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A B S T R A C T   

Objective: To develop deep learning methods with high accuracy for segmenting irregular corneas and detecting the tear fluid reservoir (TFR) 
boundary under the scleral lens. Additionally, this study aims to provide a publicly available cornea with scleral lens OCT dataset, including 
manually labeled layer masks for training and validation of segmentation algorithms. This study introduces ScLNet, a dataset comprising cornea 
with Scleral Lens (ScL) optical coherence tomography (OCT) images with layer annotations, and a multi-task network designed to achieve rapid, 
accurate, automated segmentation of scleral lens with regular and irregular corneas. 
Methods: We created a dataset comprising 31,360 OCT images with scleral lens annotations. The network architecture includes an encoder with 
multi-scale input and a context coding layer, along with two decoders for specific tasks. The primary task focuses on predicting ScL, TFR, and cornea 
regions, while the auxiliary task, aimed at predicting the boundaries of ScL, TFR, and cornea, enhances feature extraction for the main task. 
Segmentation results were compared with state-of-the-art methods and evaluated using Dice similarity coefficient (DSC), intersection over union 
(IoU), Matthews correlation coefficient (MCC), Precision, and Hausdorff distance (HD). 
Results: ScLNet achieves 98.22 % DSC, 96.50 % IoU, 98.13 % MCC, 98.35 % Precision, and 3.6840 HD (in pixels) in segmenting ScL; 97.78 % DSC, 
95.66 % IoU, 97.71 % MCC, 97.70 % Precision, and 3.7838 HD (in pixels) in segmenting TFR; and 99.22 % DSC, 98.45 % IoU, 99.15 % MCC, 99.14 
% Precision, and 3.5355 HD (in pixels) in segmenting cornea. The layer interfaces recognized by ScLNet closely align with expert annotations, as 
evidenced by high IoU scores. Boundary metrics further confirm its effectiveness. 
Conclusion: We constructed a dataset of corneal OCT images with ScL wearing, which includes regular and irregular cornea patients. The proposed 
ScLNet achieves high accuracy in extracting ScL, TFR, and corneal layer masks and boundaries from OCT images of the dataset.   

1. Introduction 

Numerous ocular conditions including severe keratoconus, post–LASIK ectasia, and severe dry eyes, can cause elevated irregular 
astigmatism, which result in poor visual acuity when corrected with spectacles and soft contact lenses. Modern Scl, which vault the 
cornea of the eye and have great benefit in correcting irregular astigmatism, have emerged as a new treatment option to restore vision 
for patients with irregular astigmatism suffering from complex ocular diseases [1–3]. In an effort to achieve a successful lens-to-corneal 
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fitting relationship, a variety of quantitative parameters, including the shape of ocular surface, the thickness mappings of the tear fluid 
reservoir (TFR) under the scleral lens and assessment of the whole cornea thickness during lens wear have been widely studied, 
employing different devices and methods [4]. 

Optical coherence tomography (OCT) is the standard-of-care imaging modality in ophthalmology. OCT is used to examine the 
whole cornea and visualize the lens-to-corneal fitting relationship [5]. Fig. 1(A-B) shows the typical example of a corneal OCT image 
with a ScL, as well as the main steps to extract the quantitative parameters for evaluating the lens fitting. As depicted in Fig. 1(C-D), the 
evaluation of quantitative parameters for lens-to-corneal fitting in OCT images necessitates the simultaneous segmentation of the 
interfaces of the scleral lens, TRF, and corneal layer. However, manual segmentation is subjective and time-consuming, thus calling for 
the development of automated segmentation techniques. Although several conventional segmentation algorithms based on thresh
olding and edge detection can yield reliable outcomes, they often encounter challenges posed by various artifacts present in the OCT 
images, such as saturation artifact, speckle noise, and regions characterized by a low signal-to-noise ratio (SNR). 

Recently, a lot of deep learning (DL) networks have been proposed for the segmentation of the retinal and the corneal layers in OCT 
image [6–16]. For example, CorNet, a CNN-based segmentation model was proposed by Mathai et al. for detecting corneal tissue 

Fig. 1. The proposed pipeline: A. An example of corneal OCT image with ScL wearing. B. Segmentation Result. (red: ScL, green: TRF, yellow: 
cornea.) C. The quantitative parameters, including lens sagittal depth (LSD), corneal sagittal height (CSH) and thickness of the TRF etc., are obtained 
according to the segmentation results. D. According to the segmentation results, the real coordinates of the anterior and posterior surfaces of TRF in 
a scleral lens wearer were reconstructed in three dimensions to obtain the thickness of the TRF at a certain time. ScL-Sup: scleral lenses superior 
boundary. ScL-Inf: scleral lenses inferior boundary. TRF-Sup: tear film superior boundary. TRF-Inf: tear film inferior boundary. CO-Sup: cornea 
superior boundary. CO-Inf: cornea inferior boundary. 

