possible that the relative hydrophobicity of the reaction cen-

tre helps to restrict hydrolysis (esterase activity) and/or promote efficient transferase activity.

As a maturation event, the O-acetylation of PG occurs extracytoplasmically on the existing

PG sacculus [6,7,43]. Earlier biochemical studies involving pulse-chase experiments suggested

the timing of the modification varies with species. Our kinetic characterization of OatAC from

S. aureus and S. pneumoniae now provides a plausible explanation for this temporal difference

at the molecular level. The final stages of PG biosynthesis involve the transglycosylation of

Lipid II precursors into the growing glycan strand which is followed by the crosslinking of

neighboring stem peptides. The latter occurs through a transpeptidation reaction whereby the

crosslink is made with the concomitant loss of the terminal D-Ala from the donating stem pen-

tapeptide, resulting in the formation of tetrapeptide stems. As SaOatAC has a high specificity

for PG glycan chains possessing pentapeptide stems (muroglycan-5P; Fig 3), O-acetylation in

this bacterium would have to immediately follow the transglycosylation reaction and precede

transpeptidation. This is indeed consistent with the early observations of Snowden et al. [52]

who suggested that O-acetylation must be very closely linked with the addition of PG units to

the growing polymer. An analogous specificity would appear to exist in vancomycin-resistant

E. faecailis where muropentapeptides terminating with D-Ala-D-Lac residues were found
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recently to be preferentially O-acetylated [53]. SpOatAC, on the other hand, has specificity for

muroglycans with tetrapeptide stems (Fig 3) and hence it would require the prior crosslinking

and/or processing of nascent PG by a D,D-carboxypeptidase such as DacA before it could act.

Further processing of stem peptides by a D,L-carboxpeptidase such as DacB to generate GM-

tripeptide repeats would preclude continued O-acetylation. These unique specificities explain

why, unlike PatB of Gram-negative bacteria [29,30], OatAC was able to O-acetylate murogly-

cans derived from natural sacculi where the PG has undergone maturation. Thus, in addition

to controlling the degree of crosslinking [54], it would appear that the activity of carboxypepti-

dases such as DacA and DacB provides a means of control of PG O-acetylation at the substrate

level.

Another level of control of OatA activity imposed at the substrate level may concern its

localization within a given species. The transglycosylation reactions for PG biosynthesis are

catalyzed by the Class A PBPs [55], and mono-functional transglycosylases [56–58]. The Class

A PBPs are bifunctional possessing both transglycosylase and transpeptidase activities [55].

Consequently, OatA in S. aureus would need to be positioned in close proximity to, if not com-

plexed with, one or both of its mono-functional transglycosylases so that it may act on the

newly incorporated Lipid II precursors while they still possess their stem pentapeptides. Noth-

ing is known about the organization of OatA and the monofunctional transglyosylases in S.

aureus, but L. plantarum OatA was found to play a key role in the spatio-temporal control of

cell elongation and septation. This function of OatA does not require its catalytic activity as an

O-acetyltransferase [27], suggesting that the protein helps to coordinate the PG biosynthetic

complex of enzymes in PG metabolism. Hence, it is conceivable that S. aureus OatA may

indeed complex with one or both of the monofunctional transglycosylases to permit PG O-

acetylation. With S. pneumoniae, on the other hand, OatA would need to remain free and/or

associated with its bi-functional PBPs for it to act on PG subunits with tetrapeptide stems fol-

lowing crosslinking reactions.

This report has addressed several important aspects of PG O-acetylation in two human

pathogens that have already overburdened healthcare systems worldwide. OatA is a key

enzyme involved in bacterial resistance to the human innate immune response and it has been

suggested to represent a useful target for pharmacological intervention [59], which may apply

especially to the treatment of MRSA and VRE. Our discovery that SaOatAC and SpOatAC have

different substrate specificities will be an important consideration in the development of novel

inhibitors that may serve as antivirulence agents for the sensitization of Gram-positive patho-

gens containing O-acetyl-PG to the lysozymes of innate immunity systems. In addition, this

work will aid in the characterization of other carbohydrate O-acetyltransferases predicted to

contain an SGNH hydrolase fold that perform important physiological and pathological roles

in organisms from other kingdoms of life [60,61].

