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Simple Summary: Fibre inclusion in animals’ diets can improve digestive health and protect the
animal against diarrhoea. However, studies have shown that fibrous feedstuffs can have a variable
effect on pig growth, health and production quality. Sugar beet pulp (SBP) is a cheap fibrous material
which contains more lysine than wheat grain and has a similar gross energy and crude protein content
compared to corn grains. Nevertheless, the effect of fibre supplementation in the diet, especially
using SBP, on pork quality has not been widely reported. This study evaluated the effect of an
SBP-supplemented diet (3%) on Large White/Norwegian Landrace piglets’ growth performance,
health parameters (blood characteristics and faeces microbial profile), carcass and meat quality. The
tested diet reduced the average daily gain but improved the carcass quality. It also affected most of
the blood parameters, the microbial profiles in pig faeces and the fatty acid and volatile compound
profiles of pork meat. Higher drip loss, protein content and redness, along with a lower cooking loss,
intramuscular fat content and lightness, were observed in the meat from pigs fed with SBP. Most
of the sensory properties, as well as the overall acceptability, were more highly rated for this meat.
The SBP-supplemented diet could be beneficial for the improvement of pigs’ gut health and pork
quality. However, further studies are needed to indicate which compounds of the SBP dietary fiber
are responsible for these desirable changes.

Abstract: Fibrous feedstuffs can have a variable effect on pig growth, health and meat quality. The
effect of sugar beet pulp (SBP) supplementation in the diet on pork quality has not been widely
reported. This study examines the effect of an SBP-supplemented (3%) diet (TG-I group) on 300 Large
White/Norwegian Landrace pigs in terms of growth performance, blood parameters, microbial
profiling of faeces, carcass parameters and meat quality, including the profiles of biogenic amines
(BAs), fatty acids (FAs) and volatile compounds (VCs). After 163 days of the experiment, TG-I
pigs had a significantly lower average daily gain and feed conversion ratio than pigs in the control
group, as well as a significantly higher percentage of carcasses in the S and KN classes and a lower
percentage in the E and U classes (p ≤ 0.05). Faeces of TG-I contained significantly more bacteria that
are considered probiotic. Significant differences (p ≤ 0.05) were found in most of the blood parameters,
FA, VC profile and emotional responses between the two groups. Higher drip loss, protein content
and redness, as well as lower cooking loss, intramuscular fat content and lightness were observed in
the meat of TG-I. Most of the sensory properties, as well as overall acceptability, were rated higher
for the meat of TG-I. Based on the results, a diet containing 3% of SBP could be beneficial for the
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improvement of pigs’ gut health and pork quality. However, further studies are needed to indicate
which compounds of the SBP dietary fiber are responsible for these desirable changes.

Keywords: pig health; faeces microbial profile; sugar beet pulp; carcass classes; pork quality; emotions

1. Introduction

Feed usually contains ingredients from different countries and production systems [1–3].
Whilst some of them may consist of simple supply chains, others may involve many
transactions between farmers and producers, and the total number of transactions related
to a single product is likely to be high [4,5]. Local food supply chains are often considered
to be sufficiently sustainable, mainly because they support mixed and organic farming
and reduce emissions and the externalities of long-distance transport [6,7]. Local food
supply chains are also valued for their ability to create rural businesses and build rural
communities by dismantling agribusiness monopolies and creating links between man
and nature [8,9].

Rising cereal flour prices are forcing pork producers to look for alternative feed mate-
rials [10,11]. Many alternative feed materials contain more fibre than the traditional feed
stock they replace; therefore, their inclusion increases the amount of dietary fibre [12,13].
Increased dietary fibre is a concern because the ability of young pigs to digest fibre is lim-
ited [14,15]. Sugar beet pulp (SBP), which is the co-product of sugar beet processing, with a
global production of up to 189 mln tons in 2021/2022, is a fibre-rich feed [16]. It should be
noted that SBP contains similar gross energy and crude protein contents compared to corn
grains [17]. Additionally, SBP contains fibre that is fermentable, has a high water-binding
capacity and can alter the physical and chemical properties of the digestive tract, thus
affecting feed intake and animal growth [18–20]. The fermentation of dietary fibre, such
as SBP, in the gut promotes the multiplication of bacterial populations such as those of
Lactobacillus and Bifidobacterium, which are generally considered to be beneficial to intestinal
health, in part by preventing colonisation by opportunistic pathogens [20,21]. A lower risk
of gastric ulcers has also been observed, as well as improved colonic mucosal integrity [22].
All of this helps to strengthen the digestive system and prevent diarrhoea [5]. Therefore, the
promotion of gastrointestinal health is expected to improve performance. Conversely, more
cases of diarrhoea and colitis have sometimes been reported in weaned piglets, such as in
the cases of soluble fibre supplements that increase gastrointestinal viscosity [23]. Some
authors have observed that the dilution of energy in fibrous diets, faster intestinal motility
and decreased ingestion due to early satiety have impaired productivity [24]. Addition-
ally, diets rich in dietary fibre can have a positive effect on pig intestinal health and meat
quality [25,26]. As with intestinal health, the effects on workability may vary depending on
the origin and type of fibre [27]. Dietary fibre components are not digested by endogenous
digestive enzymes and are therefore the main substrates for bacterial fermentation in the
distal intestine [28]. The main fermentation products are short-chain organic acids, mainly
lactate, acetate, propionate and butyrate [29]. Organic acids have been suggested to stim-
ulate gastrointestinal growth by promoting epithelial cell proliferation [30]. In an acidic
environment, organic acids can inhibit the growth of intestinal bacterial pathogens such as
Salmonella, E. coli and Clostridium species [31]. Changes in the intestinal microflora can affect
the technological composition of pork meat, and its profile of volatile compounds (VC) and
organoleptic properties can change, which can lead to the acceptability of the organoleptic
properties of meat [32,33].

Although a considerable number of studies have analysed the influence of a fibrous
diet on animal health and performance, the reported findings are contradictory due to
different experimental conditions, differences in animal age and variations in the content
and type of fibre source in the diet. Moreover, the effect of a fibrous diet, especially with
SBP, on pork quality has not been comprehensively examined. Thus, this study evaluated
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the effect of an SBP-supplemented diet on pig growth performance, health parameters
(blood characteristics and faeces microbial profile), carcass and meat quality, including the
profiles of biogenic amines (BA), fatty acids (FA) and VC.

2. Materials and Methods
2.1. Sugar Beet Pulp Used for Pig Feeding

Sugar beet pulp (dried) was obtained from the company Imlitex Agro (Kaunas, Lithuania)
and had the following composition: moisture—12.00%, crude protein—10.41%, crude fat—0.85%,
crude fibre—17.82%, calcium—1.34%, phosphorus—0.12%.

2.2. Animals and Housing

The study was performed at a pig farm in the Klaipeda District (Kantvainu Village,
Lithuania) and at the Institute of Animal Rearing Technologies, Lithuanian University of
Health Sciences (Kaunas, Lithuania). An experiment was conducted using 300 81-day-old
Large White/Norwegian Landrace (LW/NL) pigs (150 pigs in each group, 14–15 pigs per
pen and 42–44 pigs per cage). The trial started with pigs having an initial body weight of
29.1–32.4 kg in both (control and treatment) groups. During the first fattening period, the
pigs were kept in a pen consisting of 90% concrete grades and 10% heated (33 ◦C) concrete
floors. The barn was heated only in the first weeks after the pigs had been moved in. In
the second fattening period, the pigs were kept in a cage with a concrete grade without
heating. The barn was preheated up to a temperature of 19 ◦C by diesel heaters before the
animals were moved in. During the fattening period, both barns were optimally ventilated.
Drinking water was available ad libitum throughout the trial by nipple drinkers. Antibiotic
treatment was not applied.

