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High-performance shape-engineerable
thermoelectric painting
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Output power of thermoelectric generators depends on device engineering minimizing heat

loss as well as inherent material properties. However, the device engineering has been largely

neglected due to the limited flat or angular shape of devices. Considering that the surface of

most heat sources where these planar devices are attached is curved, a considerable amount

of heat loss is inevitable. To address this issue, here, we present the shape-engineerable

thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared

Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering

aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted

materials that compete the bulk values. Devices directly brush-painted onto curved surfaces

produced the high output power of 4.0 mWcm� 2. This approach paves the way to designing

materials and devices that can be easily transferred to other applications.
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T
he thermoelectric (TE) effect has attracted considerable
attention from various research areas, as its ability to
directly convert between thermal and electrical energy

offers a unique solution to sustainable power generation from
waste heat sources1–3. The overall power generating performance
of solid-state TE devices largely depends on the characteristics
of the TE materials itself. This means that the efficiency can
be estimated from a dimensionless figure-of-merit inherent in
the materials: ZT¼ (S2sT/k), where S, s, k and T are the
Seebeck coefficient, electrical conductivity, thermal conductivity
and temperature, respectively. TE materials chipped into devices
are mostly prepared in the form of cube or cuboid blocks
from a TE ingot by means of a top–down dicing process4–6. A
potential problem of this conventional procedure is a relatively
high production cost due to the energy intensive processing for
ingots such as zone-melting7 or hot-pressing8,9 as well as the
post-processing due to shape control10–12. The latter, in fact,
suffers from another problem that attempts to realize any
complicated shape other than a cube are technically impossible
within the context of mass production.

On the other hand, in the real-world applications, the
minimization of heat loss due to incomplete contact between
the surface of the heat source and the TE module is no less
important than the figure-of-merit of materials4,11–13. It is noted
that the majority of heat sources for TE generators has irregular
shapes, where the conventional planar-structured TE devices
composed of cubic blocks should fail in achieving a desirable
contact (Fig. 1a,b).

One readily available solution to settling down the
aforementioned issues would be to secure a way to maximizing
the flexibility in the shape and dimension control of TE materials
during the forming stage, where the well-established printing
technology would best-serve the purpose14–23. However, this
printing-based technology has faced at least two major
challenges. One is the poor functional properties due to the
unavoidable organic-conducting binders in the inks for electrical
interconnection among TE particles at the expense of TE
properties20–22. Although the properties can be enhanced by
high temperature processing instead of using organic binders,
such enhancement is quite limited; for example, the state of
the art utilizing a printing technique for TE materials deposited
on a glass fabric achieved ZT values of 0.35 (n-type) and
0.27 (p-type)23 which are at most 20–40% of the commonly
reported values from the conventional processing2 even with the
sintering temperature of as high as 530 �C close to the melting point
of the TE materials. The other is the limited choice of substrates,
that is, the usual printing technique forces one to deposit TE
materials only on a flat surface, though the targeted heat sources
where TE modules are attached are generally curved24.

As a solution to these challenges, we present the development
of high-performance shape-engineerable TE painting via
the molecule-level sintering effect25,26. To this end, we utilized

the molecular Sb2Te3-based chalcogenidometalate (ChaM)27–30

for n-type BiTeSe and p-type BiSbTe TE particles, which are
arguably known as the best TE materials at near room
temperature31,32. The Sb2Te3 ChaM turned out to promote the
sintering process effectively even at as low as 350 �C without any
remnant secondary phase, the presence of which jeopardizes the
expected TE properties. With the processing optimized, we have
achieved the ZT values of 1.21 for p-type and 0.67 for n-type TE
materials that are comparable to the bulk values2 and three times
higher than the best values among the printed TE materials
reported in the literature23. To show the feasibility of the
currently proposed technology, we fabricated TE generators
through painting TE paints on flat, curved and large-sized
hemispherical substrates, demonstrating that it is the most
effective means of heat energy collection from any heat
sources with exceedingly high output power density of
4.0 mW cm� 2, which is the best value among the reported
printed TE generators33.

Results
The overall process for the TE painting in the current study is
shown in Fig. 2. The prepared TE paints with the Sb2Te3 ChaM
sintering aid are painted on a curved substrate and sintered at
elevated temperatures (Fig. 2a–c), eventually, producing the
curved painted TE device exhibiting high power generating
performances (Fig. 2d). The resulting n- and p-type painted
materials in the TE generators exhibit the ZT values competing
those of bulk Bi2Te3-based materials (Fig. 2e). The detailed results
and the related discussion on the each steps are described below.