Fig. 2. Typical OCT images with the TFR under the scleral lens and theirs ground truth images with manually labeled. (A) Typical OCT image 
showing a keratoconus eye, (B) Typical OCT image showing a thin TFR, (C) Typical OCT image showing the asymmetric and uneven distribution of 
the TFR in a keratoconus eye with an irregular corneal surface, (D) Typical OCTimage showing midday fogging in the TFR. 
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interfaces in different OCT images. It utilized dense connections to establish connections among each layer via feature map concat
enation, then generated the corneal interface segmentation in the final image [8]. Many researchers have focused on the end-to-end 
CNN framework based on U-NET [6,8,9,11–16]for corneal and retinal layer segmentation. Nevertheless, these methods have two 
major drawbacks. First, U-Net’s architecture, while achieving improved performance in layer segmentation, often leads to inaccurate 
boundaries and unsatisfactory segmentations. This limitation is especially pronounced in OCT images with ScL on irregular corneas, 
given their unique morphological characteristics. Moreover, there’s a limited amount of research and data available for training 
networks to accurately delineate OCT images with ScL, making it challenging to ensure the reliability of the results. At the time of 
writing, to our best knowledge, few study using a deep learning approach has been reported to automatically delineate OCT images 
with ScL on eyes due to the lack of dataset to train the network. Second, the multi-pathway outputs segmentation areas and region 
contours immediately for assessment of the whole cornea thickness. The dense connections in each pathway also significantly boost 
computational complexity. This results from every layer being interconnected, elevating the computation load in contrast to con
ventional architectures. Such intricacies lead to extended training durations, greater hardware demands, and potential overfitting 
risks, especially for smaller datasets. Additionally, extracting discernible features across multiple scale layers intensifies computation 
and memory use, inhibiting the network’s scalability and its efficacy with larger images. 

In addition, due to OCT images with ScL have complex characteristics in Fig. 2(A-D). First corneal morphology in patients with 
keratoconus may change significantly due to the presence of lesions. Second, the TFR presents with different morphological features 
with arbitrary shapes, sizes duo to special settling pattern of ScL. Morevoer, the pixel intensity of the TRF similar to that of the cornea 
results in blurred boundaries due to the presence of midday fogging that appears during lens wear. In our previous work [17], we 
proposed a method for segmenting the TRF from corneal OCT image with ScL. The design is targeted based on the characteristics of the 
TRF, but it can only be used to divide the TRF, without considering the lens above the TRF and the cornea below, which can not meet 
the corresponding clinical needs. Considering the process of fitting the lens, a comprehensive analysis of the position relationship 
between the lens and the ocular surface requires calculate and evaluate ScL fitting parameters such as TRF thickness distribution, 
corneal central thickness, corneal sagittal depth, Primary Functional Sagittal Depth of the lens (PFSD). For this reason, it is necessary to 
segment lens, TRF and cornea in OCT images with ScL and obtain their boundaries. The three regions of the OCT images with ScL are 
closely fitted, so it is very important to obtain contextual information. The boundary information of the three regions is also not 
utilized, which makes the powerful feature understanding of deep learning wasted. 

Building on that foundation and the limitation mentioned above, we proposed ScLNet, a multi-pathway framework for the auto
matic delineation of OCT images with ScL on patients with regular and irregular corneas. It includes a primary task to predict Region of 
interest (ROI) regions and an auxiliary task to predict ROI boundaries. The auxiliary task is used to enhance the learning capability of 
the primary task. ScLNet is a convolutional neural network with the multi-scale input with context coding layer and a dual-pathway 
architecture for task-specific output. Our contributions can be summarized as follows:  

● In order to verify current Scl segmentation methods, we constructed a dataset of corneal OCT images with ScL wearing. To our 
knowledge, it is the first dataset of corneal OCT images with ScL.  

● We also designed a multi-task network with multi-scale input. The network used a context coding layer before the different scale 
images input layer in the encoder. It combined context information of different resolutions to encode the salient features of 
different layers. This allows the network to consider both global and local context, enhancing its understanding of the input data. 
And, for the semantic segmentation decoder side, to form precise target mask.  

● We designed a boundary-guided construction combined by residual blocks and convolutional layers followed with a subtraction 
operation. It utilized important discriminative features to help the network capture fine-grained details necessary for accurate 
segmentation. This is the first network that can perform both semantic segmentation and edge detection on OCT images with ScL. 

2. Related work 

2.1. Multi-scale input 

Creating multi-scale input is often achieved by generating an image pyramid [18,19], where an original image is processed at 
different resolutions or scales. These variously scaled images are then fed into the network either independently or in combination to 
ensure the model can capture features at multiple scales. Where features from different scales are commonly concatenated along the 
depth dimension before being passed to subsequent layers [20]. There may be challenges in aligning features from different scales 
properly, especially when the features are of different dimensions or aspects ratios [21]. Combining features from multiple scales can 
significantly increase the computational burden on the system. This might make it less suitable for real-time applications or envi
ronments with limited computational resources. Drozdzal et al. [22] employ a fully convolutional network for data normalization, and 
then iteratively use the preprocessed data for accurate segmentation through a fully convolutional residual network. This iterative 
segmentation approach falls short in various areas, including performance metrics, graphical processing memory requirements, and 
computational time. 

2.2. Multi-pathway neural networks 

In an image segmentation task, one pathway could focus on extracting low-level features such as edges and textures, while another 
could specialize in capturing high-level features like object categories. The information learned across tasks is leveraged to enhance the 
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model’s performance. Zeng et al. [23] introduces a dual-tracer encoder-decoder network SSIM, built on multi-task learning principles, 
designed to directly reconstruct two single-tracer dynamic images from a dual-tracer dynamic sinogram. However, in some regions of 
the images, the activities reconstructed by the SSIM deviated from the ground truth, and the images produced by the method generated 
by the method appeared overly smoothed. Wachinger et al. [24]. introduced DeepNAT, a multi-task learning framework for brain 
segmentation, which simultaneously learns a generalized feature representation and performs multi-class classification. While it is 
difficult to obtain enough precise segmentation for young, old, or diseased brains. 