2.3. Experimental Design and Diets

The pigs (81 days old) were distributed into two groups at the beginning of the
experiment, namely (i) a basal diet groups (control group—CG) and (ii) basal diet with dried
SBP group (treated group—TG-I). The basal feed was formulated according to the Nutrient
Requirements of Swine [17]. The feed composition and nutritional values are shown in
Table 1. Dietary contents were analysed according to the Association of Official Agricultural
Chemists (AOAC) recommendations [34]. Other nutritional value parameters, including
ME, were calculated by using a feed optimization program and tables of composition and
nutritional value of feed materials.

Table 1. Diet composition of control (CG) and treated (TG-I) groups.

Ingredients (%)
CG TG-I CG TG-I

First Fattening Period
(81–116 Days)

Second Fattening Period
(116–163 Days)

Barley 69.90 66.90 63.00 60.00
Barley malt sprouts - - 6.50 6.50

Grain mix (barley-buckwheat 60:40) - - 6.79 6.79
Oats 3.00 3.00 5.00 5.00

Rape meal - - 6.00 6.00
Wheat bran 5.00 5.00 6.00 6.00

Hulled soybean meal GMO 7.20 7.20 2.87 2.87
Dried sugar beet pulp - 3.00 - 3.00

Molasses 0.57 0.57 - -
Rapeseed oil unrefined 1.91 1.91 - -

Peas 3.00 3.00 - -
Rape seed expeller 5.00 5.00 - -

NaCl 0.35 0.35 0.35 0.35
Calcium carbonate 1.38 1.38 1.18 1.18

Monocalcium phosphate 0.39 0.39 0.32 0.32
DL-Methionine 0.19 0.19 0.04 0.04
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Table 1. Cont.

Ingredients (%)
CG TG-I CG TG-I

First Fattening Period
(81–116 Days)

Second Fattening Period
(116–163 Days)

Biolys 0.92 0.92 0.65 0.65
Adici FP liquid 0.15 0.15 0.25 0.25

Choline chloride 75% liquid 0.04 0.04 0.02 0.02
Vitamins and trace elements (premix) 1.00 ii 1.00 ii 1.00 iii 1.00 iii

Nutritional value
ME swine (MJ/kg) 12.83 12.83 11.97 11.97
Crude protein (%) 17.00 17.00 15.00 15.00

Crude fat (%) 5.01 5.01 2.93 2.93
Crude fibre (%) 4.85 4.85 5.79 5.79

Lysine (%) 1.13 1.13 0.89 0.89
Methionine (%) 0.41 0.41 0.26 0.26
Threonine (%) 0.73 0.73 0.58 0.58

Tryptophan (%) 0.20 0.20 0.17 0.17
Methionine + Cystine (%) 0.68 0.68 0.54 0.54

Ca (%) 0.70 0.70 0.67 0.67
Total P (%) 0.51 0.51 0.53 0.53

Available P (%) 0.25 0.25 0.25 0.25
Na (%) 0.17 0.17 0.18 0.18

NDF (%) 14.82 14.95 15.75 15.95
ADF (%) 4.88 4.98 5.02 5.12

(ii) basal diet with dried sugar beet pulp (TG-I); ME—metabolisable energy; (iii) Composition of premix per 1 kg of
feed: Vitamin A—8000 IU; vitamin D3—1500 IU; vitamin E—100 mg/kg; vitamin K3—3.25 mg; thiamine—2.06 mg;
riboflavin—4.00 mg; choline chloride—300 mg; pyridoxine—3.07 mg; vitamin B12—0.03 mg; niacin—20.0 mg;
pantothenic acid—25.00 mg; folic acid—0.95 mg; biotin—0.11 mg; Fe—120 mg; Cu—20 mg; Zn—102 mg; Mn—40 mg;
I—1.46 mg; Co—0.52 mg; Se—0.40 mg. NSP Enzyme, Rovabio Excel AP, 50 g/t; endo-1,4-β-xylanase 1100 VU /kg of
feed; endo-1,3 (4)-glucanase, 1500 VU/kg of feed and Phytase Axtra PHY 10,000 TPT 2, 130 g/t, 1300 FTU/kg feed; (iv)
Composition of premix per 1 kg of feed: Vitamin A—7000 IU; vitamin D3—2000 IU; vitamin E—70 mg/kg; vitamin
K3—1.19 mg; thiamine—1.18 mg; riboflavin—2.32 mg; choline chloride—150 mg; pyridoxine—2.28 mg; vitamin
B12—0.03 mg; niacin—14.03 mg; pantothenic acid—11.50 mg; folic acid—0.57 mg; biotin—0.13 mg; Fe—100 mg;
Cu—15 mg; Zn—101 mg; Mn—46 mg; I—0.80 mg; Co—0.57 mg; Se—0.40 mg. NSP Enzyme, Rovabio Excel AP,
50 g/t; endo-1,4-β-xylanase 1 100 VU /kg of feed; endo-1,3 (4)-glucanase, 1500 VU/kg of feed and Phytase Axtra
PHY 10,000 TPT 2, 130 g/t, 1300 FTU/kg feed. Biolys—L-Lysin sulphate, L-Lysine 55.6%.

All animal groups were fed with wet feed (water and feed ratio 3/1); the equipment
used for feeding was WEDA (Dammann & Westerkamp GmbH, Goldenstedt, Germany).

The pigs’ growth performance was evaluated by testing all pigs from both groups. For
the evaluation of blood parameters, 15 pigs from each group were randomly selected. For
the microbial profiling of faeces, samples from 15 randomly selected pigs were taken before
the distribution of pigs into two groups (day 81), and 15 samples from each group were
taken after the feeding experiment on day 163.

2.4. Pigs’ Growth Performance

Group body weight (BW) gain was recorded on days 81, 116, and 163 of age using an
electronic weighing system (model type: IT1000, SysTec GmbH, Bergheim, Germany). To
weigh the whole group, the complete pig pens were driven out into the central corridor,
where the pigs were immediately weighted.

The feed conversion ratio (FCR) was calculated from feed intake (87% of dry matter)
and BW gain, recorded on the same days, using a WEDA (Dammann & Westerkamp GmbH,
Germany) automated feeding system consisting of a mixer with weight sensors under the
mixer and pumps with flow metres. The feed components were mixed in a mixer and fed
to the pigs according to the feeding curve. The flowmeter at the time of feeding calculated
the amount of feed added to each trough.
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2.5. Microbial Profiling Analysis

Faecal samples from each group were pooled to obtain separate representative samples
of pigs before the experimental feeding and for CG and TG-I groups after the experiment
and kept in DNA/RNA Shield (1:10 dilution; R1100-250, Zymo Research, Irvine, CA, USA)
at −70 ◦C before DNA extraction. The DNA was extracted with a faecal DNA MiniPrep
kit (D6010, Zymo Research, USA). Library preparation, metagenomic sequencing and
taxonomic characterisation of reads were performed as described previously [35]. The
ZymoBIOMICS Microbial Community Standard (D6300, Zymo Research, Murphy Ave,
Irvine, CA, USA) was used as a microbiome profiling quality control. The results of
the taxonomic classification were visualised using the interactive online platform https:
//genome-explorer.com (accessed on 24 March 2022). The number of bacterial reads at
genus level was compared between CG and TG-1 groups at the end of the experiment.

2.6. Blood Analysis

Pigs, with a fixed nose twister, were bled from the jugular vein (at days 81 and 163)
into vacuum blood tubes (BD Vacutainer, Plymouth, UK) before the morning feeding.
Tubes with clot activator were used for biochemical examination. The parameters included
aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, high-density
lipoprotein cholesterol (HDL), low-density lipoprotein (LDL) cholesterol, triglycerides (TG),
total protein (TP), albumin (ALB), triiodothyronine (T3), thyroxine (T4), immunoglobulins
IgA, IgM, and IgG, glucose (GLU), creatinine (CREA) were analysed by the Jaffe method,
alkaline phosphatase (AP), thyroid-stimulating hormone (TSH), total bilirubin (TBI) and
urea (UREA). Blood parameters were analysed with an automatic biochemistry analyser in
the accredited laboratory “Anteja” (Klaipeda, Lithuania).