Bi2Te3-based inorganic TE paints. The Sb2Te3-based ChaM
was synthesized by dissolving bulk elemental Sb and Te in a
thiol–diamine mixture34–36 instead of the widely used a N2H4

solvent25–28,37–41 due to its high-level toxicity. Sb 3d3/2, Sb 3d5/2

and Te 3d5/2 peaks corresponding to metallic bonding peaks are
identified in the X-ray photoelectron spectra (Supplementary
Fig. 1), indicating the formation of an ionic Sb2Te4 phase from
elements42. We observed that this soluble compound decomposes
into rhombohedral Sb2Te3 and hexagonal Te on mild heat
treatment above 100 �C, as confirmed by X-ray diffraction (XRD)
analysis in Supplementary Fig. 2. It is seen that the peaks
corresponding to Sb2Te3 and Te phases in the XRD pattern
(Supplementary Fig. 2) become sharper with increasing
temperatures, suggesting the suitability as a sintering aid. The
absence of peak representing the decomposition of the ChaM in
thermogravimetric analysis (TGA) of the Sb2Te3 ChaM dried at
room temperature (Supplementary Fig. 3) implies that it was
completely decomposed during drying process27.

The Sb2Te3 ChaM can be dispersed in various polar solvents as
long as their dielectric constant (e, F m� 1) ranges from 10 to 50
for example, dimethyl sulfoxide (eE47), dimethylformamide
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Figure 1 | Comparison of power generation between the conventional planar-structured TE generator and the painted TE generator on a curved heat

source. (a) A conventional planar-structured TE device. (b) Scheme of power generation of the conventional TE generator and the painted TE generator on

a curved heat source.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13403

2 NATURE COMMUNICATIONS | 7:13403 | DOI: 10.1038/ncomms13403 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(eE36), ethylenediamine (eE13) and viscous polar solvents of
ethylene glycol (eE37) and glycerol (eE43; Supplementary
Fig. 4). This provides a room for tuning the dielectric constant,
solvent viscosity and evaporation temperature of the TE paints.
We dispersed the Sb2Te3 ChaM (20 wt% of TE particles)
in a mixed viscous solvent of glycerol and ethylene glycol
containing n-type Bi2.0Te2.7Se0.3 (BTS) or p-type Bi0.4Sb1.6Te3.0

(BST) TE microparticles (Fig. 2a). The viscosity and evaporation
temperature for the TE paints were both adjusted by controlling
the ratio of glycerol (viscosity at room temperatureE934 mP s,
boiling pointE290 �C) to ethylene glycol (viscosity at room
temperatureE62 mP s, boiling pointE197 �C). We found that
the suspension was stable against phase separation and
precipitation for more than a week (Supplementary Fig. 5).

Sb2Te3 ChaM as a sintering aid. To fully understand the
sintering behaviour of the TE paints, both n- and p-type
paints, repeatedly painted and dried, were sintered at various
temperatures 4350 �C, with all producing mechanically
robust TE samples several hundred micrometres in thickness.
Figure 3a–d compare the microstructure of n-type BTS and
p-type BST TE materials sintered at 450 �C with and without the
Sb2Te3 ChaM. It is noted that a suspension of TE particles
without the ChaM painted and sintered under the same
conditions resulted in at most 60–70 % of the density achieved
with the ChaM (Fig. 3e), regardless of the sintering temperature.
As shown in Fig. 3e, the presence of the ChaM effectively
increases the initial density of the TE materials by filling up pores,
promoting the grain growth and densification of the ensemble of
particles. As a whole, the evidences demonstrate the effectiveness
of the Sb2Te3 ChaM as a sintering aid.

While the density of sintered materials kept increasing
with temperature, asymptotically approaching 3.9 g cm� 3

(n-type) and 3.6 g cm� 3 (p-type) above 400 �C (Fig. 3e and
Supplementary Fig. 6); however, a TGA profile in Supplementary
Fig. 7 revealed that a weight loss occurs above 450 �C due to the
evaporation of liquid Te, which is known to result in a slight

degradation of properties via the formation of the Te vacancy
defect43. Therefore, the optimum sintering temperature for the
current study was taken at 450 �C.

As manifested from the microstructures (Fig. 3a–d), the grain
morphology clearly dictates that the grain growth took place in a
layer-by-layer mode, which requires two-dimensional nucleation
event from a liquid medium as a prerequisite44. The scanning
electron microscope (SEM) image of the fractured surface
(Supplementary Fig. 8) shows the stereotypical microstructure
formed by a nucleation and lateral growth44. This implies that the
added sintering aid formed a liquid phase at the sintering
temperature, which provides a diffusion path for grain growth. As
evidenced by the differential scanning calorimetry curves of
n-type and p-type paints (Supplementary Fig. 7), the Te phase
formed from the Sb2Te3 ChaM sintering aid is melted at
B420 �C, lower than the sintering temperature of 450 �C. It
means that the liquefied Te can contribute to the liquid-phase
sintering on heat treatment. A possible contribution from
the viscous flow mechanism during the initial stage of the
liquid-phase sintering was ruled out based on an analysis on a
time-dependent shrinkage measurement as shown in
Supplementary Fig. 9, where the time exponent of 0.08 is
determined to be much smaller than the theoretically expected
one. It is noted that the viscous flow mechanism during liquid-
phase sintering is often represented as the following relation45:
Dl/lpt1þ y, where l and t denote a linear dimension of the sample
and sintering time, respectively. Here, the exponent 1þ y is
slightly larger than unity due to increasing driving force with
decreasing pore size during the process.