Materials and methods

Cloning, engineering, and production of SpOatAC and SaOatAC

The gene sequences encoding the extracytoplasmic domains of OatA from S. aureus and S.

pneumoniae were identified based on topology and fold predictions using HHMTOP [62] and

Phyre2 [63], respectively. The gene encoding SaOatAC (residues 435–603) was amplified by

PCR using genomic DNA from S. aureus SA113 and the codon-optimized gene encoding

SpOatAC (residues 423–605; originally from S. pneumoniae R6) was synthesized and provided

in a pUC57 (pUC57-SpOatAC) vector from Genscript (Piscataway, NJ). For cloning, the PCR

product encoding SaOatAC, pUC57-SpOatAC, and the expression vector pBAD-His A (Invi-

trogen, Burlington, ON) were digested with XhoI and EcoRI. Each gene was then ligated to
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pBAD-His A to produce pACPM31 (SaOatAC) and pDSAC81 (SpOatAC). Both constructs

contain an enterokinase-cleavable N-terminal His6 tag and are under the control of an arabi-

nose inducible promoter. Site-specific replacements of amino acid residues for both constructs

were performed by site-directed mutagenesis using the QuickChange Site-Directed Mutagene-

sis Kit (Agilent Technologies Canada Inc., Mississauga, ON) with the appropriate primers

listed in S2 Table.

For the production of SaOatAC or SpOatAC, Escherichia coli BL21 (DE23) was transformed

with pACPM31 or pDSAC81, respectively. Cells were grown in LB broth containing

100 μg�mL-1 ampicillin at 37 oC until an OD600 of 0.6 was reached, at which point arabinose

was added to a final concentration of 0.2% (w/v). The cultures continued to grow at 37 oC for

an additional 4 h, after which the cells were harvested by centrifugation (5, 000 × g, 4 oC, 15

min) and frozen at—20 oC until needed. For the production of selenomethionine-labelled

(SeMet) SpOatAC, pDSAC81 was transformed into E. coli B834 and grown in M9 minimal

media supplemented with 40 mg selenomethionine as previously described [64]. The expres-

sion of SeMet-SpOatAC was carried out as described above for native protein.

To purify SaOatAC, the cell pellets were resuspended in lysis buffer (50 mM sodium phoso-

phate buffer, pH 7.8, 500 mM NaCl, 20 mM imidazole, 20 μg�mL-1 DNase, 20 μg�mL-1 RNase,

and 50 μg�mL-1 hen egg-white lysozyme) and disrupted by sonication on ice. Unbroken cells

were cleared from the lysate by centrifugation (15,000 x g, 4 oC, 15 min) and the supernatant

was incubated with cOmplete His-Tag purification resin (Roche Diagnostics, Laval, QC) pre-

equilibrated with wash buffer (50 mM sodium phosphate pH 8.0, 500 mM NaCl). After 1 h at

4 oC with nutation, the cell lysate containing SaOatAC-bound resin was loaded onto a gravity-

flow column. The resin was washed with 100 mL wash buffer and then SaOatAC was eluted

using wash buffer containing 250 mM imidazole. Following elution, SaOatAC was dialyzed

against 25 mM sodium phosphate buffer 6.5 at ambient temperature for 1 h (with one buffer

change). The dialyzed protein was filtered using a syringe driven filter (0.22 μm; Milipore) and

loaded onto a Source 15S cation-exchange column (GE Health Care Canada Inc., Mississauga,

ON) pre-equilibrated with dialysis buffer using an NGC protein purification system (Bio-Rad

Laboratories (Canada) Ltd, Mississauga, ON). Protein elution was achieved with a linear gradi-

ent of 0−1 M NaCl at a flow-rate of 1 mL�min-1.