2.7. Slaughter and Measurement of Carcass Parameters

The animals were slaughtered at the Ltd. “Utenos mesa” slaughterhouse (Utena,
Lithuania) according to Council Regulation (EC) No. 1099/2009 [35]. Pig carcasses were
graded according to EU Regulation No. 1308/2013 [36] and Commission Implementing
Decision (EU) 2020/871 [37]. Carcasses were divided into six classes (S, E, U, R, O or P), ac-
cording to their estimated lean meat content (S > 60%, E = 55–60%, U = 50–55%, R = 45–50%,
O = 40–45% and p < 40%) at the same slaughterhouse.

2.8. Meat Quality Analysis
2.8.1. Evaluation of the Main Meat Quality Parameters

The raw Longissimus dorsi muscle (from the 5th to 8th thoracic vertebrae part) from
pigs was used for the analysis of meat quality parameters, including BA, FA and VC. Dry
matter was measured by Scaltec SMO—01, drying samples at 103 ± 2 ◦C. Meat pH was
evaluated by a pH-metre “Inolab 3”, using a contact electrode [38]. Colour coordinates
of the meat were detected by a Minolta Chroma Meter (CR-400, Minolta Camera, Osaka,
Japan), measuring L* values of lightness, a* values for redness and b* values for yellowness.
Water holding capacity (WHC) was analysed using the filter paper press method. For
this, the sample (2 g) was placed on a filter paper (Whatman filter paper 41/ashless),
compressed between two plexiglass sheets, and received a pressure exerted by a weight of
1 kg for 10 min. The drip loss (DL) was measured as the weight loss during suspension of a
standardised (40–50 g and approximately 30 × 60 × 25 mm) muscle sample (in an airtight
container over 24 h at 4 ◦C). Cooking loss (CL) was calculated as the weight difference
between the samples (in a plastic bag) before and after cooking in a water bath (internal
temperature of 70 ◦C for 30 min). The intramuscular fat was determined by an automatic
system for fat extraction “Soclet SE 416 macro” (Gerhardt, Germany) [39]. The protein
content was determined by the Kjeldahl method and the ash content by organic matter
incineration at +700 ◦C [40].

https://genome-explorer.com
https://genome-explorer.com
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2.8.2. Evaluation of Biogenic Amine Content in Pork Meat

Sample preparation and determination of BA content in pork meat samples were
performed according to the method of Ben-Gigirey et al. [41], with some modifications [42].
The BAs were extracted with 0.4 mol/L perchloric acid, and dansyl chloride solution in
acetonitrile (10 mg/mL) was used as a derivatisation reagent. The Varian ProStar HPLC
system (Varian Corp., Palo Alto, CA, USA) was composed of two ProStar 210 pumps, a
ProStar 410 autosampler, a ProStar 325 UV/VIS detector and the Galaxy software (Agilent,
Santa Clara, CA, USA) for data processing. For the separation of BAs, a Discovery®

HS C18 column (150 × 4.6 mm, 5 µm; SupelcoTM Analytical, Bellefonte, PA, USA) was
used. The BAs were identified based on their retention times in comparison to their
corresponding standards.

2.8.3. Fatty Acid Composition Analysis

Extraction of lipids for FA analysis was performed with chloroform/methanol (2:1 v/v),
and FA methyl esters (ME) were prepared as described by Pérez-Palacios et al. [43]. The FA
composition of pork meat was determined using gas chromatograph GC-2010 Plus (Shi-
madzu Corp., Kyoto, Japan) equipped with a mass spectrometer GCMS-QP2010 (Shimadzu
Corp.). Separation was carried out on an Rxi-5 ms column (30 m length, 0.25 mm ID and
0.25 µm df (Restek, Bellefonte, PA, USA). The mass spectrometer was operated at full scan
mode, and the analyte was injected in split mode at a 1:60 split ratio. The carrier gas was
helium at a flow rate of 0.91 mL/min. The FAME concentration was determined using
a calibration curve, and results were expressed as percentages of the total FAME concen-
tration in the sample. The calibration curve was prepared using the standard Supelco 37
Component FAME Mix (Merck & Co., Inc., Kenilworth, NJ, USA).

2.8.4. Volatile Compound Profile

The VCs of pork meat samples were analysed by gas chromatography-mass spectrom-
etry (GC-MS) as described by Vadopalas et al. [44], with some modifications. A solid-phase
microextraction (SPME) device with Stableflex (TM) fibre-coated with a 50-µm DVB-PDMS-
Carboxen™ layer (Supelco, Bellefonte, PA, USA) was used for sample preparation. For
headspace extraction, 2 g of sample was homogenised with 4 mL of sodium chloride
solution (30% w/v) in a 20 mL extraction vial sealed with polytetrafluoroethylene septa
and thermostated at 60 ◦C for 30 min, exposing the fibre in the headspace. The desorption
time was 2 min. Prepared samples were analysed with a GCMS-QP2010 (Shimadzu, Japan)
GC-MS, using an Rxi-5 ms capillary column (30 m × 0.25 mm ID × 0.25 µm film thickness)
for analysis. The MS was operated at full scan mode (35–500 m/z), and the following condi-
tions were used for analysis: column flow rate (helium gas, 99.999% purity) 0.95 mL/min,
injector temperature 250 ◦C, ion source temperature 220 ◦C, interface temperature 280 ◦C.
Sample injection was carried out for 2 min to ensure full desorption of VC from the SPME
fibre. A temperature gradient was programmed from start at 40 ◦C (3 min hold) to 220 ◦C
(7 ◦C/min) up to 260 ◦C (10 ◦C/min) (6 min hold). The VCs were identified according to
the mass spectrum libraries (NIST11, NIST11S, FFNSC2).

2.8.5. Evaluation of the Pork Meat Sensory Properties, Overall Acceptability, and Emotions
Induced in the Panellists

This evaluation was performed at the Lithuanian University of Health Sciences Sensory
laboratory, which is equipped with sensory booths. Meat samples were evaluated by
30 panellists [45]. Before the sensory analysis, the meat was cut to 2 cm squares and cooked
at 100 ◦C in water for 10 min (the salt was not added). The final temperature inside the meat
at the end of cooking was 82 ◦C. Panelists were randomly presented with coded samples
under normalised artificial light in test rooms [46] and were instructed to taste one at a
time, from left to right. The panelists were provided water between samples. The following
sensory properties were evaluated: odour—intensiveness of the overall odour and the
extraneous odour, colour—intensiveness of the colour, taste—juiciness, fattiness, softness,
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intensiveness of the residual taste and overall acceptability of the taste [47]. The intensity
of each property was scored on a 5-point linear scale ranging from 0 (“no intensity”) to 5
(“very high intensity”). The overall acceptability was evaluated using a 5-point Likert scale,
ranging from 1 (extremely dislike) to 5 (extremely like) [46].

The panellists tasted the presented samples one by one in front of a webcam (Microsoft
Corporation, Redmond, WA, USA), and the tasting procedure was recorded [48]. After
tasting each sample, the panellist raised one hand and visualised the taste experience with
a facial expression. The time for that was not limited. Between samples, panellists were
asked to rinse their mouth with warm (40 ± 2 ◦C) water. To evaluate the pork meat-induced
facial expressions (neutral, happy, surprised, sad, scared, angry, contempt and disgusted),
the recorded videos were analysed with the FaceReader software (Noldus Information
Technology, Wageningen, the Netherlands). Only part of the video, when the panellists
raised their hands, was used for the analysis of pork-meat-elicited emotions. The intensity
of each emotion was expressed at a scale from 0 (no facial expression) to 1 (the highest
intensity of facial expression). ‘Happy’ is considered as a positive emotion, whereas ‘sad’,
‘angry’, ‘scared’, ‘disgusted’ and ‘contempt’ are considered negative emotions. ‘Surprised’
can be either positive or negative. Valence indicated whether the person’s emotional status
is positive or negative, and its score ranged from −1 to 1.