The temperature-dependent XRD patterns (Supplementary
Figs 10 and 11) demonstrate that the Sb2Te3 ChaM was
completely integrated into the host phase, suggesting that
the Sb2Te3 ChaM should be compositionally compatible with
the growth unit of the host phases. It is more pronounced in
n-type materials. The XRD patterns (Supplementary Fig. 10)
shows the peak shift to lower angle with increasing the sintering
temperature, signifying the increase of Te stoichiometric ratio in a
Bi2(Te,Se)3 phase due to the integration of the Sb2Te3 ChaM into
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Figure 2 | Schematic illustrating for the fabrication of painted TE devices with Bi2Te3-based inorganic TE paints. (a) Photographs of the Sb2Te3 ChaM

solution and the ball-milled TE particle. (b) Photographs for the fabricated TE paint and the painting process on an alumina hemisphere. (c) Scheme for

the sintering of ball-milled particles assisted by the Sb2Te3 ChaM. The molecular Sb2Te3 ChaM ions act as a sintering aid to fill up the void space among

ball-milled particles and promote the grain growth and densification. The yellow and black particles indicate the ChaM molecules and ball-milled particles,

respectively. (d) Photograph of the fabricated hemispherical TE device. (e) Comparison of the peak ZT values among the painted n- and p-type materials in

the current study, the typical bulk Bi2Te3-based materials (denoted as n-bulk and p-bulk) and the printed materials reported in the literature (denoted as

n-paste and p-paste)2,23.
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the host phase. The significance of the improved sinterability
is best-reflected in the electrical charge transport property,
which is an order of magnitude higher electrical conductivity at
650–750 S cm� 1 than those of the materials without the ChaM
(Fig. 3f).

TE properties of the painted materials. Excellent TE properties
are achieved in both the n- and p-type painted TE samples
over the temperature range from 25 �C to 125 �C. The room-
temperature ZT values of the n- and p-type samples marked
0.51 and 0.97, respectively (Fig. 3g), where the maximum values
reached 0.67 for the n-type sample and 1.21 for the p-type sample
at 100 �C (Fig. 3g). Note that these maxima are higher than those
obtained with typical Bi2Te3-based bulk ingots (ZTE0.8–1.0)1–3

and are close to the recently reported nanostructured TE
materials (ZTE1.1–1.9)46–48. Furthermore, these values are
highest among the reported TE materials based on TE inks or
pastes, and 3–4 times greater than anything that has been
previously reported for printed TE materials (Fig. 2e)23.

These promising ZT values of the painted samples originate
in high electrical conductivities and ultra-low thermal
conductivities. The electrical conductivities of the n- and p-type

samples (Fig. 3h) are 650–750 S cm� 1 at room temperature,
decreasing with increasing temperature. These high electrical
conductivities result from the moderately high carrier mobilities
of 149 cm2 V� 1 s� 1 for the n-type and 141 cm2 V� 1 s� 1 for
the p-type materials. The Seebeck coefficient of the n-type
samples (Fig. 3i) is 114mV �C� 1 at room temperature with a peak
value of 134 mV �C� 1 at 102 �C, and that of the p-type samples is
170–190 mV �C� 1 over the entire measurement temperature
range (Fig. 3i). These relatively low-Seebeck coefficients are
caused by the high carrier concentrations of 3.0� 1019 cm� 3 for
the n-type samples and 2.9� 1019 cm� 3 for the p-type samples,
since the Seebeck coefficient and the carrier concentration are
reciprocally proportional2,3.

The most significant effect of molecular ChaM-assisted sintering
is seen in the great reduction in the thermal conductivities of the n-
and p-type samples (Fig. 3j), that is, 0.5–0.6 W m� 1 K� 1 in
comparison with the 1.5–2.5 W m� 1 K� 1 of bulk Bi2Te3-based
materials2. The calculated lattice thermal conductivities were as
low as 0.19 W m� 1 K� 1 for n-type and 0.20 W m� 1 K� 1 for
p-type painted materials (Supplementary Fig. 12). These values are
lower or comparable than the predicted minimum lattice
thermal conductivities of 0.31 W m� 1 K� 1 in n-type Bi2Te3 and
0.20 W m� 1 K� 1 and p-type (Bi,Sb)2Te3, which is calculated
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using the Debye–Callaway model with the assumption of full
densities49. One possible explanation for the ultra-low lattice
thermal conductivity is the porosity of materials. Although the
Sb2Te3 ChaM promotes the sintering of TE particles, their densities
are still lower than the bulk values of 6.5–7.5 g cm� 3. The analysis
of porosity with N2 adsorption measurement and SEM of these
materials (Supplementary Figs 13 and 14) reveal the existence of
both nano-scale and micro-scale pores. These multi-scale pores can
significantly reduce the thermal conductivity by phonon scattering
with a broad range of wavelength at pore sites. To further
quantitatively estimate the porosity effect on the thermal transport,
the lattice thermal conductivities of painted samples were corrected
by using the modified formulation of the effective medium theory
suggested by Lee et al.50: kl ¼ kh

