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Abstract: The inflammatory response is a fundamental driving force in the pathogenesis of Alzheimer’s 
disease (AD). In the setting of accumulating immunogenic Aß peptide assemblies, microglia, the innate 
immune cells of the brain, generate a non-resolving immune response and fail to adequately clear 
accumulating Aß peptides, accelerating neuronal and synaptic injury. Pathological, biomarker, and imaging studies point to a 
prominent role of the innate immune response in AD development, and the molecular components of this response are beginning 
to be unraveled. The inflammatory cyclooxygenase-PGE2 pathway is implicated in pre-clinical development of AD, both in 
epidemiology of normal aging populations and in transgenic mouse models of Familial AD. The cyclooxygenase-PGE2 pathway 
modulates the inflammatory response to accumulating Aß peptides through actions of specific E-prostanoid G-protein coupled 
receptors. 
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INTRODUCTION 

 Currently, 1/9 people older than 65 years of age have 
Alzheimer’s disease (AD), and 1/3 of people older than 85 
are diagnosed with AD. As the aging population expands, the 
projected number of AD cases is expected to triple by 2050 
[1], with economic costs escalating from $214 billion in 
2014 to $1.2 trillion in 2050 (Alzheimer’s Association Facts 
2014). This represents an enormous economic and societal 
challenge, particularly given the limited efficacy of currently 
available AD therapeutics. In terms of AD prevention, 
attention to diet, exercise, and cardiovascular health are 
likely to help reduce the risk of developing AD. However, 
identification of specific molecular pathways that could be 
targeted for prevention in aging and at-risk populations is an 
urgently needed strategy to help stem this dementia 
epidemic. Given that the prevalence of AD doubles every 5 
years in persons above the age of 65 and given the average 
human longevity of ~80 years, preventive strategies that 
could delay the onset of cognitive decline by only 5 years 
may reduce disease burden by half. Recent data indicate that 
cyclooxygenase/PGE2/EP receptor signaling may play 
important roles in preclinical development of AD in both 
human epidemiology and in mouse models of AD. 

NEUROINFLAMMATION IN AD 

 Pathological changes in AD consist of amyloid ß 
accumulation, tau phosphorylation, and synaptic and  
 
 

*Address correspondence to this author at the Stanford University School of 
Medicine, 1201 Welch Road, Stanford, CA 94305, USA;  
Tel: 650-498-5855; Fax: 650 498 6262; E-mail: kandreas@stanford.edu 

neuronal loss. These pathological hallmarks develop in the 
context of a potent and chronic inflammatory response 
characterized by glial activation, generation of cytokines and 
chemokines, complement proteins, inflammatory enzymes, 
and oxidative stress [2, 3]. This chronic inflammatory 
response is not only injurious to synapses, neurons, and 
circuits, but is persistent and non-resolving. 
 Recent studies indicate that the pre-clinical development 
of AD begins years to decades before initial diagnosis [4]. 
While the initiating pathological events are not well defined, 
they are likely to involve synergistic interactions between Aß 
oligomer-mediated synaptic injury and dysregulated 
inflammatory responses. Amyloid ß peptide generation and 
accumulation is an initiating event, and precedes onset of 
symptoms by years to decades. However, amyloid PET 
imaging studies suggest that Aß peptide accumulation can 
occur in subjects who do not have evidence of cognitive 
decline, leading to the hypothesis that Aß peptide 
accumulation is “necessary but not sufficient” for 
progression to AD [5]. One or more additional factors may 
be necessary. In that regard, recent GWAS studies of 
sporadic late-onset AD have identified genes involved in the 
innate immune response that are expressed in microglia, the 
resident myeloid cells of the central nervous system (CNS). 
These microglial genes include the sialic acid-binding 
immunoglobulin-like lectin CD33 [6-8] and TREM2 [9, 10] 
which regulate phagocytosis and Aß peptide clearance [11-
13], and the complement receptor CR1 [14, 15]. These 
findings indicate that the microglial immune response may 
play a pathogenic role in the development of AD. 
 Microglia have embryonic origins [16, 17] and genetic 
signatures [18-20] that distinguish them from monocytes and 
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other tissue macrophages. Like other tissue macrophages, 
microglia maintain local homeostasis by clearing toxic 
proteins and noxious substances and regulating 
inflammation. However, because microglia reside in the 
brain, they have additional and unique functions, including 
the establishment, maintenance, and pruning of synapses that 
are dynamically regulated by synaptic activity [21-24]. 
Microglia can also regulate synaptic activity through 
mechanisms that are beginning to be identified, including 
secretion of neuroactive and neurotrophic factors [25]. A role 
for microglia in the development of AD may therefore 
involve not only perpetuation of dysfunctional innate 
immune responses to accumulating Aß peptides and dying 
synapses and neurons, as the current literature supports, but 
may also involve direct effects of microglia on synapse 
integrity and function. 