2.9. Statistical Analysis

The multivariate general linear model (GLM) was used for data analysis (SPSS for
Windows, Ver.15.0, SPSS, Chicago, IL, USA). The p-values of factor interaction (experiment
day × treatment type) were determined by tests of between-subjects effects in multivariate
GLM. The mean values were compared using Duncan’s multiple range post hoc test with
a significance level at p ≤ 0.05. Differences in bacterial genera between the groups were
assessed using the Z-test calculator for two population proportions (Social Science Statistics,
2019). Statistical comparisons were considered significant when p ≤ 0.05.

3. Results and Discussion
3.1. Pigs’ Growth Performance

Data of the body weight (BW), average daily gain (ADG), feed intake (FI) and feed
conversion ratio (FCR) of control (CG) and treated (TG-I) groups are presented in Table 2
The ADG of the 81–116 days of age period pigs was similar in both groups. However,
during the experimental period (81–163 days of age), the ADG was lower in TG-I than that
in CG. A similar trend was observed for BW, FI and FCR.

Table 2. Pigs’ growth performance in control (CG) and treated (TG-I) groups.

Growth Parameters Period CG TG-I

Body weight (kg)
81 24.85 ± 0.15 a 25.20 ± 0.40 a

116 43.24 ± 0.52 a 43.70 ± 0.34 a

163 95.94 ± 0.85 a 94.30 ± 0.93 a

ADG (kg)
81–116 0.52 a 0.53 a

117–163 1.14 a 1.10 a

81–163 0.88 a 0.85 a

FI (kg)
81–116 1.28 a 1.33 a

117–163 3.58 a 3.05 a

81–163 2.46 a 2.24 a

Feed Conversion Ratio (FCR, 1 kg of feed per
1 kg of body weight)

81–116 2.45 a 2.50 a

117–163 3.14 b 2.77 a

81–163 2.80 b 2.64 a

Basal diet (CG) and basal diet with dried sugar beet pulp (TG-I). Data are presented as mean ± standard error
(n = 150/group). a,b Different letters indicate significant differences between treatments (p ≤ 0.05).
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The feeds enriched with fibre ingredients have ambiguous effects on the growth
performance of pigs, whereas high-fibre diets significantly reduce the ADG of weaned
pigs [49]. The reason for the diminished growth performance of pigs can be related with the
decrease in nutrient digestibility and energy deposition caused by dietary fibre [50]. Studies
on ADG and FCR changes after SBP inclusion in pig diets have obtained inconsistent results.
It was reported that the inclusion of SBP in pigs’ diet led to lower ADG [18,51]. However,
Bruininx et al. [52] reported that including 10% of SBP into the diet increased the FCR
during the growing period. Contrary, Millet et al. [53] found no significant differences in
feed consumption, ADG or FCR when up to 20% SBP was introduced into the feed for
pigs. It is likely that the different responses to diets containing various amounts of fibre
are related to the age of the animals and the fibre amount and source [54]. In addition
to SBP inclusion, other feed compounds and their interactions can be important factors
influencing microbial profile, nutrients digestion, as well as BW, ADG and FCR results.

3.2. Microbial Profile of Pigs’ Faeces

Figure 1 shows the bacterial genera in the faeces of pigs before distribution into
separate feeding groups. The most prevalent genera before the experimental feeding
were Prevotella (40.3%) and Clostridium (8.2%). The remaining genera were Faecalibacterium
(2.9%), Barnesiella (2.4%) and other bacterial genera that compose the core microbiota
of pigs [55]. At the end of the experiment, the microbial profiles in pig faeces differed
significantly (Figure 2). The most prevalent genera in the control group remained Prevotella
(18.9%) and Clostridium (11.6%), followed by Barnesiella (7.4%), Intestinimonas (4.1%) and
Oscillospira (3.9%), with a prevalence above 3% of the total bacteria. In the TG-I group, the
most prevalent genera were Barnesiella (22.7%), Bifidobacterium (14.6%), Collinsella (9.8%),
Prevotella (6.1%) and Olsenella (5.1%). The most obvious differences between the groups
were the high (almost 150 times) increase in Bifidobacterium in the TG-I group and the
less obvious decrease in Clostridium (4 times). Bifidobacterium contains various probiotic
bacteria that produce lactic acid and can use a range of dietary carbohydrates that escape
degradation in the upper parts of the intestine, many of which are plant-derived oligo- and
polysaccharides [56]. It may be assumed that SBP had a strong influence on the proliferation
of Bifidobacterium species that can use this carbohydrate-rich by-product. There is not much
information about the significance of Clostridium for pigs, but it depends on the Clostridium
species. Although some of the species can cause different diseases in pigs, a high prevalence
of Clostridium was found in healthy pigs in this study; moreover, this genus is known as a
constituent of normal microbiota of pigs and depends on pig age, breed and feed [57]. It is
difficult to predict the importance of Clostridium and Prevotella decreases in the pig gut due
to the significant increase in Bifidobacterium, and further studies are needed to evaluate the
health status of pigs after such changes in microbial profiles.

Although the abundance of Bifidobacterium in pigs’ guts may depend on the feed [58],
overall Bifidobacterium, contains species beneficial for pigs [59]. The other probiotic genera,
Lactobacillus, was not highly abundant in both groups; the percental amount differed
significantly between groups (p ≤ 0.05), with 13 times higher values (1.3% vs. 0.1%) in
the TG-I group compared to the CG. The abundances of Collinsella and Olsenella were
also higher in the TG-I group. Collinsella are short-chain FA producers feeding on animal-
and plant-derived carbohydrates such as lactose, fructose, and starch, which are major
components of the pigs’ diet [60,61]. The Olsenella is an effective carbohydrate fermenter
and a producer of acetic and lactic acids; for these reasons, it is considered to be potentially
beneficial [62]. The Faecalibacterium is known as probiotic bacterial genus [61]; it had a
higher prevalence in the TG-I group, in comparison with control (2.3% vs. 1.3%; p ≤ 0.05).
Finally, the faeces of pigs in the TG-I group contained significantly more bacteria that are
considered as probiotic microbiota.
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3.3. Blood Parameters

The blood parameters of pigs in CG and TG-I groups are given in Table 3. There was a
significant effect of the SBP inclusion in pigs’ diet and animal age, as well as an interaction
of these factors, on most blood parameters (p ≤ 0.05). Immunoglobulins IgM and IgG, ALB,
and CREA concentrations were significantly lower (p ≤ 0.05) in the blood of 81- and 163-day-
old pigs from TG-I group, in comparison with CG. The TP concentration was significantly
(p ≤ 0.05) higher in the blood of 81-day-old pigs from TG-I but significantly lower in
163-day-old pigs in comparison with CG. The UREA concentration was significantly higher
(p ≤ 0.05) in 163-day-old pigs from both groups compared to younger ones. The ALT
showed significantly higher levels (p ≤ 0.05) in the blood of 81-day-old pigs from TG-I
group, in comparison with CG. However, the ALT values of the blood from 163-day-old
pigs from both groups were similar. Further, after 163 days, AST was significantly higher
(p ≤ 0.05) in TG-I, in comparison with CG pigs’ blood. The values of AST and ALP were
significantly reduced in older pigs, in comparison with younger ones, in both groups.
The levels of ALP, CHOL, LDL, TGL, GLU, and T3 were significantly lower (p ≤ 0.05) in
163-day-old pigs from TG-I, in comparison with CG. The T4 concentration was significantly
(p ≤ 0.05) higher in the blood of 163-day-old pigs of both groups, in comparison with
younger ones. There were no significant differences between the groups in lgA, TSH, TBI,
and HDL concentrations of 81- and 163-day-old pigs’ blood.