ð2� 2FÞ
ð2þFÞ , where kh and F are the

lattice thermal conductivity of host materials and the porosity,
respectively. The overall porosities of the painted samples were
estimated by the direct method of comparing the sample density to
the theoretical density of bulk materials with identical
compositions. Using the bulk densities of BTS (7.55 g cm� 3) for
the n-type and BST (6.785 g cm� 3) for the p-type materials, the
calculated porosities of the painted samples were 0.47 for the
n-type and 0.46 for the p-type samples. The calculated minimum
lattice thermal conductivities of the n-type and p-type painted
samples are 0.44 W m� 1 K� 1 and 0.47 W m� 1 K� 1,
(Supplementary Fig. 12) respectively, which are comparable to
those of typical nanostructured bulk materials prepared from
ball-milled Bi2(Te,Se)3 and (Bi,Sb)2Te3.

Generally, the porosity of solid materials strongly affects the
charge carrier transport due to scattering of carriers at the pore
sites51. A charge carrier passing near a pore is scattered due to the
potential perturbation50, degrading the carrier mobility and
eventually the electrical conductivity. The carrier-scattering effect

on mobility can be qualitatively described by the Matthiessen’s
rule52

1
mtot
¼ 1

mbulk
þ 1

mimpurity
þ 1

mboundary
þ 1

mpore
ð1Þ

Accordingly, the total scattering is the sum of the contribution of
different carrier scattering mechanism. For example, mbulk is the
mobility induced solely by the carrier scattering with acoustic
phonons. In the painted materials, considering no additional
impurity element except Bi, Sb and Te, mboundary and mpore should
be the critical factors to determine the overall mobility.
Lee et al.50 suggested that the porosity effect on electrical
properties become weaker for larger grains. Since the material
with larger grains necessarily has larger pores with the lower
number density under the same porosity, the scattering rate is
reduced and mobility is enhanced for larger grain sizes. The fact
that the grain size is in the range of several micrometres (Fig. 3a,c)
and the pores are mainly macro-scale in the painted materials
(o3% of micro-pores in volume) suggests that the moderately high
mobility is attributed to the lower number density of the pore.

Another important factor to determine the electrical
conductivity is the carrier concentration. To overcome the lower
mobility of the painted samples than those of bulk, we chose the
composition of BST (p-type) and BTS (n-type) for host matrix
materials. The materials with such compositions are known to
exhibit high carrier concentration by the formation of SbTe

antisite defect to provide hole in p-type and Se vacancy defect
to provide electron in n-type. In fact, the carrier concentrations
of the painted samples were two or threefold higher than
1B2 cm� 3 of typically used Bi2Te3-based materials2. Although
these high carrier concentrations decreased the Seebeck
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coefficients, the electrical conductivities were significantly
increased up to 650–750 S cm� 1 at room temperature, close to
bulk values. Consequently, in spite of high porosity, the high
carrier concentration, the low number density of pores and
bulk-scale grains can result in the high electrical conductivity of
the painted materials.

All-painted TE generating devices on flat surfaces. The
outstanding TE properties and painting processability of these TE
paints make it possible to design highly efficient TE generating
devices geometrically compatible with heat sources. As the first
attempt, n- and p-type TE paints were applied with a brush to a
flexible polyimide substrate, and then sintered at 450 �C for
10 min (Fig. 4a). These painted layers formed continuously
uniform films with the thickness of about 50mm (Fig. 4b). It
means that the sintering condition is enough for the system to
reach the final stage of sintering, where the coarsening process
becomes stagnant with a narrow size distribution. Ag paste was
painted in a way that the TE device consists of 5 couples of n- and
p-type legs with lateral dimensions of 5 mm� 10 mm and an
average thickness of B50 mm (Fig. 4a). The internal resistance

of this device was 25.8O, higher than the expected resistance
in reference to the electrical properties, suggesting that the
contact resistance between the Ag electrode and the TE leg is
considerably high. We measured the contact resistance between
the Ag electrode and the painted TE leg by the transmission line
method (Supplementary Fig. 15). The measured contact resistance
is quite high at 4.8� 10� 2O cm2, which is three or four orders
of magnitude higher than the contact resistance observed in
conventional module composed of Bi2Te3-based TE legs53 and
can be responsible for the internal resistance of the painted TE
generator. To ensure reliable evaluation of an output power of this
device, only the temperature of the hot side was modulated, while
the cold side was kept at a constant temperature of 20±0.5 �C
(Supplementary Fig. 16).