2.3. Atrous convolution 

Atrous convolution [25], also known as dilated convolution, is a variation of the standard convolution operation used commonly in 
image processing and deep learning tasks. The key difference is the introduction of a dilation rate that adjusts the spacing between the 
values in the kernel. Essentially, this dilation rate creates “holes” in the kernel that are filled with zeros, thus making the kernel larger 
without adding extra parameters or computational complexity. DeepLabV2 [21] sets itself apart by introducing the Atrous Spatial 
Pyramid Pooling (ASPP) module. This module amalgamates feature maps created through the convolution of atrous layers with 
varying dilation rates. By doing so, it captures richer contextual information, thereby enhancing segmentation accuracy. HRNet [26] 
employs parallel stacking of atrous convolutions in its multi-scale branch to learn high-resolution representations. While, HRNet 
maintains high-resolution feature maps throughout the network, it increases the computational complexity. Furthermore, the number 
of parameters can be quite large for the multiple branches working in parallel across different resolutions. It makes the model heavier 
and potentially more prone to overfitting in smaller datasets. 

3. Methodology 

Problem Statement. Given a corneal OCT image I , the task is to find a function F : I →L that maps every pixel in I to a label 
L ∈ {0,1,2,3}.The corneal interfaces to be segmented are: (1) Scleral lens, (2) Tear fluid reservoir, and (3) Cornea, with 0 being the 
background. 

3.1. Network architecture 

As shown in Fig. 3, our proposed ScLNet consists of one encoder module and two decoder modules with similar structures. The 

Fig. 3. Structure of the ScLNet framework. We first use the multi-scale input with context coding layer. It includes a primary task aimed at pre
dicting scleral lenses, tear film, and cornea regions and an auxiliary task to predict their boundaries. The auxiliary task is used to enhance the 
learning capability of the primary task. 
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Fig. 4. Detail of resblock.  

Fig. 5. The introduced encoding (A) and Segmentation decoding (B) in the developed ScLNet architecture, both of which included n resblock and a 
convolutional layer, the element-wise subtraction, and concatenation operations to obtain the image features. The developed Boundary decoding (C) 
in the boundary module. 
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encoder layer is comprised of convolutional blocks, a modified combination of resblocks (as seen in Fig. 4), and convolutional blocks 
inspired by ResNet, which serve as the backbone. The features obtained from this encoder are then summed with the backbone and 
passed on to the decoders. Each decoder module is designated for a specific task: one for semantic segmentation and the other for edge 
detection. The semantic segmentation task aims to classify each pixel as either belonging to the object of interest or the background, 
while the edge detection task guides semantic segmentation by initially identifying object boundaries and subsequently outputting 
them. The network loss is calculated as the weighted sum of the losses incurred in these two tasks.  

A Backbone Encoder-Decoder 

Encoder architecture is designed to start with a modified combination of resblock and convolutional blocks inspired by Res34Net 
[27]. Feature maps between resblocks and convolutional blocks are processed using element-wise subtraction and concatenation 
operations, along with the data flow, to capture the edge and object convolutional features, respectively. Each layer of the encoder 
adopts the subtraction operation of adjacent feature maps, which can detect a large number of feature information closely related to 
the target boundary, and the obtained information difference at the corresponding position can be used to guide the segmentation of 
the target region. These information differences effectively improve the detection sensitivity of the segmentation network to the target 
boundary and improve the segmentation accuracy of the boundary. Each layer contains varying numbers of resblocks, which helps to 
mitigate the problem of vanishing gradients. All layers maintain consistent convolutional kernels size and strides. As a result, the 
encoder’s backbone retains five sets of convolution and varying numbers of residual convolution blocks for primary feature extraction 
as shown in Fig. 5(A). The object feature maps that were captured were down-sampled by using a 3 × 3 convolutional kernel with 
stride 2 operations to reduce the amount of computation. 

After performing the encoding and down-sampling operations on the input images, the resulting region and boundary feature maps 
with varying dimensions and hierarchies. These feature maps were then used to perform region semantic segmentation and boundary 
delineation, respectively. The semantic feature maps were further processed using a 2 × 2 UpSampling layer and fed into a seg
mentation decoding block. A total of three features were utilized in the segmentation decoding block: the encoder’s upsampling and 
skip connection, as well as a feature from the skip connection of the boundary decoding block. As shown in Fig. 5(B), this combination 
of feature maps was used to generate the final decoding features, which were then fed into a 1 × 1 convolution layer with a sigmoid 
activation function. This resulted in the output of a probability map for the segmented objects present in the entire image region. 

To better identify object boundaries, the processed boundary feature maps underwent a 2 × 2 upsampling layer. This layer 
effectively increased the resolution of the maps by doubling their dimensions, there by enhancing the precision and accuracy of the 
boundary detection. They were then fed into a boundary decoding block, as well as another features that skip connection operations. 
These operations are illustrated in Fig. 5 (C). The process was repeated several times to effectively locate the object boundaries. Finally, 
the Conv 1 × 1 layer was utilized to apply a sigmoid activation function to the output, resulting in precise boundary detection.  