Table 3. Blood parameters of pigs in control (CG) and treated (TG-I) groups.

Blood Parameters Day CG TG-I p Day × Treatment
Interaction

IgA
81 0.330 ± 0.011 Aa 0.330 ± 0.014 Aa

1
163 0.330 ± 0.013 Aa 0.330 ± 0.012 Aa

IgM
81 0.816 ± 0.027 Ab 0.544 ± 0.017 Aa

<0.001
163 1.066 ± 0.017 Bb 0.928 ± 0.023 Ba

IgG
81 3.492 ± 0.054 Ab 3.310 ± 0.039 Aa

<0.001
163 4.134 ± 0.067 Bb 3.362 ± 0.041 Aa

TTH
81 0.014 ± 0.003 Aa 0.018 ± 0.004 Aa

<0.001
163 0.014 ± 0.002 Aa 0.012 ± 0.001 Aa

ALB
81 36.60 ± 0.57 Ab 34.16 ± 0.23 Aa

0.412
163 42.00 ± 0.36 Bb 38.60 ± 0.32 Ba

TP
81 48.00 ± 0.41 Aa 52.40 ± 0.48 Ab

<0.001
163 62.00 ± 0.56 Bb 57.60 ± 0.51 Ba

UREA
81 2.50 ± 0.21 Aa 2.26 ± 0.18 Aa

0.031
163 3.58 ± 0.37 Ba 3.62± 0.28 Ba

CREA
81 78.10 ± 1.45 Ab 64.38 ± 2.14 Aa

<0.001
163 121.60 ± 4.27 Bb 90.50 ± 3.42 Ba

ALT
81 56.80 ± 2.36 Aa 67.00 ± 3.51 Ab

0.002
163 67.60 ± 1.62 Ba 68.60 ± 2.43 Aa

AST
81 30.60 ± 2.39 Ba 30.40 ± 2.07 Ba

0.009
163 24.20 ± 1.14 Aa 26.80 ± 1.25 Ab

ALP
81 216.80 ± 1.40 Bb 213.80 ± 1.09 Ba

0.025
163 178.40 ± 5.62 Ab 158.80 ± 3.72 Aa
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Table 3. Cont.

Blood Parameters Day CG TG-I p Day × Treatment
Interaction

TBI
81 3.00 ± 0.04 Aa 3.00 ± 0.02 Aa

1
163 3.00 ± 0.03 Aa 3.00 ± 0.01 Aa

CHOL
81 2.60 ± 0.07 Aa 2.61 ± 0.09 Ba

0.002
163 2.67 ± 0.11 Ab 2.37 ± 0.08 Aa

DTL
81 1.06 ± 0.12 Aa 1.15 ± 0.09 Aa

0.002
163 1.07 ± 0.14 Aa 1.03 ± 0.11 Aa

MTL
81 1.30 ± 0.18 Aa 1.18 ± 0.09 Aa

0.001
163 1.76 ± 0.12 Bb 1.42 ± 0.11 Ba

TGL
81 0.520 ± 0.050 Aa 0.620 ± 0.059 Ba

<0.001
163 0.720 ± 0.032 Bb 0.380 ± 0.029 Aa

GLU
81 5.36 ± 0.26 Aa 5.78 ± 0.31 Ba

<0.001
163 5.42 ± 0.42 Ab 4.28 ± 0.23 Aa

T3
81 1.43 ± 0.11 Aa 2.02 ± 0.18 Bb

<0.001
163 1.78 ± 0.09 Bb 1.10 ± 0.08 Aa

T4
81 3.00 ± 0.23 Aa 2.97 ± 0.09 Aa

0.913
163 3.54 ± 0.15 Ba 3.52 ± 0.21 Ba

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I); IgA, IgM, IgG- immunoglobulin, g/L; TTH—
thyroid-stimulating hormone; ALB—albumin, g/L; TP—total protein, g/L); UREA—urea, mmol/L; CREA—
creatinine, µmol/L; ALT—alanine aminotransferase, U/L; AST—aspartate aminotransferase, U/L; ALP—alkaline
phosphatase, U/L; TBI—total bilirubin, pmol/L; CHOL—cholesterol, mmol/L; DTL—high-density lipoprotein
cholesterol, mmol/L; MTL—low-density lipoprotein cholesterol, mmol/L; TGL—triglycerides, mmol/L; GLU—
glucose, nmol/L; T3—triiodothyronine, nmol/L; T4—thyroxine, µd/L. Data are presented as mean ± standard
error (n = 15/group). A,B Different capitals indicate significant time-related differences (p ≤ 0.05); a,b different
letters indicate significant differences between treatments (p ≤ 0.05).

Blood biochemical parameters play a particularly important role in assessing the
physiological and pathological conditions of animals [63]. Immunoglobulins (IgG, IgA, and
IgM) are essential markers of the body’s humoral immunity and are present in the serum
of all mammals [64]. Higher concentrations of IgG and IgM in serum are related with the
increased antibody formation of B-lymphocytes [64]. Moreover, a higher concentration of
IgM can be a sign of recent infections [65]. It was reported that SBP inclusion in weaning
pigs’ diet is not significant factor on the levels of IgA and IgG in animals’ blood [5].
Perhaps greater concentrations of fibrous constituents are necessary to affect immunological
outcomes [66]. Serum AST and ALT are indicators of liver function and health [66]. It was
reported that an SBP diet was not significant on blood liver transaminases (ALT and AST),
GLU and CREA of rabbits, and serum TP, TGL, and CHOL concentrations in rabbits blood
were decreased [67]. However, studies about the SBP influence on pigs’ blood parameters
are scarce. The lower concentration of TGL in TG-I pigs’ blood could be related to the
higher levels of antioxidants in feed, reducing lipid peroxidation and potentially lowering
TGL [68]. It can be concluded from the results that the inclusion of 3% of the SBP to the
pigs’ diet is safe and does not impair animal metabolism, since all the blood parameters are
in the normal range for pigs.

3.4. Carcass Parameters

Table 4 shows pig carcass grading and other carcass parameters of pigs from TG-I
and CG, such as the muscularity, carcass weight, and weight average. Pigs fed with SBP
had a significantly higher (p ≤ 0.05) percentage of carcasses in S and KN classes and a
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lower percentage (p ≤ 0.05) in E and U classes, compared to pigs in the CG. The SBP
inclusion in pigs’ diet had no effect on the muscularity percentage in all classes of TG-I.
The average carcass weight was significantly higher (p ≤ 0.05) in pigs of TG-I, compared to
those of CG, except for class U. The diet of TG-I had no effect on the live weight average
for class S, compared to the CG diet. However, the average live weight of E and KN classes
was significantly higher (p ≤ 0.05) in TG-I, compared to CG. The carcass composition is
influenced by the absorption, transformation, and deposition of energy. Dietary fibres
reduce the energy intake and absorption in pigs, whereas long-term feeding with high fibre
doses increases the intestinal weight [50]. However, the inconsistency of the effects of diets
rich in dietary fibres on carcass properties can be explained by the breed, growth stage,
and fibre level [50]. It was reported that pigs from SBP-fed gilts (p ≤ 0.05) had heavier
carcass weights compared to control pigs (without SBP) [69]. Barakat et al. [65] revealed
that the inclusion of 40% SBP with enzyme mixture in the rabbit diet significantly increased
the final body weight and carcass %. However, Dunmire et al. [70] reported a decrease
(p ≤ 0.10) in hot carcass weight and yield (p ≤ 0.05) in pigs fed SBP compared to those fed
a control diet. Laitat et al. [71] reported a drop in carcass weight of 11% for pigs fed with
23% of SBP compared to a control group. Finally, the inclusion of 3% of the SBP to the
pigs’ diet led to heavier carcass weights, and these findings can be related with the better
digestibility of the feed nutrients, caused by the increased number of desirable bacteria in
faeces microbial profile.