NON-STEROIDAL ANTI-INFLAMMATORY DRUGS 
(NSAIDS) AND PGE2 IN AD DEVELOPMENT 

 The primary action of NSAIDs is the enzymatic 
inhibition of the cyclooxygenases COX-1 and COX-2, 
cytosolic enzymes that generate PGH2 from membrane stores 
of arachidonic acid. PGH2 is the precursor of the 
prostaglandins PGE2, PGD2, PGI2, and PGF2a, and the 
thromboxane TXA2. In epidemiologic studies of cognitively 
normal aging populations, NSAIDs prevent and delay 
development of AD [26-31]. Although selected NSAIDs 
may have cyclooxygenase-independent effects, structurally 
distinct NSAIDs, including ibuprofen, naproxen, and 
sulindac all reduce risk of developing AD in large 
epidemiologic studies [27, 28, 30] suggesting that 
inflammatory prostaglandin signaling plays an important role 
in pre-clinical development of AD. Interestingly, the 
beneficial effects of NSAIDs are restricted to the pre-clinical 
asymptomatic phase, as NSAIDs or selective COX-2 
inhibitors do not help patients with mild cognitive 
impairment (MCI) or AD [31-36]. NSAIDs however are not 
a good choice for large scale AD prevention because both 
toxic as well as beneficial downstream prostaglandin 
signaling pathways are inhibited and lead to adverse effects, 
including renal and gastric toxicity and increased risk for 
vascular disease [37]. Recent studies have identified 
beneficial prostaglandin signaling pathways downstream of 
NSAID action, including the vasodilatory prostacyclin PGI2 
receptor and the neuroprotective, anti-inflammatory, and 
vasodilatory PGE2 EP4 receptor [38-42]. This major 
limitation may help explain why in MCI and AD, NSAIDs 
show no benefit, either because protective downstream 
prostaglandin pathways are inhibited or disease progression 
is already too advanced. 
 Inhibition of COX enzymatic activity by NSAIDs 
therefore has different consequences depending on timing of 
AD development, and inhibition of COX-1/COX-2 by non-
selective NSAIDs is beneficial in preventing disease in 
healthy aging individuals but ineffectual once symptoms 
begin [31, 43]. Given the expanding population of aging 
individuals and the anticipated rise in AD cases, 
understanding the molecular mechanisms by which NSAIDs 
prevent AD has taken on significant urgency. Targeting of 
toxic inflammatory prostaglandin signaling downstream of 
COX may potentially slow or prevent progression to AD. 