The TE device painted onto the polyimide substrate achieved
an output voltage of 79.4 mV and an output power of 60.8 mW
under the temperature difference of 50 �C (Fig. 4c). The output
power density reached as high as 2.43 mW cm� 2 (Fig. 4d), which
doubles the best reported value for in-plane type TE devices33.
The mW-level output power density is highly potential for the
wearable TE energy harvester. Another TE device was prepared
by painting onto a glass substrate under the same preparation
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Figure 5 | Output characteristics of in-plane TE devices painted on curved substrates. (a,d,g) Photographs of the painted TE devices on concave and

convex surfaces of a hemi-cylinder and a hemisphere (the insets of a and d show schemes of the TE devices). Scale bars in (a), (d) and (g) are 10, 10 and

50 mm, respectively. (b,e,h) Linear and curved lines indicate output voltages and powers, and (c,f,i) output power densities of the painted TE devices on

concave and convex surfaces of a hemi-cylinder, and a hemisphere. Error bars represent the s.e. of the mean values of output voltage, power and output

power density obtained by repeatedly measuring three times. Solid and dashed lines in b,c,e,f,h and i indicate the guide for the measured values and the

predicted properties via extrapolations.
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conditions. This achieved the internal resistance of 26.3O,
the output voltage of 79.4 mV, the output power of 60.7 mW
and the output power density of 2.43 mW cm� 2 (Fig. 4e,f).
The fact that these values are almost identical to the TE device
painted onto a polyimide substrate suggests that the fabrication
process can be consistently applied to a range of different
substrates.

All-painted TE devices on curved surfaces. The versatility of the
TE paints was best-demonstrated by TE devices directly realized
onto curved surfaces such as onto the concave and convex
surfaces of a glass hemi-cylinder, as depicted in Fig. 5. The
resulting device has 5 couples of n- and p-type layers with the
dimension of 5 mm� 10 mm�B50 mm (Fig. 5a,d). The internal
resistances of the TE devices on convex and concave surfaces
were almost identical at 23–25O, which is consistent with the
TE devices painted on flat substrates. Under the temperature
difference of 30 �C, these devices produced an output voltage of
34–36 mV and output power of 17–18mW, leading to a
comparable power density (0.70–0.71 mW cm� 2) to the TE
devices painted on flat glass substrates (Fig. 5b,c for the concave
device, and Fig. 5e,f for the convex device). The fact that the
output power density of the TE devices painted on flat and curved
substrates with the same dimension of TE legs merges into the
same line (Supplementary Fig. 17) validates the applicability of
the TE paints to any shaped surfaces.

To further demonstrate the processability of TE painting onto
large-sized curved surfaces with a full coverage, TE device was
fabricated on a hemispherical alumina substrate with the diameter
of B70 mm (Fig. 5g). We introduced 5.5 couples of triangular
TE layers with 15 mm at the base and B25 mm in height and
obtained the internal resistance of 40.2O, which is expected for the
enlarged TE layers (67% higher aspect ratio). To minimize radiation
or convection factor from a heat source, the planar heat source
was fully covered with a glass fabric and the apex of the
hemispherical generator was thermally connected by thermal pads
(Supplementary Fig. 18). Exposed to a temperature difference of
20.1 �C, this device produced the output voltage of 22.5 mV, the
output power of 3.0mW and the output power density of
0.073 mW cm� 2 (Fig. 5h,i), which are significantly lower than
those of the other devices. It is understood that this low output
power density can originate in the longer TE legs which increase the
internal resistance since the output power density is inversely
proportional to the leg length under same temperature difference54.
Assuming the identical dimension of the TE legs to those of other

devices, the plotted output power density approached towards the
others (Supplementary Fig. 17). As evidenced by the lower output
voltage, small deviation in the graph (Supplementary Fig. 17) can be
due to the heat loss from a thermally conducting alumina substrate,
which forces the external temperatures to be different from the
actual temperature applied to the TE legs.

Comparison with conventional TE module. To show how
the painted TE generator on a curved surface is effective, we
performed the comparative simulation study on the power output
of the painted TE generator and the conventional module on a
hemispherical curved heat source, based on a three-dimensional
TE finite element model (FEM). The heat loss in the FEM was
considered by including the convective heat transfer. To simulate
the natural convection over all the surfaces that are exposed to air,
the convection heat transfer coefficient was 10 W m� 2 K� 1 with
an ambient temperature of 25 �C (ref. 55). The simulation
details are described in the Supplementary Information. The
temperatures across the apex and the bottom of an alumina
hemisphere were kept at 45 and 25 �C (Supplementary Fig. 19). In
the conventional module, since the contact area (d) with a
hemisphere is small, the temperature distribution in the module is
greatly non-uniform (Supplementary Fig. 20), which results in a
significantly low output voltage of 13.3 mV for d¼ 1 mm and
4.5 mV for d¼ 0.1 mm. Thus, conventional module generates the
output power of 76.9 mW (the output power density of
15 mW cm� 2) when d¼ 1 mm, and the output power of 8.6 mW
(the output power density of 1.7 mW cm� 2) when d¼ 0.1 mm,
which are greatly reduced values compared with the reported
values of 4–10 mW cm� 2 obtained on a flat heat source5. On the
other hand, the uniform temperature distribution and electrical
potential field on the painted generator (Supplementary Fig. 21)
result in an order of magnitude higher output power density of
205 mW cm� 2.