Table 4. Carcass parameters of piglets in control (CG) and treated (TG-I) groups.

Carcass Parameters Classes CG TG-I

Classes, %

S 59.40 ± 1.26 a 84.00 ± 1.31 b

E 37.20 ± 2.26 b 12.80 ± 0.24 a

U 2.80 ± 0.21 b 1.10 ± 0.08 a

KN 0.60 ± 0.05 a 1.70 ± 0.14 b

Muscularity, average, %

S 62.03 ± 1.38 a 63.24 ± 2.07 a

E 58.45 ± 1.14 a 58.32 ± 1.95 a

U 53.82 ± 1.96 a 53.60 ± 1.21 a

KN 77.10 ± 1.72 a 77.03 ± 1.58 a

Carcass weight average, kg

S 84.07 ± 0.65 a 85.62 ± 0.72 b

E 86.97 ± 1.26 a 90.93 ± 0.89 b

U 91.06 ± 0.63 b 90.01 ± 0.57 a

KN 104.00 ± 2.26 a 109.17 ± 1.34 b

Live weight average, kg

S 113.45 ± 2.26 a 113.53 ± 1.84 a

E 117.36 ± 1.03 a 120.00 ± 1.12 b

U 122.80 ± 1.14 b 119.00 ± 1.05 a

KN 107.12 ± 2.51 a 144.47 ± 1.38 b

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I); KN—non-evaluated carcass. Data are presented as
mean ± standard error (n = 150/group). a,b Different letters indicate significant differences between treatments
(p ≤ 0.05).

3.5. Meat Quality Parameters
3.5.1. The Main Meat Quality Parameters

Table 5 shows the values of the main meat quality parameters of pigs fed with SBP
(TG-I) and those without (CG). No significant differences in pH, dry matter, WHC, and ash
content were found between TG-I and CG meat. The SBP incorporation into the pigs’ diet
resulted in a higher DL and protein content but a lower CL and intramuscular fat content
of the meat, compared to CG meat (p ≤ 0.05). Inclusion of SBP in pigs´ diet significantly
affected values of lightness (L*), redness (a*), and yellowness (b*) coordinates of the tested
meat. The meat of TG-I had a lower L* value and higher values of a* and b*, compared to
the meat of CG.
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Table 5. Main meat quality parameters of piglets in control (CG) and treated (TG-I) groups.

Quality Parameters CG TG-I

Dry matter, % 28.05 ± 0.21 a 28.28 ± 0.23 a

pH 5.59 ± 0.03 a 5.54 ± 0.02 a

Colour coordinates
L* 62.92 ± 0.31 b 60.28 ± 0.27 a

a* 14.91 ± 0.11 a 17.58 ± 0.10 b

b* 10.10 ± 0.09 a 12.65 ± 0.08 b

Drip loss, % 3.45 ± 0.12 a 3.77 ± 0.17 b

Water holding capacity, % 57.67 ± 0.91 a 58.19 ± 0.56 a

Cooking loss, % 26.33 ± 0.25 b 25.09 ± 0.23 a

Intramuscular fat, % 5.56 ± 0.04 b 4.66 ± 0.03 a

Ash, % 1.19 ± 0.02 a 1.21 ± 0.01 a

Protein, % 21.33 ± 0.18 a 22.41 ± 0.21 b

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I). L*, lightness; a*, redness or -a*, greenness; b*,
yellowness or -b*, blueness. Data are presented as mean ± standard error (n = 10/group). a,b Different letters
indicate significant differences between treatments (p ≤ 0.05).

The inclusion of fibre-rich ingredients in pigs’ diet can affect meat quality, although
the observed findings are not consistent [25]. Studies on the influence of fibre-rich feed
on meat quality are still scarce, and the mode of action is not clear. It was reported that
the protein content of meat of the group fed with 75% SBP was significantly higher than
that of the CG [72]. Additionally, the SBP diet decreased the CL (p ≤ 0.01) compared to
the meat in the CG [73]. Joven et al. [74] and Li et al. [75] revealed that the inclusion of
fibre-rich ingredients in the diet decreased backfat thickness in gilts and finishing pigs.
However, it was reported that 50% of SBP inclusion significantly increased the fat content
in meat [72,76]. Moreover, Qin et al. [61] found that the moisture of lamb meat was not
affected by SBP supplementation. The values of the colour coordinates observed during
this study were similar to those reported by other authors [72,77,78]. The colour of pork
meat is determined by the distribution and amounts of deoxymyoglobin, oxymyoglobin,
and metmyoglobin, as well as the structure and physical state of muscle proteins and the
proportion of intramuscular fat [79]. The decrease in a* value could be related to an increase
in metmyoglobin, whereas the b* value increases with the increase in oxymyoglobin [80].
Thus, an increase in the amount of intramuscular fat in meat can lead to a decrease in
the concentrations of myoglobin and sarcoplasmic proteins, leading to changes in meat
colour [81]. The inclusion of certain nutrients (vitamins and minerals) into the diet or diets
low in digestible carbohydrates affect pork colour, whereas most studies found no effect
of those diets on meat colour [82]. Finally, the inclusion of 3% of the SBP to the pigs’ diet
resulted in a higher DL and protein content, lower L* value and higher values of a* and b*
coordinates of the meat.

3.5.2. Biogenic Amine Contents and Fatty Acid Profiles of Pork Meat

The BA contents in the meat of pigs from CG and TG-I groups are given in Table 6. No
BAs, except spermine, were found in all tested samples from both groups, indicating that
SBP inclusion in the diet had no significant impact on the spermine content in both groups.

Endogenic BAs are excreted by different tissues in humans or animals and trans-
ferred locally or via the blood system, whereas exogenic BAs are formed by the action of
decarboxylase-positive microorganisms on free amino acids [83]. Usually, the BA level
is considered an index for food product stability and quality because high contents of
these compounds negatively affect human health [84]. The presence of spermine in the
tested meat of both groups is related with the higher amount of this BA in fresh meat
(20–60 mg/kg) [85]. Similar tendencies have been observed in other studies [86,87]. Finally,
the inclusion of 3% of the SBP to the pigs’ diet was not significant on BA formation in meat.
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Table 6. Biogenic amine contents of pork meat.

Biogenic Amines, mg/kg Control Group (CG) TG-I

Tryptamine nd nd
Phenylethylamine nd nd

Putrescine nd nd
Cadaverine nd nd
Histamine nd nd
Tyramine nd nd

Spermidine nd nd
Spermine 64.98 ± 3.21 64.83 ± 2.79

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I); nd—not detected. Data are presented as mean ±
standard error (n = 10/group).

3.5.3. The Fatty Acid Profile of Pork Meat

The FA profile of pork meat from CG and TG-I groups is shown in Table 7. Saturated
FAs (SFAs) were the most abundant (42–43%) in both groups due to the high levels of
C-16:0 (23–24%) and C-18:0 (15–16%). The proportion of monounsaturated FAs (MUFA)
was 36–42%; the most important FA were C-18:1 (30–38%). Polyunsaturated FA (PUFA)
accounted for 14–22%, including mainly C-18:2 (11–18%). Significant differences in the
amounts of certain FA, SFA, MUFA, and PUFA among the tested groups were found
(p ≤ 0.05). The amounts of C14:0, C16:1, C17:0, C17:1, C18:2, C18:3 α, C20:0, C20:1, C20:2,
C20:3, and C20:4 FA were significantly higher, namely by 37.4, 20%, 2-fold, 1.9-fold, 55.7,
18.4, 28.4, 25.7, 43.8, 57.1%, and 2.1-fold, respectively, in pork meat from the TG-I group,
compared to the CG group (p ≤ 0.05). Significantly lower amounts of total SFAs and MUFA
were determined in the meat of the TG-I group, whereas in this group, the total PUFA
amount was 51.3% higher compared to CG meat.