B multi-scale input with context coding layer 

Generally speaking, the deeper the network, the richer the nonlinear feature extraction capability of the network. However, with 
the deepening of the network, part of the spatial details lost in the process of multiple downsampling cannot be recovered through the 
oversampling, thus reducing the ability of the network to segment the edge of large targets and identify small targets. To solve this 
problem, the network introduces multi-scale inputs to increase the low-level detail features in the high-level semantic features. This 
method facilitates the network to learn small regional features of interest and local spatial features. 

Input layer. The input layer consist of multiple images laid out horizontally in Fig. 3. Each image can be represented in an S-scale. 
The horizontal layout of the structure can be interpreted as a compact convolutional network resembling “S-layers” (S = 4 in Fig. 3). 
The image is first reduced to half, quarter, and eighth of the original image by means of the average pooled subsampling method, The 
output feature maps at layer l and scale s are denoted as f s

l , while the original input image is represented as f s
0. 

By doing so, we obtain multi-scale input images that contain rich spatial information at multiple scales. and the ScL-Net can then 
use these multi-scale images to further refine its feature maps and classify complex patterns with greater accuracy. Then, the number of 
channels is expanded to the number of channels at the corresponding layer scale of different layers of the encoder through the 
convolution block. Finally, they are spliced together separately by the DAC module in the encoder corresponding to the scale. 

In traditional convolution operations, the receptive field of the convolution kernel in the operation is fixed size, so it may be 
difficult to capture context information over a large range CE-Net [28] proposes a DAC block, while DAC can increase the effective 
receptive field of the convolution kernel by introducing different atrous rates into the convolution kernel in, and the output of each 
convolution kernel will produce a feature map as it uses. The DAC block is especially effective in capturing rich semantic features due 
to its use of four cascaded branches with varying receptive fields. This design enables the encoder to grasp the different levels of 
abstraction in the input data, thereby yielding more accurate and relevant representations. 

fl =HK,dl

( [
fl− 1, fl− 2,⋯, f0

])
(1)  

dl represents the dilation rate of the first layer. [.] denotes the concatenation operation. HK,dl represent the atrous convolution, [f, f] 
signifies that the feature map is obtained by concatenating the output of the upper layer through a concatenation operation, as shown 
in Fig. 6. 

For tasks involving large objects or a global context, convolutions with larger receptive fields are advantageous. Conversely, 
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convolutions with smaller receptive fields are better suited for smaller objects or finer details [29]. In our specific task, TFR displays a 
broad spectrum of morphological features, including varying shapes and sizes that are inconsistent across different samples. This 
variability presents a challenge for accurate feature extraction and segmentation. The DAC block employs atrous convolution with 
different atrous rates to adeptly extract features from TFRs of diverse sizes, thereby enhancing the model’s pixel-wise classification 
accuracy. 

3.2. Loss function 

Segmenting small objects has long been a challenging task in the field of semantic segmentation. A major obstacle in this regard is 
the notable disparity between positive and negative samples within the distribution. This imbalance detrimentally affects the per
formance of region-of-interest segmentation, as pixel-level labeling is a fundamental aspect of image semantic segmentation [30,31]. 
Hence, it is imperative to address the aforementioned concern in order to enhance the precision and efficacy of segmenting small 
objects. In our case, the background area occupies a large proportion of the entire image, while the region of interest occupies a small 
proportion of the entire image. This class imbalance problem causes the network to perform well in background area detection but 
poor in the analysis of Scl, TRF and cornea. Specifically, their boundary only takes about 1/100 of the whole OCT image area. Our 
network consists of two tasks, we used a hybrid loss consisting of contributions from two logarithm dice loss, which used as the loss 
function for the target objects and boundaries. The loss function LOSS total is defined by: 

LOSS total = λ LOSS Boundary + (1− λ )LOSS Segmentation (2)  

where λ is a non-negative weighting factor. In this study, we set λ = 0.4.where LOSS Segmentation is the loss of the semantic segmentation 
task, LOSS Boundary is the boundary depict task. logarithm dice loss is defined by log (£Dice) with the dice loss £Dice defined as: 

£Dice(y, ŷ)= 1 −

2
∑n

i=1
yi ŷi

∑n

i=1
y2

i +
∑n

i+1
ŷ2

i

(3)  

where ŷ is the predicted value; y is the ground truth. 

3.3. Evaluation metrics 

We validated the performance of the ScLNet using the independent testing dataset. We used five metrics for quantitative evaluation, 
including equations (4)–(8). The agreement between the computerized results and the manual results was quantitatively assessed using 
the DSC, intersection over union (IoU), Matthews correlation coefficient (MCC), Precision, and Hausdorff distance (HD) [32]. The 
metrics can be calculated using the following equations: 

DSC=
2TP

2TP + FP + FN
(4)  

Fig. 6. The dense atrous convolution (DAC).  
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IoU=
Pixseg ∩ Pixgt

Pixseg ∪ Pixgt
(5)  

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (6)  

Precision=
TP

TP + FN
(7)  

HD=max (h(A,B), h(B,A)) (8)  

Where h(A,B) and h(B,A) are defined as 

h(A,B)= max
a ∋ A

{
min
b ∋ B ‖ a − b ‖} (9)  

h(B,A)= max
b ∋ B

{
min
a ∋ A ‖ b − a ‖} (10)  

where Pixseg is the pixel of predicted segmentation and Pixgt is the ground truth. TP, TN, FP, and FN denote true positive, true negative, 
false positive, and false negative, respectively. h(A,B) is the directed Hausdorff distance from point set A to point set B. In addition to 
the HD, the larger the value, the better the performance. 