To further validate the practicability of the painting technology
against the conventional module, we propose two designs of
power generation systems based on the painting technology. First,
the TE leg length in the painted TE generator was controllably
varied to obtain the higher power output density, since the power
output density can be maximized by the optimum TE leg
length5,54. As shown in Supplementary Fig. 22, with the decrease
of the leg length, the resistance linearly decreases and the output
power increases as expected. The highest output power per unit
area of 4.0 mW cm� 2 was achieved by the generator with the leg
length of 5 mm under the temperature difference of 50 �C.
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Figure 6 | Through-plane TE generator on an alumina hemisphere using the moulded pellets prepared from the TE paints. (a) Scheme for the

fabrication of the TE generator. (b) A photograph of the fabricated TE generator. (c) Output voltage and output power density. The scale bar in b is 35 mm.

Solid and dashed lines in c indicate the guide for the measured values and the predicted properties via extrapolations.
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Furthermore, the predicted power output density based on the
fitted function with the data points reached 11.0 mW cm� 2 in the
generator with the leg length of 1.4 mm, which is comparable to
30–50 mW cm� 2 obtained from the conventional module with
TE legs with an identical length on a flat heat source5.

In addition, we fabricated the through-plane TE generator
using the moulded disks prepared from the TE paints. The details
of the moulding experiments are described in the Supplementary
Information (Supplementary Fig. 23). Two pairs of n-type and
p-type moulded disks with the diameter of 4.0 mm and thickness
of 1.0 mm were assembled by soldering with a Bi–Sn solder to Cu
foil electrodes on an alumina hemisphere (Fig. 6a,b). The internal
resistance was as low as 0.014O, comparable to that of the
conventional module. Under the temperature difference of 14 �C,
this generator produced an output voltage of 8.0 mV, output
power of 1.1 mW and output power density of 2.3 mW cm� 2

(Fig. 6c). Furthermore, the predicted power output density on the
fitted function with the data points is as high as 26.3 mW cm� 2

under the temperature difference of 50 �C, which competes
on par with the conventional module5. These results clearly
demonstrate the practicability of the painting technology in terms
of the TE performance as well as the processability.

Discussion
In summary, this study demonstrates that the painted TE
devices exhibiting high output power of 4.0 mW cm� 2 can be
easily prepared on any-shaped surfaces by the molecule-level
sintering effect. The most pronounced effect of the molecular
sintering aid was shown to enhance the sinterability of TE
particles, leading to the particularly high ZT values of 0.67 and
1.21 for n- and p-type painted materials, respectively. It was
shown that the versatility of the TE paints roots in the unlimited
degrees of freedom for dimension and shape engineering in 2D
and 3D structures without killing TE properties, shedding a light
on the TE device community. Furthermore, this approach has a
potential for cost-effective manufacturing of well-designed TE
devices depending on heat sources. We strongly believe that the
currently developed technology can be easily transferred to other
communities such as 3D printed electronics and painted
electronic artworks.

Methods
Materials. Pure elemental granules of Bi, Sb, Te and Se (499.999%) were
purchased from 5N Plus. Ethanethiol (497%), ethylenediamine (En, 499.5%),
acetonitrile (499.8%), glycerol (499.5%), ethylene glycol (499.8%), dimethyl
sulfoxide (499.9%) and dimethylformamide (499.8%) were purchased from
Aldrich Chemical Co. All elements and chemicals were used without further
purification.

Synthesis of Bi2Te3-based inorganic TE paints. The synthesis of the Sb2Te3

ChaM solution was performed in a N2-filled glove box. To synthesize the Sb2Te3

ChaM solution, elemental Sb (0.32 g) and Te (0.68 g) powder with stoichiometric
ratio of Sb2Te4 were dissolved in mixed co-solvent including 2 ml of ethanethiol
(97%) and 8 ml of ethylenediamine (499.5%). After stirring for over 6 h, all
elemental Sb and Te were fully dissolved in solvent and the resulting solution
showed a dark purple colour. Elemental analysis of the Sb2Te3 ChaM using
inductively coupled plasma optical emission spectrometry (ICP-OES) revealed an
overall ratio of Sb to Te of 2/1, which is identical to the initial elemental ratio. And
40 ml of acetonitrile was added into the Sb2Te3 ChaM solution, followed by the
centrifuge at 7,500 r.p.m. for 10 min. After the centrifuge, the precipitated Sb2Te3

ChaM was added into mixed solvents including 3.6 g of glycerol and 0.4 g of
ethylene glycol and it was sonicated for 10 min, which produced a dark-brown
coloured solution. Bi2Te3-based TE powders were prepared by a mechanical
alloying process. Typically, finely ground Bi, Sb, Te and Se powder was weighed
according to the stoichiometric ratios of BTS for a n-type paint and BST for a
p-type paint under N2 atmosphere, and they were ball-milled with stainless steel
balls including two balls with 0.5 inch in diameter and four balls with 0.25-inch in
diameter (SPEX, 8000M Mixer/Mill) for 4 h. The formation of BTS and BST alloys
were confirmed by the XRD analysis (Supplementary Fig. 24). We carried out a
sieving process at 45mm to remove some large-sized BTS or BST particles. 4.0 g of

TE powders were added into the Sb2Te3 ChaM solution, followed by the sonication
for 1 h, which produced black-coloured viscous TE paints. The viscosity and
evaporation temperatures were adjusted by controllably varying the amount of
glycerol and ethylene glycol.