Table 7. Fatty acid profile (percentage of the total fatty acid methyl esters concentration in pork meat).

Fatty Acids CG TG-I

C4:0 Butyric acid nd nd
C6:0 Hexanoic acid nd nd
C8:0 Octanoic acid nd nd
C10:0 Decanoic acid nd 0.025 ± 0.01
C11:0 Undecanoic acid nd nd
C12:0 Lauric acid nd 0.011 ± 0.01
C13:0 Tridecanoic acid nd nd
C14:0 Tetradecanoic acid 1.74 ± 0.02 a 2.39 ± 0.01 b

C14:1 Myristoleic acid nd nd
C15:0 Pentadecanoic acid nd 0.071 ± 0.01
C15:1 cis-10-pentadecenoic acid nd nd
C16:0 Palmitic acid 24.8 ± 0.1 b 23.2 ± 0.1 a

C16:1 Palmitoleic acid 3.35 ± 0.02 a 4.02 ± 0.03 b

C17:0 Heptadecanoic acid 0.346 ± 0.002 a 0.722 ± 0.003 b

C17:1 cis-10-heptadecanoic acid 0.289 ± 0.002 a 0.544 ± 0.003 b

C18:0 Stearic acid 15.9 ± 0.1 a 15.7 ± 0.2 a

C18:1 cis,trans all cis,trans-9-octadecenoic acid 38.0 ± 0.2 b 30.03 ± 0.1 a

C18:2 Linoleic acid 11.5 ± 0.1 a 17.9 ± 0.2 b

C18:2 trans Linolelaidic acid nd nd
C18:3 γ γ- linolenic acid nd 0.020 ± 0.01
C18:3 α α—linolenic acid 1.47 ± 0.02 a 1.74 ± 0.03 b

C20:0 eicosanoic acid 0.225 ± 0.003 a 0.289 ± 0.004 b

C20:1 cis-11-eicosenoic acid 1.13 ± 0.02 a 1.42 ± 0.01 b

C20:2 cis-11,14-eicosadienoic acid 0.543 ± 0.003 a 0.781 ± 0.004 b

C20:3 cis-8,11,14-eicosatrienoic acid 0.149 ± 0.001 a 0.234 ± 0.002 b

C21:0 Heinecosonoic acid nd nd
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Table 7. Cont.

Fatty Acids CG TG-I

C20:4 cis-5,8,11,14-eicosatetraenoic acid 0.283 ± 0.002 a 0.604 ± 0.003 b

C20:3 cis-11,14,17-eicosatrienoic acid 0.263 ± 0.004 b 0.252 ± 0.002 a

C20:5 cis-5,8,11,14,17-eicosapentanoic acid nd nd
C22:0 Docosanoic acid nd nd
C22:1 cis-13-docosenoic acid nd nd
C22:2 cis-13,16-docosadienoic acid nd nd
C23:0 Tricosanoic acid nd nd
C24:0 Tetracosanoic acid nd nd
C22:6 all cis-4,7,10,13,16,19-docosahexanoic acid nd nd
C24:1 cis-15-tetracosenoic acid nd nd

Saturated fatty acids 43.04 b 42.44 a

Monounsaturated fatty acids 42.72 b 36.01 a

Polyunsaturated fatty acids 14.24 a 21.55 b

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I); nd—not detected. Data are presented as mean ±
standard error (n = 10/group). a,b Different letters indicate significant differences between treatments (p ≤ 0.05).

Tissue FA biosynthesis and FA composition obtained from the diet influence the FA
profile of pork meat [88]. Pigs are monogastrics, and the microbiota of their digestive tract
does not metabolise FAs prior absorption [89]. Opposite to SFA and MUFA, linoleic and
α-linolenic FA cannot be synthesized in the body of pigs, and their levels in pork meat are
related to the percentages of them found in the diet [78]. In the present study, the amounts of
these FAs were higher in meat from pigs fed with SBP. It was reported that higher amounts
of linoleic (C18:2) and myristic acid (C14:0) and a lower content of oleic acid (C18:1) are in
the abdominal fat of geese fed a pressed SBP-silage-supplemented diet [90].

3.5.4. Volatile Compound Profile of Pork Meat

The VCs of pork meat from CG and TG-I groups are given in Table 8. The main VCs
in pork meat were hexanal, followed by nonanal and 2-methyl-3-octanone. The meat of
pigs fed with SBP-supplemented diet (TG-I) had significantly higher (p ≤ 0.05) contents of
2-methyl-3-octanone, 2-pentyl-furan, and (E,E)-2,4-nonadienal compared to the meat of CG.
In the meat of the CG, the contents of nonanal, benzothiazole, tridecane, tridecanal, and
2,4-bis(1,1-dimethylethyl)phenol were significantly higher (p ≤ 0.05) compared to meat
of the TG-I. Moreover, heptanal, (E)-2-heptenal, benzyl alcohol, oct-3-en-2-one, cyclooctyl
alcohol, nonan-3-one, and dec-(4Z)-enal were not found in the meat of CG, whereas these
VCs occurred in the meat of TG-I. The concentrations of other identified VCs were similar
for both groups.

Although raw meat has a weak odour, the flavour is formed due to many factors,
including the degradation of proteins to amino acids, the transformation of glycogen to
glucose, and the autoxidation of the lipid fraction [91]. Animal feed composition, especially
the FA profile, is relevant for the formation of VCs such as ketones, acids, aldehydes and
alcohols [92]. Aldehydes, such as hexanal, heptanal, nonanal, and decanal, may occur due
to lipid oxidation in pork samples [93]. Hexanal and nonanal, with fresh, fatty, grassy and
fruity notes, were the main compounds that created the overall aroma in pork meat of
the CG group [94]. The higher contents of these compounds, together with 2-methyl-3-
octanone, a methyl ketone, contributed to the aroma of meat of the TG-I group. Methyl
ketones, with fatty notes, are formed due to secondary lipid oxidation [95]. It was re-
ported that lipid oxidation causes alcohol production, whereas lipid autoxidation and
microbiological metabolism promote the formation of ketones [96]. Unsaturated aldehy-
des, such as (E,E)-2,4-nonadienal, are degradation products of linoleate and linolenate
hydroperoxides [93].
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Table 8. Volatile compound (percentage of the total volatile compounds content) profiles of pork
meat from control and treated groups.

Retention Time, min Volatile Compound CG TG-I

5.722 Hexanal 37.90 ± 6.28 a 38.7 ± 5.08 a

8.384 Heptanal nd 0.34 ± 0.12
9.840 (E)-2-Heptenal nd 0.68 ± 0.60
9.926 Benzaldehyde 1.42 ± 1.28 a 2.59 ± 0.52 a

10.195 1-Heptanol 0.48 ± 0.46 a 1.21 ± 1.05 a

10.448 1-Octen-3-ol 5.73 ± 0.70 a 6.89 ± 1.08 a

10.560 2-methyl-3-Octanone 9.74 ± 0.56 a 19.10 ± 4.44 b

10.783 2-pentyl-furan 1.27 ± 1.11 a 3.42 ± 0.33 b

11.730 2-ethyl-1-hexanol 3.28 ± 1.75 a 1.23 ± 0.91 a

11.865 Benzyl alcohol nd 0.31 ± 0.15
11.961 Oct-3-en-2-one nd 0.14 ± 0.05
12.440 (E)-2-Octenal 2.47 ± 0.24 a 2.28 ± 0.53 a