3.4. The dataset for development and validation 

We created to our knowledge the first of database corneal OCT images with ScL wearing. The dataset used in this study was ob
tained using a commercial SS-OCT (Tomey Casia 2, Tomey Corporation, Nagoya, Japan) system. The SS-OCT system operates at a 
central wavelength of 1310 nm, providing an axial resolution of 10 μm. The scanning speed of the system is 50,000 A-scans per second 
[33]. 

The dataset consisted of 52 healthy eyes with regular corneal surfaces and 46 eyes with keratoconus and irregular corneal surfaces. 
Imaging was performed immediately after lens wear and at multiple time points: 30 min, 1 h, 2 h, and 4 h. Each 3D-OCT dataset 
contained 18 B-scan images centered on the corneal apex. The size of each B-scan was 796 × 1160 pixels (height × width), corre
sponding to an actual dimension of 13 mm × 16 mm. Therefore, the dataset comprised a total of 31, 360 images. 

To evaluate the performance of the network, a subset of 1678 images was randomly selected from all groups in the dataset. These 
images were further divided into three subsets: 70 % for training, 20 % for validation, and 10 % for testing purposes. In order to 
facilitate the network design, both the OCT images and corresponding masks were resized to a dimension of 512 × 512 pixels. 

This study has obtained ethical approval from the ethics committee of Wenzhou Medical University (Ethics Approval Number: 
Y2018-071). All procedures follow the Helsinki Declaration. The study subjects were informed of the relevant precautions and signed 

Fig. 7. The top row displays the OCT images from our collected dataset, while the bottom row shows their corresponding manual annotations.  
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Fig. 8. Illustration of the performance of the developed ScLNet network on normal and KC eye OCT images. The first three rows are the OCT images 
and their segmentation results by manual annotations and the ScLNet, respectively. The last two rows are part of boundaries (the superior and 
inferior boundary of the ScL, the superior and inferior boundary of the Cornea) of different layers obtained by manual annotations and the ScLNet, 
respectively. 
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an informed consent form. The optimization of Losstotal was performed using the stochastic gradient descent (SGD) algorithm with an 
initial learning rate (LR) set to 0.1. To ensure effective learning, the LR was reduced by a factor of ten every 20 epochs. The network 
training spanned 100 epochs, and a batch size of 2 was chosen to accommodate the GPU’s capabilities. To prevent unnecessary 
optimization, an early stopping scheme was implemented, halting the process if the loss failed to decrease for a continuous period of 50 
epochs. 

To enhance the robustness of the trained models, image augmentation techniques were employed during training. These operations 
encompassed random vertical flips, translations ranging from − 10 to 10 percent per axis, rotations within the range of − 10 to 10◦, and 
scaling between 0.9 and 1.1. By incorporating these augmentation strategies, the models became more resilient and adaptable to 
variations in the input data. 

All the networks were implemented using python 3.6 and keras library version 2.4 with the Tensorflow platform. The experiments 
were performed on the Windows 10 operating system using CPU Intel(R) Core(TM) i9-10940K 3.3 GHz, GPU NVIDIA GeForce GTX 
TITAN, and a RAM of 128 GB. 

To segment the Scl, TFR, and cornea, as well as to generate labeled images, we employed an algorithm developed in Matlab R2019 
(The MathWorks Inc., Natick, MA, USA). This algorithm is based on the graph theory approach we have previously described [34] to 
semi-aumatically segment the boundaries of TRF. After that, two experienced graders (Dr.S Ce & Dr. HL Cheng) checked the 
boundaries of the segmented TFR under the scleral lens for each image and corrected it manually if necessary. At last, a labeled normal 
and KC eye image containing 4 classes, including ScL, TRF, cornea and background, was generated as shown in Fig. 7. 

3.5. Statistical analysis 

SPSS 25.0 was used for all statistical analyses. Quantitative data conforming to a normal distribution are expressed as mean and 
standard deviation. The T test was used for statistical analysis between the normal cornea and irregular cornea groups, and one-way 
analysis of variance was used for statistical analysis of 2 groups. P < 0.05 indicated statistical significance. 

Table 1 
Evaluation metrics for pathological images and normal images.  

District Method DSC IoU MCC HD Precision 

Scleral lens Normal 0.9813 0.9633 0.9805 3.8282 0.9809 
Keratoconus 0.9825 0.9657 0.9817 3.6229 0.9846 
All 0.9822 0.9650 0.9813 3.6840 0.9835 

tear fluid reservoir Normal 0.9754 0.9521 0.9748 3.8052 0.9762 
Keratoconus 0.9788 0.9584 0.9781 3.7748 0.9774 
All 0.9778 0.9566 0.9771 3.7838 0.9770 

cornea Normal 0.9935 0.9871 0.9929 3.349 0.9934 
Keratoconus 0.9917 0.9835 0.9909 3.5864 0.9908 
All 0.9922 0.9845 0.9915 3.5355 0.9914  

Table 2 
The performance of the developed ScLNet and other five classical segmentation networks on the collected dataset.  