SpOatAC was purified similarly, however, in all cases the phosphate buffer was substituted

for Tris-HCl buffer, dialysis was performed at pH 8.0, and anion-exchange chromatography

was conducted using a Source 15Q column (GE Health Care) at pH 8.0.

The production and purification of SaOatAC and SpOatAC possessing site-specific amino

acid replacements were performed as described above, respectively, with the precaution of

using fresh chromatography media to preclude the possibility of contamination with wild-type

enzymes. The secondary structure of each purified protein was assessed by circular dichroism

(CD) spectroscopy to ensure their correct folding.

Cloning, production, and purification of DacA and DacB

The genes encoding DacA (covering residues 23–394) and DacB (covering residues 56–238)

lacking both their N-terminal trans-membrane and C-terminal membrane interaction helices

were PCR amplified from S. pneumoniae R6 genomic DNA with the primers listed in S2 Table.

Both PCR products were digested with NdeI and XhoI and ligated into pET-28a. The resulting

constructs, pDSAC01 and pDSAC02 harboring dacA and dacB respectively, contained each

gene in frame with an N-terminal His6 tag under the control of an IPTG inducible promoter.

For the overproduction of DacA or DacB, the respective plasmids were transformed into E.

coli BL21 pLysS and E. coli T7 Shuffle, respectively. The cells were grown in LB broth
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supplemented with 50 μg�mL-1 kanamycin until an OD600 of 0.6 was reached, at which point

expression was induced with IPTG at a final concentration of 1 mM. After 4 h of additional

growth, the cells were harvested by centrifugation (5000 × g, 15 min, 4 oC) and the cell pellets

were frozen at -20 oC until needed. For purification, the cells were lysed by sonication in lysis

buffer (50 mM Tris-HCl pH 8.0, 500 mM NaCl), the His6-tagged proteins were bound to cOm-

plete His-Tag purification resin, and eluted with lysis buffer containing 300 mM imidazole as

described previously [31]. The purified proteins were dialyzed into 50 mM Tris-HCl pH 8.0

and kept at -20 oC until required.

CD spectroscopy

SpOatAC, SaOatAC, and their variants were diluted to 0.15 mg�mL-1 in 10 mM sodium phos-

phate buffer pH 7.0. CD spectra (190 nm—260 nm, 1 nm increments) of samples in a 0.1 cm

quartz cuvette were measured in triplicate at 25 oC using a Jasco Model J-815 CD spectrometer

(Jasco Inc., Easton, MD).

Enzyme assay and reaction product analysis

To identify a suitable acetyl-donor for the OatAC homologs, 100 μL reaction mixtures contain-

ing enzyme (5 μM), 1 mM donor (acetyl-CoA, pNP-Ac, or 4MU-Ac) and 2 mM chitotetraose

in 25 mM sodium phosphate buffer pH 6.5 were incubated at 37 oC for 1 h. Reactions were ter-

minated by separating the substrates from the enzyme using porous graphitized carbon (PGC)

solid-phase extraction (SPE) cartridges, previously charged with acetonitrile (ACN) and equili-

brated with water. The PGC-SPE cartridges were washed with three volumes of water and

both chitotetraose and O-acetylated products were eluted with 0.5 mL ACN/water (1:1).

ESI-MS analysis was performed by direct infusion using an Amazon SL ion-trap mass spec-

trometer (Bruker Daltonics Ltd., Milton, ON) at a flow rate of 5 μL�min-1 with a spray voltage

of 4.5 kV. The ion-trap was operated in positive ion mode and MS scans ranging from 200–

2200 m/z. MS/MS scans were made on the major ions with a fragmentation amplitude of 1.0.