12.688 Cyclooctyl alcohol nd 0.80 ± 0.16
12.745 1-Octanol 2.95 ± 0.98 a 2.02 ± 0.17 a

13.150 Nonan-3-one nd 0.39 ± 0.04
13.576 Nonanal 20.2 ± 3.52 b 11.1 ± 0.12 a

14.888 (E)-2-Nonenal 0.94 ± 0.21 a 0.65 ± 0.18 a

15.068 Octanoic acid 0.74 ± 0.33 a 0.60 ± 0.11 a

15.684 Dec-(4 Z)-enal nd 0.05 ± 0.09
15.805 Dodecane 0.10 ± 0.07 nd
15.936 Decanal 0.53 ± 0.16 a 0.34 ± 0.11 a

16.135 (E,E)-2,4-nonadienal 0.20 ± 0.04 a 0.41 ± 0.03 b

16.494 Benzothiazole 1.09 ± 0.29 b 0.17 ± 0.30 a

17.017 Geraniol 0.35 ± 0.12 a 0.19 ± 0.16 a

17.177 Dec-(2E)-enal 0.95 ± 0.83 a 0.59 ± 0.52 a

17.215 Nonanoic acid 1.60 ± 1.54 a 0.65 ± 0.49 a

17.576 Tridecane 1.47 ± 0.25 b 0.78 ± 0.13 a

17.877 (E,E)-2,4-dodecadienal 0.58 ± 0.06 a 0.48 ± 0.07 a

17.961 Indole 0.42 ± 0.38 a 0.33 ± 0.08 a

18.366 Deca-(2E,4E)-dienal 1.21 ± 0.12 a 1.03 ± 0.08 a

19.181 Propanoic acid, 2-methyl-,
2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl ester 0.24 ± 0.23 a 0.23 ± 0.09 a

19.245 n-Decanoic acid 0.11 ± 0.19 a nd
19.317 2-Undecenal 1.44 ± 0.62 a 0.96 ± 0.12 a

20.021 Tetradecane 0.40 ± 0.35 a 0.28 ± 0.10 a

21.484 2,6-bis(1,1-dimethylethyl)-2,5-cyclohexadiene-1,4-dione 0.19 ± 0.12 a 0.28 ± 0.18 a

22.159 Tridecanal 0.51 ± 0.07 b 0.27 ± 0.13 a

22.216 2,4-bis(1,1-dimethylethyl)phenol 0.64 ± 0.28 b 0.08 ± 0.05 a

24.000 Tetradecanal 0.87 ± 0.26 a 0.54 ± 0.12 a

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I); nd—not detected. Data are presented as mean ±
standard error (n = 10/group). a,b Different letters indicate significant differences between treatments (p < 0.05).

3.5.5. Pork Meat Sensory Properties, Overall Acceptability, and Emotions Induced in
the Judges

The sensory properties of pork meat from CG and TG-I groups are given in Table 9.
The scores for colour, fattiness, residual, and overall taste intensiveness, as well as overall
acceptability, were significantly higher (p ≤ 0.05) for the TG-I group meat. The softness,
juiciness and odour (overall and extraneous) were similar for both meat groups. The
emotional responses elicited by the tested meat are given in Table 10. The facial expression
‘neutral’ was predominant in both meat groups, and its intensity was the highest, compared
to other facial expressions. The intensities of the facial expressions ‘happy’, ‘surprised’,
‘scared’, ‘disgusted’, and ‘contempt’ were significantly higher (p ≤ 0.05) for meat of the TG-I
group. For the remaining emotions (neutral, sad, and angry), the values of intensiveness
were similar for both groups.
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Table 9. Sensory properties and overall acceptability of pork meat from control and treated groups.

Sensory Properties CG TG-I

Overall odour 2.55 ± 0.27 a 2.42 ± 0.30 a

Extraneous odour 1.05 ± 0.11 a 1.08 ± 0.13 a

Colour 2.50 ± 0.25 a 3.08 ± 0.13 b

Juiciness 2.10 ± 0.42 a 2.00 ± 0.45 a

Fattiness 1.75 ± 0.35 a 2.58 ± 0.79 b

Softness 2.25 ± 0.35 a 2.38 ± 0.59 a

Residual taste 1.00 ± 0.10 a 2.75 ± 0.42 b

Overall taste 2.70 ± 0.48 a 3.13 ± 0.26 b

Overall acceptability 2.65 ± 0.29 a 3.08 ± 0.34 b

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I). Data are presented as mean ± standard error
(n = 10/group). a,b Different letters indicate significant differences between treatments (p ≤ 0.05).

Table 10. Emotional responses elicited by pork meat consumption.

Facial Expression CG TG-I

Neutral 0.712 ± 0.132 a 0.814 ± 0.158 a

Happy 0.028 ± 0.03 a 0.041 ± 0.06 b

Sad 0.044 ± 0.06 a 0.039 ± 0.05 a

Angry 0.028 ± 0.04 a 0.030 ± 0.03 a

Surprised 0.017 ± 0.002 a 0.047 ± 0.005 b

Scared 0.004 ± 0.002 a 0.032 ± 0.004 b

Disgusted 0.014 ± 0.003 a 0.041 ± 0.005 b

Contempt 0.004 ± 0.002 a 0.033 ± 0.004 b

Valence 0.060 ± 0.009 a 0.057 ± 0.011 a

Basal diet (CG), basal diet with dried sugar beet pulp (TG-I). Data are presented as mean ± standard error
(n = 10/group). a,b Different letters indicate significant differences between treatments (p ≤ 0.05).

Many intrinsic factors both pre- and post-slaughtering have influences on the sensory
rating of meat [97]. For the most part, the liking variability of meat could be explained by
colour and flavour properties [97]. This was also observed in the present study, because
colour and taste were rated higher in most liked samples. The higher rating of flavour
intensiveness of TG-I meat might be related to the higher production of VC from oxidised
FA [78]. Similar to our results, other researchers have reported that sensory properties
(flavour, odour, texture) and the overall acceptability of lamb, beef, and pork meat were
influenced by the animal diet [98–100]. Moreover, Diaz et al. [78] found that the odour,
flavour, texture, and overall score of dry-cured sausage from the meat from pigs fed dried
chestnuts and an SBP-supplemented diet were significantly higher rated, than those of
the CG.

The sensory properties of food could elicit different emotional reactions for con-
sumers [101]. Nowadays, the evaluation of emotional responses plays an essential part in
the field of sensory science because it reflects the stronger relationship between consumers
and food products, compared to hedonic reactions [97]. Kostyra et al. [101] used FaceReader
software to measure the facial expressions of participates provoked by the consumption of
smoked hams. The ham samples elicited various emotional reactions, of which neutral and
negative emotions were predominant. Finally, despite the fact that the intensities of the
facial expressions (in addition to ‘happy’) ‘surprised’, ‘scared’, ‘disgusted’, and ‘contempt’
were significantly higher for meat of the TG-I group, the valence values of both groups
were similar, and higher overall acceptability was shown by TG-I meat samples.

4. Conclusions

The 3% of SBP inclusion to the pig diet is safe (all the blood parameters were in the
normal range); however, it reduced the BW and ADG of animals but improved carcass
quality. Desirable changes in the TG-I group may be related to the higher levels of beneficial
bacteria in their faecal profile. The tested diet was not significant on BA formation in pork,
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and the main VC in meat were hexanal, followed by nonanal and 2-methyl-3-octanone. The
SBP inclusion to pigs’ diet reduces the total SFAs and MUFAs content, as well as increases
the meat drip loss, protein content, and redness. The valence values of both groups
were similar; however, higher overall acceptability was shown by TG-I meat samples.
Finally, it can be stated that 3% of SBP inclusion to the diet of pigs could be beneficial
for the improvement of pigs’ gut health and pork quality. However, further studies are
needed to indicate which compounds of the SBP dietary fiber are responsible for these
desirable changes.
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