District Method DSC IoU MCC HD Precision 

Scleral lens HRNet 0.9716 0.9447 0.9699 4.4126 0.9706 
Res34-Unet 0.9760 0.9542 0.9749 3.7338 0.9825 
CorneaNet 0.9668 0.9414 0.9651 3.9908 0.9733 
DeepLabV3+ 0.9769 0.9549 0.9756 3.8337 0.9824 
BGCNN 0.9771 0.9567 0.9762 3.8129 0.9818 
ScLNet 0.9822 0.9650 0.9813 3.6840 0.9835 

tear fluid reservoir HRNet 0.9651 0.9327 0.9640 4.3215 0.9663 
Res34-Unet 0.9653 0.9381 0.9654 4.0147 0.9634 
CorneaNet 0.9606 0.9276 0.9601 4.1638 0.9690 
DeepLabV3+ 0.9729 0.9472 0.9720 3.9643 0.9797 
BGCNN 0.9725 0.9473 0.9718 3.8915 0.9764 
ScLNet 0.9778 0.9566 0.9771 3.7838 0.9770 

cornea HRNet 0.9851 0.9707 0.9838 4.0835 0.9868 
Res34-Unet 0.9885 0.9773 0.9875 3.7766 0.9881 
CorneaNet 0.9817 0.9664 0.9807 3.9991 0.9730 
DeepLabV3+ 0.9873 0.9749 0.9861 3.8984 0.9861 
BGCNN 0.9843 0.9726 0.9837 3.7282 0.9781 
ScLNet 0.9922 0.9845 0.9915 3.5355 0.9914  
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Fig. 9. Variability in the performance of three segmentation networks: ScLNet, CorneaNET, and DeepLabV3+, in identifying the ScL, TRF, and 
cornea layers is demonstrated using six representative OCT images. The first row presents the original OCT images. The second row shows manual 
annotations of the OCT images, carried out using a Matlab algorithm. Subsequent rows display segmentation results as achieved by ScLNet, Cor
neaNET, DeepLabV3+, HR-Net, and Res34-Unet, in that order. 
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4. Results 

4.1. Overall performance 

Our proposed ScLNet has two outputs: pixel-wise segmentation map and boundary. Fig. 8 visually displayed three tissue layers and 
four boundaries were automatically segmented using the performance of the ScLNet on normal and KC eye OCT images. These values 
suggest that the developed network exhibits promising potential in extracting the TFR under the scleral lens from OCT images, 
compared to the manual annotations. As the TRF lies adjacent to the ScL and cornea, we present four boundaries: the both superior and 
inferior boundary of the ScL, the both superior and inferior boundary of the Cornea. The segmentation of layers in pathological images 
poses challenges due to substantial changes in corneal morphology caused by conditions like keratoconus or other lesions. To evaluate 
the performance of ScLNet on pathological cases, we partition the testing set into two groups: normal and pathological, based on expert 
diagnoses. Table 1 illustrates the comparison of performance between keratoconus (118 images) and normal (50 images) on inde
pendent datasets. Although keratoconus cases typically exhibit irregular shapes and obscure boundaries, the evaluation metrics for 
pathological images indicate only a tiny percentage gap lower than the normal cornea. Furthermore, the evaluation metrics for 
pathological images are slightly higher than those of normal images for ScL and TRF regions. This comparison demonstrates the high 
robustness of our ScLNet in segmenting ScL wear in pathological images. 

4.2. Performance comparison 

Extensive comparative studies have shown the superior performances of ScLNet in depicting the enclosed TFR under the scleral lens 
in OCT images compared to some models of segmented corneas and other state-of-the-art segmentation models, including CorneaNet, 
BG-CNN, HR-Net, Res34-Unet [35], Deeplabv3+ [36]. The experimental results are shown in Table 2. We trained all the compared 
methods using the same training and testing strategy. The ScLNet achieves 98.22 % DSC, 96.50 % IoU,98.13 % MCC, and 98.35 % 
Precision and 3.6840 HD (in pixel) in segmentation ScL, 97.78 % DSC,95.66%IoU,97.71%MCC and 97.70 % Precision and 3.7838 HD 
(in pixel) in segmentation TRF,99.22 % DSC,98.45%IoU,99.15%MCC, and 99.14 % Precision and 3.5355HD (in pixel) in segmenting 
cornea. Fig. 9 shows the computerized results from the developed algorithm, CorneaNet, DeepLabV3+, HR-Net and Res34-Unet in 
identifying the ScL, TRF, cornea depicted in the OCT images. Fig. 10 shows the boundaries of the ScL, TRF, and cornea layers as 
identified by the ScLNet network for the OCT images displayed in Fig. 9. 

4.3. Ablation study 

We perform ablation studies to analyze the effects of removing certain design aspects in our proposed model, while keeping the 
hyperparameters constant. The whole framework includes an encoder block, semantic segmentation decoder and boundary detection 
decoder, we added each module separately to the backbone to analyze its effectiveness by conducting experiments on six different 
architectures, namely backbone, backbone + multi-scale, backbone + context, ScLNet, ScLNet w/o atrous and ScLNet w/o branch task. 
The qualitative and quantitative evaluation results of the ablation study are shown in Fig. 11 and Table 3, respectively. 