 PGE2, PGD2, PGI2, and PGF2a, and the thromboxane 
TXA2 are lipid signaling molecules that bind and activate 
specific G-protein-coupled receptors designated EP (for E-
prostanoid receptor), DP, IP, FP, and TP, respectively [44]. 
PGE2 in particular has generated interest as a potential 
inflammatory agent in pre-clinical AD, as it was found to be 
increased 5-fold in cerebrospinal fluid (CSF) of patients with 
early or probable AD [45, 46], but then declined with disease 
progression [46]. In parallel, levels of the breakdown product 
of prostacyclin (PGI2), widely considered to be anti-
inflammatory, were significantly decreased in CSF of 
probable AD subjects [45]. PGE2 binds four G-protein 
coupled receptors (GPCRs) termed E-prostanoid receptors 
(EP1-4) that have distinct downstream signaling cascades 
and cellular distributions in brain. In vivo, all four EP 
receptors are expressed in neurons; microglial expression of 
EP2, EP3, and EP4 receptors has been confirmed in mouse 
brain [41, 47, 48]. Activation of EP receptors leads to 
changes in the production of cAMP and/or phosphoinositol 
turnover and Ca2+ mobilization. EP2 and EP4 receptors 
couple positively to Gs to increase cAMP formation whereas 
EP3 couples negatively to cAMP through Gi; EP1 couples to 
Gq, and activation results in increased intracellular calcium 
concentrations. 

MOUSE MODELING OF PREVENTIVE EFFECTS OF 
NSAIDS 

 To better understand the inflammatory PGE2 signaling 
pathway in the context of Aß peptide accumulation, 
investigators have studied mouse models of Familial AD, 
where transgenic mice express mutant forms of the amyloid 
precursor protein (APP) and/or presenilin 1 (PS1) genes. 
Microglial activation and elaboration of inflammatory and 
oxidative stress are well documented in these models, 
particularly as these mutant APP mice age and accumulate 
Aß42 and Aß40 peptides. Mutant APP models display either 
loss of synapses or loss of synaptic proteins that are 
associated with spatial memory deficits, and these have been 
linked to effects of Aß oligomers, which are directly toxic to 
synapses [49], and to effects of inflammatory mediators like 
IL1ß [50] or TNFα [51]. However, because mutant APP 
models do not develop significant neuronal loss and tau 
pathology, two hallmarks of MCI and AD in human subjects, 
these models are believed to be more reflective of the pre-
clinical or asymptomatic phases of human AD [52]. If 
considered in this way, the beneficial effects of NSAIDs 
have been validated in these mutant APP models, where a 
correlation between NSAID administration and reduction of 
brain inflammation, Aβ deposition, and rescue of learning 
and memory deficits has been established [53-56]. 