TE painting process. All procedures were performed in a N2-filled glove box. The
synthesized n- and p-type TE paints were painted on glass, aluminium, polyimide
and alumina substrates with a flat painting brush with the width of 5 mm. Painted
layers on a substrates were sequentially dried on a hot-plates at 90 �C for 30 min,
120 �C for 30 min and 160 �C for 30 min and then they were annealed at desired
temperatures (350–450 �C) for 10–30 min. To obtain thick painted layers with
several hundreds of micrometre in thickness, painting and drying processes were
repeated by several times, followed by annealing.

Fabrication of painted TE devices. In-plane type TE devices were fabricated by
painting five couples of n- and p-type TE paints with the size of 5 mm� 10 mm on
various substrates such as flat glass and polyimide, and curved hemi-cylindrical
convex and concave glasses, and alumina hemisphere. Glass and alumina substrates
were hydrophilized by a ultraviolet plasma treatment for 1 h before painting. Silver
paste was painted electrically in series and thermally in parallel to interconnect
n- and p-type TE legs (Fig. 4a). All of the procedures were performed in nitrogen-
filled glove box.

Fabrication of through-plane TE devices. Through-plane type TE devices were
fabricated by using the moulded disks prepared from the TE paints. The details of
the moulding are described in Supplementary Fig. 23. Two pairs of n-type and
p-type disks with the diameter of 4.0 mm and thickness of 1.0 mm were soldered
using a Bi–Sn solder to the pre-patterned Cu foil electrodes on an alumina
hemisphere (Fig. 6a). The top sides of TE disks were electrically interconnected
with Cu foil electrodes by soldering (Fig. 6a), which produced the through-plane
TE generator on a hemisphere.

TE properties measurement. TE properties measurement were performed on the
samples prepared by repeated painting and drying of n- and p-type paints on
aluminium plates, and subsequent annealing at 450 �C. The final samples were
B500 mm in thickness. Furthermore, we characterized the TE properties of more
than three sets of n-type and p-type painted samples and added s.e. to each data
points. The uncertainties of the electrical conductivity, Seebeck coefficients and
thermal conductivity were 1.5, 1.0 and 5.9%, respectively, which demonstrates the
reproducibility of the painting technology. To determine electrical conductivities at
temperatures ranging from 27 to 127 �C, the sheet resistance of the samples was
measured by a four-point Van der Pauw method (Keithley 2,400 multimeter
controlled Lab trace 2.0 software, Keithley Instrument, Inc.) on a hot chuck plate.
The four corners of the samples were contacted by sharp tips controlled by
manipulators. The electrical conductivities were estimated with the thickness of the
samples. To obtain the temperature-dependent Seebeck coefficients, the open
circuit voltage and the temperature gradient were measured by two T-type
thermocouples using a Keithley 2,400 source-meter and a Keithley 2,000
multimeter. The measuring set-up lied on a hot-plate and the measuring
temperatures were controlled by heating a hot-plate. To apply the temperature
differences, applied powers of commercial TE modules contacted with the samples
was adjusted. Typically, six data points were obtained with the applied temperature
differences and resulting voltages at two points contacted by thermocouples across
the sample ranging from ±1 �C to 5 �C. The Seebeck coefficient was calculated
based on the slope of the voltage versus the temperature-difference curves. This
set-up was confirmed by measuring the Seebeck coefficient of n-type Bi2Te3 and
p-type BiSbTe ingot samples, and the accuracy was within ±3%. We extracted the
thermal conductivity by using the equation k¼rCpD, where r is the density, CP is
the specific heat capacity and D is the thermal diffusivity. The densities were
measured by commercial equipment (BELPycno, microtracBEL). We calculated the
specific heat capacities by assuming the law of mixture and by using the value of
Bi0.4Sb1.6Te4, Sb2Te3, Bi2Te3 and Bi2Se3 (refs 56–58). Thermal diffusivities were
measured in a temperature range from 27 to 127 �C by using laser flash analysis
(LFA 457, Netzsch). Carrier concentrations and mobilities were measured by a Hall
measurement system (BIO-PAD, HL5500PC) at room temperature.

Simulation study on the power output. We developed a three-dimensional TE
FEM using a commercial software package (COMSOL) for TE generators.
The model calculates the temperature distribution and generated power of the TE
generators integrated with a heated hemispherical alumina substrate. Similar to
the curved structures exposed to sun light, we assumed that the substrate is subject
to uniform heat flux, 1.5 kW m� 2, together with convective heat transfer
(Supplementary Fig. 19). To simulate natural convection of air, the convective heat
transfer coefficient (h) was assumed as 10 W m� 2 K� 1 against an ambient air at
25 �C. The temperature across the substrate bottom surface was kept at 25 �C.
The alumina substrate has a thickness of 2 mm, radius of 38 mm and thermal
conductivity of 30 W m� 1 �K� 1. Supplementary Fig. 19b,c show the calculated
temperature distribution along an arc A–B where the temperature gradually
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decreases from 45 �C to 25 �C. The calculated temperature distribution in
Supplementary Fig. 19c was an input to the FEM for the projected TE generator as
shown in Supplementary Fig. 19a. To simplify the FEM, the painted TE generator
fabricated on the hemispherical substrate was projected on a flat plane. The TE
generator consists of one pair of p- and n- types of TE layers and conductive paste
layers where the thickness was assumed as 50 mm. Each triangular TE layer has a
width of 20 mm and a height of 60 mm such that the substrate has sufficient area
for 5.5 couples of TE layers. The conductive paste was assumed to have the thermal
conductivity of 9 W m� 1 �K� 1 and the electrical conductivity of 103 S cm� 1.
On the basis of the geometry and the material properties, the electrical resistance
was estimated as 3.5O per a pair of the TE layers.