Only the first layer of the backbone has an image input. The multi-scale input module is added to the backbone to enrich the spatial 
information. After adding this module, the first four coding layers of the backbone use image input of different scales. Segmentation 
results are improved by the Baseline + multi-scale input which increases the DSC from 97.28 % to 98.05 % in the segmentation Scleral 
lens, from 96.63 % to 97.59 % in segmentation TFR, from 98.39 % to 99.18 % in segmentation cornea. Experiments show that the key 

Fig. 10. The section illustrates the boundaries of the ScL, TRF, and cornea layers as identified by the ScLNet network for the OCT images displayed 
in Fig. 9. The first two rows show the original OCT images along with partial manual annotations of their boundaries. The final row presents the 
corresponding partial results generated by the ScLNet network. 
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modules of the ScLNet are effective. 
The DAC block is added after the image has undergone a 3 × 3 convolutional operation. After adding this module. Segmentation 

results are improved by the Baseline + DAC. The DAC block increases the DSC from 97.28 % to 97.87 % in segmentation Scleral lens, 
from 96.63 % to 97.55 % in segmentation TRF, from 98.39 % to 99.18 % in segmentation cornea. Meanwhile, The used DAC block 

Fig. 11. Visualizes the segmentation results of different ablation models. We can see that our method achieves the smoother result, and the 
visualization result of our model is better than other ablation models. 
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employs the atrous convolution with different rates. We use regular convolution to replace the atrous convolution in DAC block 
(referred to ScLNet without atrous). As shown in Table 3, the DSC is reduced to 98.20 % in the segmentation of Scleral lens, 97.74 % in 
the segmentation of TRF, 99.20 % segmentation of the cornea. This indicates that atrous convolution helps to extract high-level se
mantic features, compared to the regular convolution. 

Then, we evaluated the performances based on multi-tasking. The auxiliary task is used to predict the edge of the object, which can 
improve the feature extraction capabilities of the primary task. We trained the ScLNet without an auxiliary task for comparison. As 
shown in Table 3, its DSC is reduced to 97.90 % in segmentation of the Scleral lens, 97.41 % in segmentation of TRF, 99.06 % in 
segmentation of the cornea. If the auxiliary task is deleted, the boundary between the cornea and the TRF layer, the boundary between 
the TRF layer and the ScL will be misclassified in Fig. 12. Therefore, all improvements enhanced the final segmentation performance 
effectively. 

Finally, We investigate the effect of the weight λ on the performance of the ScLNet (Eq. (2)). The weight was set to 0.2,0.4, 0.6 and 
0.8 separately for the same segmentation experiments. The experiments showed that theScLNet had the best performance when the 
weight was set to 0.4, as compared with those of the other values in image segmentation, as shown in Table 4. 

5. Discussion 

This paper introduces a novel network called ScLNet, which is designed for two tasks, the segmentation of ScL, TFR, and cornea 
layers in OCT images and the descript the ragion shape. To achieve the simultaneous generation of layer masks and boundaries, a 
multi-pathway architecture is proposed: one multi-scale input and two task special outputs. The experimental results of the ScLNet 
without the branch task demonstrate its effectiveness in accurately identifying the contours and boundaries of scleral lenses, tear film, 
and cornea layers in OCT images, thereby enabling the automatic generation of masks and boundaries with a high level of accuracy. In 
addition to generating masks and boundaries with a high level of precision, this study introduces a multi-scale layer that constructs an 
image pyramid of multi-scale inputs to retain spatial information in the feature maps extracted by the encoder. Ablation experiments 
demonstrate that removing the multi-scale inputs layer leads to misclassification of objects as background. Furthermore, the context 
coding layer, which comprises a DAC block combined with a residual block followed by a subtraction operation, serves as the 
fundamental building block of the model encoder. DAC employs hybrid atrous convolution to increase the receptive field and improve 
the quality of feature representation. The inclusion of residual blocks in the construction provides advantages such as improved 
gradient flow and easier optimization. This promotes better feature extraction and helps the network to learn more robust repre
sentations. The subtraction operation plays a role in emphasizing the boundary information. By subtracting relevant feature maps, the 
network can highlight the differences or changes in pixel values, which often correspond to layer boundaries [13,15]. A boundary 
decoding block is introduced to the model decoder, which helps refine the upsampled feature maps after convolution operations 
leading to even more precise segmentation. Experimental results indicate that the proposed network is capable of segmenting ScL, TFR, 
and cornea layers from OCT images and detected the boundaries automatically. The thickness of the TRF is very important when fitting 
the ScLfor patients with irregular corneas. When dividing the test set into normal and pathological, the evaluation metrics for path
ological cases align more closely with manual annotation levels than normal cases in TRF. However, keratoconus cases, known for their 
irregular shapes and indistinct boundaries in images, exhibit a slight percentage gap in corneal thickness compared to normal cases. To 
enhance the algorithm’s segmentation efficiency for corneas in pathological images, future studies will focus on optimizing the 
edge-aware loss and boundary refinement module. 

When dealing with saturation artifacts, speckle noise, and regions with low Signal-to-Noise Ratio (SNR), our method achieves the 
best results compared with other corneal segmentation models (CorneaNet and BG-CNN)and State-of-the-Art (SOTA) models (HR-Net, 
Res34-Unet, DeepLabV3+) evaluated in our experiments. 