Mass spectra were analyzed using Bruker Compass tool (Bruker).

pH dependence of pNP-Ac hydrolysis

The pH optima for the SpOatAC- and SaOatAC-catalyzed hydrolysis of pNP-Ac were deter-

mined using the spectrophotometric assay for pNP release as described by Moynihan and

Clarke [31]. Triplicate reaction mixtures (200 μL) contained 5 μM enzyme and 1 mM pNP-Ac

in 25 mM sodium borate-phosphate-citrate buffer with pH values ranging from 5 to 7.5 with

0.5 unit intervals. Hydrolysis was monitored at 410 nm over 15 min at 25 oC and enzymatic

rates were determined by subtracting the rates of spontaneous pNP-Ac hydrolysis of control

reactions lacking enzyme.

Steady-state reaction kinetics of hydrolysis and acetyltransfer

The determination of steady-state Michaelis-Menten parameters for enzyme-catalyzed hydro-

lysis of pNP-Ac (esterase activity) were made using the spectrophotometric assay described

above. Initial rates of 0.005–5 mM pNP-Ac hydrolysis in 50 mM sodium phosphate buffer pH

6.5 containing 5% (v/v) ethanol (to maintain solubility of substrate) were determined following

the addition of 5 μM SpOatAC or 3 μM SaOatAC (final concentration). The steady-state kinet-

ics of acetyltransfer catalyzed by SpOatAC were determined also using the spectrophotometric

assay for pNP release [38]. Enzyme (5 μM) in 50 mM sodium phosphate buffer pH 6.5 was

incubated at 25 oC with 2 mM pNP-Ac and varying concentrations of chito-oligosaccharides
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(DP 3–6) in a total volume of 150 μL. Control reactions lacked the chito-oligosaccharide accep-

tors. The net rate of acetyltransfer was determined by subtracting the initial rates of pNP

release in control reactions from reactions containing chitooligosaccharides. The Michaelis-

Menten kinetic parameters were determined by non-linear regression using GraphPad Prism

4 (GraphPad Software, Inc., La Jolla, CA). Each of these experiments was performed with three

different preparations of the enzymes.

Inactivation of SpOatAC by MSF

Enzyme (25 μM) in 25 mM sodium phosphate buffer pH 6.5 was incubated with 5 mM MSF at

25 oC for 20 min. Samples were withdrawn and assayed for pNP-Ac hydrolytic activity as

described above.

Preparation of linear muroglycans

Lys-containing Lipid II (partially labeled with Dansyl chloride for facile detection) was pre-

pared enzymatically as previously described [33]. Linear muroglycans were generated by poly-

merizing Lipid II in 50 mM HEPES buffer pH 7.5, 200 mM NaCl, 25 mM MgCl, 25% (v/v)

DMSO, and varying concentrations of Triton X-100 using soluble S. pneumoniae PBP2a (cov-

ering residues 78–731) lacking its N-terminal transmembrane helix. Following incubation at

30 ºC overnight, the reaction mixture was heat inactivated at 90 oC for 10 min and precipitated

PBP2a was removed by centrifugation (10,000 × g, 5 min). The DP was determined by SDS

PAGE analysis with fluorescence detection of the Dansyl label using 8.5% acrylamide gels [65].

Muroglycans with tetra- and tri-peptides were prepared by incubation of the original

PBP2a product with recombinant D,D-carboxypepdiase DacA and L,D-carboxypeptidase from

S. pnuemonae R6. Samples (100 μL) of the muroglycans (15 μg�mL-1) in 50 mM sodium phos-

phate buffer pH 6.5 were incubated at 37 oC overnight with DacA alone or with both DacA

and DacB (final concentration of each enzyme, 5 μM). Heat inactivation at 95 oC for 10 min

was used again to quench further reaction and precipitated protein(s) was removed by centri-

fugation (10,000 × g, 5 min).