ROLES OF MICROGLIAL EP RECEPTORS IN 
MODELS OF AD: OPPOSING EFFECTS OF 
MICROGLIAL EP2 AND EP4 IN MOUSE AD 
MODELS 

 Early studies examining in vivo effects of EP2 signaling 
in innate immunity demonstrated a significant reduction in 
lipid peroxidation following intracerebroventricular (ICV) 
administration of lipopolysaccharide (LPS) [57], a canonical 
inducer of the innate immune response. LPS-dependent 
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increases in F2-isoprostanes, which are free radical-
generated isomers of prostaglandin PGF2a, and F4-
neuroprostanes (isoPs), which are products of neuronal 
docosohexanoic acid (DHA) oxidation, were significantly 
suppressed in cerebral cortex of EP2-/- mice [57]. In vitro 
studies parsing out the cellular specificity of the EP2 
oxidative effect demonstrated that microglial EP2 elicited 
paracrine neurotoxicity in co-cultures of neurons and LPS-
primed microglia, and this effect was dependent on increased 
inducible nitric oxide synthase (iNOS) and COX-2 activity 
[58]. In vivo, in the APPSwe-PS1∆E9 model of AD (APP-
PS1), global deletion of EP2 also led to significant decreases 
in lipid peroxidation in aging APP-PS1 mice [59], 
suggesting a toxic inflammatory role for the EP2 receptor. 
Additional in vivo studies demonstrated that global deletion 
of EP2 reduced expression of oxidative enzymes iNOS and 
components of the NADPH oxidase complex in the APP-
PS1 model of AD, and reduced expression of COX-1, COX-
2, iNOS, and many components of the NADPH oxidase 
complex in a related model of familial amyotrophic lateral 
sclerosis (ALS) [60]. 
 A major target of the innate immune response in the CNS 
is the clearance of toxic and misfolded proteins. The 
accumulation of misfolded or aggregated proteins is a 
common feature of several chronic neurodegenerative 
diseases, including AD, Parkinson’s disease, Huntington’s 
disease, and ALS. Microglia play a crucial role in the 
clearance of these toxic protein assemblies [61]. However, 
with progression of disease, notably in AD models, the 
healthy phagocytic response of microglia to Aß peptides 
falters, either because microglia become ineffective or 
because they are overwhelmed by levels of accumulating Aß 
peptides. In parallel with progression of pathology in AD 
model mice, microglia also develop a more toxic 
inflammatory phenotype [62]. This leads to a damaging feed-
forward cycle, with increasing accumulation of toxic Aß 
peptide assemblies along with increased elaboration of toxic 
cytokines. In AD model mice, Aβ signaling through Toll-like 
receptors 2 and 4 (TLR2 and TLR4) drives downstream 
activation of NF-κB transcription factors as a central 
inflammatory pathway in AD [63]. 
 A role for microglial EP2 in inhibiting phagocytosis of 
Aß fibrils was demonstrated in an ex vivo acute preparation 
using AD brain sections coated with EP2-/- microglia [64]. 
Microglia lacking EP2 receptor cleared human Aß peptides 
more effectively than wild type microglia, and EP2-/- 
microglia were associated with lower paracrine 
neurotoxicity. In vivo, in the APP-PS1 model, deletion of 
EP2 resulted in significant reductions in total Aß40 and 
Aß42 levels and amyloid plaque deposition, an outcome 
likely reflecting both a more benign inflammatory milieu and 
an enhanced clearance of Aß peptides [65]. In chimeric APP-
PS1 mice subjected to whole body irradiation followed by 
transplantation of wild type or EP2-/- bone marrow, levels of 
amyloid plaque were reduced in APP-PS1 mice receiving 
wild type bone marrow, however EP2-/- bone marrow 
elicited even larger decreases in cerebral cortical plaque load 
[66]. A role for EP2 signaling in phagocytosis has been 
shown in non-CNS models, where myeloid EP2 suppresses 
phagocytosis of latex beads [67, 68] and bacteria [69-72]. 