Commonly, a TE module includes p- and n- types of Bi–Te alloys that are
sandwiched by flat alumina substrates. On the basis of the survey of the material
properties and the geometry for commercial TE modules, we defined a standard TE
module with a substrate area of 40 mm� 40 mm and B100 pairs of Bi–Te materials.
The considered module has the thermal conductance of 0.65 W K� 1, the electrical
resistance of 2.3O and the Seebeck coefficient of 52.8 mV K� 1. For the simple
modelling, the FEM for the conventional module includes only one leg of TE
material, which has identical physical properties to the properties described above.

Materials characterization. X-ray photoelectron spectroscopy. The spectrum of the
Sb2Te3 ChaM prepared by vacuum drying at room temperature for a day was
obtained using a ThermoFisher K-alpha with a Mg Ka X-ray monochromatic
source.

X-ray diffraction. XRD patterns were collected by using X’pert Pro, PANalytical
with a Cu Ka C-ray source, which has a characteristic wavelength of 1.5418,
operating at 40 KV and 30 mA equipped with an X’Celerator detector.

Differential scanning calorimetry and thermogravimetric analysis. Differential
scanning calorimetry and TGA was simultaneously performed by using Q200
(TA instrument) with a heating rate of 10 �C per min� 1 under nitrogen flow rate
of 100 ml min� 1.

Ultraviolet–visible absorption spectroscopy. The absorption spectra were
collected using a Cary 5000 (Agilent) spectrophotometer.

Scanning electronic microscopy. The microstructure was characterized by using a
field effect SEM (Nova-NanoSEM230, FEI and S-4800 Hitach high-Technologies)
operated at 10 KV.

Elemental mapping. The elemental maps of vacuum dried samples
were characterized with energy-dispersive X-ray spectroscopy by using a Nova-
NanoSEM230.

Brunauer–Emmett–Teller analysis. Nitrogen adsorption-desorption isotherms of
the painted samples were characterized using a physisorption analyzer (ASAP2420,
Micromeritics Instruments) The porosities of micro-pores in the painted materials
were calculated with the micro-pore volumes obtained by the Brunauer–Emmett–
Teller measurement, which were 0.00261 cm3 g� 1 for the n-type sample and
0.00319 cm3 g� 1 for the p-type sample. Also, the average pore sizes were 5.85 nm for
the n-type and 5.70 nm for the p-type samples. According to these data and the
densities of the samples, the estimated portions of micro-pores in the entire porosity
were 2.1% for the n-type sample and 2.5% for the p-type sample, respectively.

Measurement of TE power generation. Performance of TE power generator was
investigated by measuring the I–V curve and the output power density under
temperature differences across the devices was measured using a home-built set-up
(Supplementary Fig. 16). To produce a reliable temperature difference ranging
from 5 �C to 50 �C across the TE devices, the hot-side temperature was raised using
a flat band heater, powered by a voltage converter. The cold side temperature was
maintained at 20±0.5 �C using a commercial TE Peltier cooler. The temperature
differences were measured by two T-type thermocouples that were in contact with
hot and cold sides, by using Keithley 2,000 multimeter. Two Ag electrodes in
prepared TE generators were connected to Keithley 2,400 source-meter and
the I–V characteristics were measured by using Lab trace 2.0 software (Keithley
Instrument, Inc) under desired temperature differences. We also repeatedly
measured the output power characteristics of the painted generators by more than
three times and add error bars in each data points in the revised manuscript.
The output power density (output power per unit area) was calculated with total
cross-sectional areas of TE layers.

For the measurement of the in-plane painted hemispherical generator, the
planar heat source was fully covered with a glass fabric and the apex of the
hemispherical generator was thermally connected by thermal pads to minimize the
radiation and convection effects. The power output of the hemispherical generator
was comparatively measured with and without a glass fabric covering.

For the measurement of the through-plane hemispherical generator, the
hemisphere was heated by a band heater, powered by a voltage converter. For the cold
side, the top Cu electrodes were connected to a commercial TE Peltier cooler by
thermal pads. For the measurement of the internal resistance, the device was
connected to an ammeter in series and to a voltmeter in parallel. The temperature
differences were measured by two T-type thermocouples that were in contact with hot
and cold sides. The maximum power output (P) was calculated by the equation of
P ¼ V2

4R, where V is the output voltage and R is the internal resistance, respectively.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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