Specificity of SaOatAC and SpOatAC for muroglycans

Enzyme (10 μM) in 50 mM sodium phosphate buffer pH 6.5 was incubated at 37 oC for 1 h

with 0.5 mM pNP-Ac, and 10 μg�mL-1 muroglycans possessing either penta, tetra, or tripeptide

stems. The enzymes were heat inactivated at 95 oC for 30 min and then removed by centrifuga-

tion (10,000 × g, 5 min). The PG oligomers were digested overnight at 37˚C with 100 μg�mL-1

mutanolysin which was added directly to the reaction product pool. Digestion of the murogly-

cans to monomers (GM-peptide) was necessary for detection of the reaction products by

ESI-MS. Following digestion, the reaction products were subjected to adsorption chromatog-

raphy on PGC-SPE as described above, except the elution solvent contained 0.1% formic acid

to facilitate the desorption of the charged muropeptides. Reaction products were then analyzed

by ESI-MS. These experiments were repeated once with identical results.

Crystallization of SpOatAC

SpOatAC was concentrated to 42 mg�mL-1 using an Amicon Ultra-15 centrifugal filter (30 kDa

MWCO; Millipore (Canada) Ltd., Etobicoke, ON) at 4,000 × g and 4 oC, followed by centrifu-

gation (15,000 × g, 10 min, 4 oC) to remove any insoluble material. The concentrated protein

sample was used in the MCSG Crystallization Suite sparse matrix crystallization screens 1 to 4

(Microlytic North America Inc., Burlington, MA). Crystallization screening using the sitting
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drop vapor diffusion method was setup using a Gryphon robot (Art Robbins Instruments,

Sunnyvale, CA) with 1 µL drops of protein and a protein to reservoir ratio of 1:1. Large single

diffraction quality crystals appeared after one week of incubation at 21 oC in 0.1 M HEPES:

NaOH pH 7.5, 1.2 M sodium citrate tribasic; and 2.4 M sodium malonate pH 7. Crystal screen-

ing of selenomethionine (SeMet) labeled OatA was carried out as described above and large

single crystals were grown in 2.4 M sodium malonate pH 7. To produce SpOatAC in complex

with MeS, crystals grown in 1.8 M NaH2PO4/K2HPO4, pH 8; 0.1 M HEPES:NaOH pH 7.5, 1.4

M sodium citrate tribasic were soaked in mother liquor containing 1.2 M sodium citrate triba-

sic and 250 mM MSF for 24 hours.

X-ray diffraction data collection and structure determination

Crystals were cryoprotected for 5–10 s in reservoir solution supplemented with 25% (v/v) eth-

ylene glycol prior to vitrification in liquid nitrogen. Native and selenium single-wavelength

anomalous diffraction (Se-SAD) data were collected on beam line X29 at the National Syn-

chrotron Light Source (Upton, NY) (S1 Table). The data were indexed and scaled using

HKL2000 [66]. The Se-SAD data were used in conjunction with HKL2MAP [67] to locate four

selenium sites, and density modified phases were calculated using SOLVE/RESOLVE [68].

The resulting electron density map was of good quality and enabled PHENIX AutoBuild [69]

to build 100% of the protein. Manual model building of the remaining residues was completed

in COOT [70] and alternated with refinement using PHENIX.REFINE [71]. The structures of

the native and MeS proteins were determined by molecular replacement using the SeMet

incorporated derivative and the native structure as the search model. The PHENIX AutoMR

algorithm [71] was used with manual model building and refinement carried out as described

previously. Translation/ Libration/Screw groups were used during refinement and determined

automatically using the TLSMD web server [72,73]. All molecular models were generated

using Pymol and structural superpositions were made using the cealign plug-in.

Other analytical procedures

Nucleotide sequencing of PCR products, as well as plasmids, was performed by the Genomics

Facility of the Advanced Analysis Center (University of Guelph). Protein concentrations were

determined using the Pierce BCA protein assay kit (Pierce Biotechnology, Rockford, IL) with

BSA serving as the standard. SDS-PAGE on 15% acrylamide gels was conducted by the method

of Laemmli [74] with Coommassie Brilliant Blue staining and Western immunoblot analysis

as previously described [29].