 Recent in vivo studies using conditional knockout 
strategies have further defined the critical toxicity of 
microglial EP2 signaling in models of AD. Conditional 
knock down of myeloid EP2 receptor using the Cd11bCre 
recombinase line, where levels of myeloid EP2 are reduced 
~50% [47], had multiple beneficial effects and restored 
healthy microglial responses to Aß peptides [73]. Cell-
specific knockout of microglial EP2 increased microglial 
clearance of Aß peptides and suppressed toxic inflammatory 
gene expression. In addition, unbiased genomic studies of 
microglia isolated from brain revealed that knockdown of 
microglial EP2 receptor increased generation and local 
signaling of insulin-like growth factor 1 (IGF1) in 
hippocampus in response to Aß peptide stimulation [73]. 
IGF1 promotes synaptogenesis, neurogenesis, and 
neuroprotection through the PI3K/Akt pathway in brain [74]. 
Deletion of microglial EP2 also increased expression of 
members of the PPAR signaling pathway, including RXRγ 
which along with its binding partner PPARγ reduces 
proinflammatory gene expression [75] and enhances 
clearance of Aß peptides [76]. RXRγ is also the target of the 
FDA-approved RXR agonist bexarotene (Targretin) that has 
been shown in some studies to lower interstitial levels of 
soluble Aß peptides and to prevent memory deficits in AD 
model mice [77, 78]. Additional genes suppressed by EP2 
signaling in microglia but intimately related to Aß peptide 
clearance included the cholesterol transporter ABCA1 [79] 
and apolipoprotein E (ApoE) [80], proteins that enhance 
proteolytic degradation of soluble Aß peptides [81, 82]. In 
addition, lipoprotein lipase (lpl), which binds Aß peptide 
[83], was also upregulated in hippocampus with EP2 
microglial deletion; interestingly, an intronic polymorphism 
in Lpl is associated with reduced Lpl mRNA, increased 
amyloid and neurofibrillary tangle densities, and increased 
prevalence of AD [84]. The upregulation of these genes in 
microglial EP2 knockout mice suggests that EP2-deficient 
microglia respond to Aß42 peptides in vivo by inducing anti-
inflammatory and Aß-clearing nuclear hormone receptor 
signaling genes. Consistent with this beneficial effect of 
reduced EP2 signaling, conditional deletion of microglial 
EP2 in the APP-PS1 model prevented synaptic injury and 
spatial memory deficits [73]. 
 The toxic effects of microglial EP2 contrast significantly 
with the beneficial anti-inflammatory effects of microglial 
EP4 in vivo. Previous in vivo studies of innate immune 
responses to LPS had identified a pronounced anti-
inflammatory effect of microglial EP4 activation that was 
associated with reduced nuclear translocation of NF-κB 
subunits p65 and p50 [41] in myeloid cells. Conversely, 
following LPS stimulation in vivo, conditional deletion of 
the EP4 receptor in myeloid cells led to an increase in brain 
pro-inflammatory gene expression and lipid peroxidation, 
suggesting that the function of myeloid EP4 is to attenuate 
and/or terminate innate immune responses. Subsequent 
studies of Aß42-mediated inflammatory responses confirmed 
the anti-inflammatory nature of microglial EP4 signaling, 
where in primary microglial cells, EP4 stimulation 
attenuated levels of Aβ42-induced inflammatory factors and 
potentiated phagocytosis of Aβ42 [41]. Unbiased genomic 
studies showed that EP4 receptor activation broadly opposed 
Aβ42-driven gene expression changes in microglia, with  
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significant enrichment of targets of IRF1, IRF7, and NF-κB 
transcription factors [41]. In vivo, in APP-PS1 mice deficient 
for microglial EP4, inflammatory gene expression, oxidative 
protein modification, and Aβ deposition in brain were 
significantly increased at early stages of pathology, but not at 
later stages, suggesting an early anti-inflammatory function 
of microglial EP4 signaling in the APP-PS1 model. Thus, 
although both the EP2 and EP4 receptors are positively 
coupled to cAMP, they appear to have divergent 
inflammatory functions in models of Aß peptide mediated 
neuroinflammation and neurodegeneration. The carboxy 
terminal cytoplasmic tail of the EP4 receptor is significantly 
longer than that of the EP2 receptor and can recruit distinct 
signaling molecules [85], a difference likely to influence 
downstream signaling of the EP4 versus EP2 receptors [86]. 

FUNCTION OF THE EP3 AND EP1 RECEPTORS IN 
THE INFLAMMATORY RESPONSE IN AD 

 The EP3 receptor is a central component in the regulation 
of the febrile response [87, 88]. In classical models of innate 
immunity, the function of inflammatory EP3 has been 
explored in a model of bacterial lung infection, where 
deletion of EP3 resulted in a marked increase in clearance of 
bacteria, reduced neutrophil ingress, and improved survival 
[89], a phenotype reminiscent of the pro-phagocytic and anti-
inflammatory effects of EP2 deletion, as discussed above. In 
the brain, EP3 has mainly been localized to neurons, 
however immunocytochemical induction of EP3 expression 
has been observed in striatal microglia in the setting of an 
excitotoxic lesion induced by injection of quinolinic acid, a 