Table 3 
Performance of each ablation model compared to manual delineation on the collected dataset.  

District Method DSC IoU MCC HD Precision 

Scleral lens Backbone 0.9728 0.9525 0.9724 3.8630 0.9770 
Backbone + multi-scale 0.9805 0.9620 0.9797 3.7090 0.9830 
Backbone + DAC 0.9787 0.9589 0.9778 3.8397 0.9799 
ScLNet 0.9822 0.9650 0.9813 3.6840 0.9835 
ScLNet w/o atrous 0.9820 0.9648 0.9812 3.7380 0.9828 
ScLNet w/o branch task 0.9790 0.9590 0.9781 3.7748 0.9834 

tear fluid reservoir Backbone 0.9663 0.9413 0.9668 4.0571 0.9630 
Backbone + multi-scale 0.9759 0.9530 0.9752 3.8246 0.9769 
Backbone + DAC 0.9755 0.9525 0.9749 3.8116 0.9728 
ScLNet 0.9778 0.9566 0.9771 3.7838 0.9770 
ScLNet w/o atrous 0.9774 0.9558 0.9767 3.8829 0.9746 
ScLNet w/o branch task 0.9741 0.9496 0.9734 3.9034 0.9734 

cornea Backbone 0.9839 0.9726 0.9834 3.8095 0.9788 
Backbone + multi-scale 0.9918 0.9838 0.9911 3.5483 0.9905 
Backbone + DAC 0.9918 0.9837 0.9911 3.5610 0.9901 
ScLNet 0.9922 0.9845 0.9915 3.5355 0.9914 
ScLNet w/o atrous 0.9920 0.9842 0.9913 3.5923 0.9915 
ScLNet w/o branch task 0.9906 0.9815 0.9898 3.6083 0.9906  
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Fig. 12. Performance differences of our ablation models in identifying the tear liquid layers from four typical OCT images. The first row is the raw 
OCT images. The next six rows are manual and the segmentation results obtained by ScLNet, Backbone, Backbone + multi-scale, Backbone + DAC 
and ScLNet w/o atrous, respectively. 

Table 4 
HD of the developed network with the dice loss function and different λ in the hybrid loss functions.  

District 0.2 0.4 0.6 0.8 

Scleral lens 3.7185 3.6840 3.6914 3.7507 
tear fluid reservoir 3.8255 3.7838 3.7939 3.8477 
cornea 3.5753 3.5355 3.5420 3.5484  
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It should be noted that in our study, there is a limitation regarding OCT image data sourced from a single OCT machine. A key 
challenge for deep learning is domain shift, where models trained on one dataset may struggle when applied to slightly different 
datasets from various sources. The issue of generalizability is shown by a commercial AI device used to screen for diabetic retinopathy, 
which was only approved for use with one specific camera due to concerns about performance with other cameras [37,38]. Various 
methods have been suggested to tackle this problem, including transfer learning and style transfer. Transfer learning involves pre
training a network on a large general image database and fine-tuning it on a smaller, more specific dataset. Style transfer can be done 
directly on paired images using encoder and decoder networks or by transferring styles between images [39,40]. Recently, a foun
dational CV model for Segment Anything [41] has been released. These models are designed to segment or delineate various types of 
objects or regions within images, regardless of their complexity or diversity. In our upcoming study, we plan to leverage these 
foundational models to effectively adapt segmentation across domains, addressing the challenges. 

6. Limitations 

Our work is still limited to some degree, as only our dataset is performed in our experiments, which can limit the model’s potential 
use in the multi-center application. Multi-center data segmentation is expected in the future to further evaluate the performance of the 
proposed model. The dataset was obtained using a single type of OCT device, the validation of which has not been extended to other 
OCT models, as previously mentioned. In addition, ScL can be used for refractive correction after corneal transplantation, severe dry 
eye, and neurotrophic keratitis, and more types of patients will be included in our dataset in the future. And sclera vasculature are an 
important feature for scleral recognition. Currently, our segmentation network is unable to segment sclera vasculature, but this will be 
considered in the future. 

7. Conclusion 

Here, we introduce a meticulously designed corneal segmentation dataset with scleral lenses in OCT images, representing a large 
and systematically annotated collection. To the best of our knowledge, this is the first OCT dataset released to the research community 
specifically for the task of TFR segmentation. These images were obtained from both regular and irregular cornea patients, divided into 
two subsets. 

Furthermore, our proposed ScLNet demonstrates a high level of accuracy in simultaneously extracting ScL, TFR, and corneal layer 
masks and boundaries from OCT images. This capability is essential for generating quantitative parameters to evaluate the fitting of 
scleral lenses. In ScLNet, the utilization of DAC layers integrates images at different scales, enabling the network to capture content 
information from various layers at multiple resolutions. The incorporation of boundary-guided construction enhances the network’s 
ability to learn high-frequency features. This high-frequency feature learning helps the network generalize well to different edges of 
the cornea and improves its performance in discontinuous boundaries. 

We have demonstrated that multi-task learning with task-wise early stopping allows each model to be more robust to different 
irregular interfaces with severe, highly blurred margins compared to a single-task method. 

Data availability 
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available at https://github.com/smallJude/ScLNet. 
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