Data deposition: The crystallography, atomic coordinates, and structure factors have been

deposited in the Protein Data Bank, www.pdb.org (PDB ID code 5UFY (SpOatAC); 5UG1

(SpOatACMeS).

Supporting information

S1 Table. Crystal structure data collection and refinement statistics.

(PDF)

S2 Table. List of oligonucleotide primers used in this study.

(PDF)

S1 Fig. Purification of SpOatAC and SaOatAC. A. SDS-PAGE analysis of the purification of

spOatAC. Lanes: 1, Elution fraction from His-Tag purification resin; 2 and 3, Fractions 1 and 3

of SourceQ elution, respectively. B. SDS-PAGE analysis of the purification of SaOatAC. Lanes
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1, 2, and 3, correspond to the same purification steps as described in panel A.

(TIF)

S2 Fig. MS/MS fragmentation spectra of O-acetyltransferase reaction products. The MS/

MS fragmentation spectra of A, the sodiated di-O-acetyl-chitotetraose parent ion (937.33 [M

+Na]+) produced by SpOatAC and B, the sodiated O-acetyl-chitotetraose parent ion (895.35

[M+Na]+) produced by SaOatAC. Both sodium adducts were generated from the respective

protonated species with 0.1 mM NaCl to facilitate the cross-ring cleavages. C and D, Interpre-

tation of the fragment ions presented in panels A and B, respectively.

(TIF)

S3 Fig. Continuous assay for O-acetyltransferase activity of SpOatAC and SaOatAC. Prog-

ress curves of pNP release from 1 mM pNP-Ac in 50 mM sodium phosphate buffer pH 6.5

incubated at 25 ºC with A, SpOatAC and B, SaOatAC in the absence (red) and presence (blue)

of 2 mM chitopentaose. The spontaneous release of pNP from pNP-Ac incubated under the

same conditions but without added enzyme is represented by the black symbols. Each assay

was performed in triplicate, with the s.e. noted.

(TIF)

S4 Fig. ESI-MS analysis of SpOatAC-catalyzed O-acetyltransferase reaction products.

Enzyme (5 μM) in 50 mM sodium phosphate buffer pH 6.5 was incubated for 1 h at 37 ºC with

1 mM pNP-Ac and 2 mM A, chitopentaose (G5; [M+H/Na]+) and B, chitohexaose (G6; [M

+H/Na/K]2+). Reaction products were isolated by adsorption to PGC solid-phase extraction

cartridges prior to ESI-MS analysis 7by direct infusion using an Amazon SL ion-trap mass

spectrometer.

(TIF)

S5 Fig. Structure of muroglycan-5P (DP 2–8).

(TIF)

S6 Fig. Polymerization lipid II by S. pneumoniae PBP2a. SDS PAGE analysis with fluores-

cence detection of reaction products of partially Dansylated lipid II (10 μM) in 50 mM HEPES

buffer pH 7.5 containing 200 mM NaCl, 25 mM MgCl, 25% (v/v) DMSO, and varying concen-

trations of Triton X-100 as indicated in the absence and presence of incubated overnight at 30

ºC with S. pneumoniae PBP2a.

(TIF)

S7 Fig. Electron density maps of the SpOatAC active site. The 2mFo-D Fc maps (gray) of the

active sites of A, native SpOatAC and B, SpOatAC-MeS are contoured at 1.0 σ. The mFo-D Fc

omit map of the MeS-Ser438 adduct (green) is contoured at 3.0 σ.

(TIF)

S8 Fig. Amino acid alignment of the Block II sequences in known and hypothetical OatA

homologs. The sequence of S. aureus OatA was used as the query in a TBLASTN search of the

completed bacterial genomes. The residues in bold face and highlighted in yellow denote

greater than 50% and 80% identity, respectively, while invariant the Val/Ile at position 5 of the

Block are in red. Only the sequence of a representative strain of the species listed is presented.

(TIF)
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