potent ligand at the glutamatergic N-methyl-D-Aspartate 
(NMDA) receptor [48]. This suggests that although EP3 may 
not be expressed in microglia under physiological 
conditions, in the appropriate inflammatory or injury 
contexts, EP3 might be induced and contribute to innate 
immune responses. 
 The function of EP3 signaling has been examined in two 
models relevant to AD, namely the ICV Aß injection model, 
which elicits a potent and long lasting inflammatory 
response to Aß peptides [90, 91] and in the APP-PS1 model. 
In a recent study [92], the induction of pro-inflammatory 
gene expression, cytokine generation, and lipid peroxidation 
following ICV Aß42 was significantly abrogated in EP3-/- 
mice, suggesting that microglial EP3 signaling engaged a 
toxic inflammatory response to Aß peptides. In the APP-PS1 
model, deletion of EP3 significantly blunted the induction of 
proteins capable of increasing oxidative injury, including 
iNOS, components of the NADPH oxidase complex, and 
COX-2. Moreover, suggestive of a role in Aß clearance, 
APP-PS1 mice lacking either one or both EP3 alleles had 
significantly lower amyloid accumulation. This effect is 
consistent with the lung infection studies mentioned above, 
where deletion of EP3 led to enhanced clearance of bacteria 
[89]. However, it is also possible EP3 deletion impacted on 
the generation of Aß peptide from APP, as prior studies have 
correlated increased oxidative stress and inflammation with 
increased expression and activity of ß-secretase [93, 94], the 
first enzyme to cleave APP in the formation of the Aß42 
peptide. Indeed, loss of EP3 receptor in the APP-PS1 
background resulted in decreased ß-secretase expression and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (1). Summary of inflammatory effects of the COX/PGE2/EP receptor signaling pathways in mouse mutant APP models. 
Modeling of EP2 and EP3 (top) and EP4 (bottom) inflammatory signaling in mouse models of AD indicates that EP2 and EP3 receptors 
enhance inflammatory oxidative stress, pro-inflammatory gene expression and are pro-amyloidogenic. In contrast, EP4 signaling in the 
setting of Aß-mediated innate immune responses is anti-inflammatory and enhances Aß phagocytosis. In preclinical AD, use of NSAIDs is 
preventive only in normal cognitive aging populations. Later symptomatic stages do not respond, potentially because beneficial PGE2 
signaling pathways such as the EP4 receptor, as well as others including the prostacyclin (IP) receptor, are inhibited along with the toxic EP2 
and EP3 pathways. 
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activity. This would suggest that in the APP-PS1 model, EP3 
signaling may both suppress Aß clearance, and by increasing 
inflammatory oxidative stress, increase the generation of Aß 
peptide. Interestingly, loss of just one allele of EP3 in the 
APP-PS1 background had significant effects on Aß peptide 
levels. 
 Of the four EP receptors, the role of inflammatory EP1 in 
AD is less clear. EP1 is highly expressed in neurons [95, 96] 
and functions in neuronal survival. In models of neuronal 
injury, including NMDA excitotoxicity and cerebral 
ischemia, pharmacologic or genetic deletion of EP1 reduces 
cerebral injury [96-98]. However, EP1 expression is not 
found in microglia after hypoxia-ischemia, nor does 
microglial activation induce neurotoxicity in hippocampal 
slices treated with LPS and IFNγ [96]. A lack of effect of 
inflammatory EP1 would suggest that the toxic function of 
this receptor is primarily neuronal. Supporting this 
conclusion are findings that inflammation sensitive neural 
progenitor cells (NPC) [99] in the subgranular zone of the 
dentate gyrus are vulnerable to microglial EP2 signaling and 
NPC EP1 signaling [100]. 

CONCLUSION 

 Aß peptides are highly immunogenic, and generate toxic 
inflammatory responses that injure synapses. Pre-clinical 
development of AD begins decades prior to diagnosis, and 
NSAIDs act during this time period to delay onset and 
progression to AD. The early accumulation of Aß42 
peptides, beginning years to decades before cognitive 
symptoms arise, triggers microglial inflammatory responses 
that are initially robust, but falter as disease progresses. A 
summary of findings relevant to inflammatory actions of the 
PGE2 EP2, EP3, and EP4 receptors in the APP-PS1 model 
are diagrammed in Fig. (1). The opposing actions of the 
EP2/EP3 and EP4 receptors highlight the importance of 
targeting selected EP receptors downstream of COX-1/COX-
2, as upstream inhibition of COX-1/COX-2 activity may 
inhibit beneficial as well as toxic PGE2 EP receptor 
signaling. This is a potential future indication, as we await 
the identification and validation of biomarkers that can 
reliably predict subjects at risk for AD. 
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