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A B S T R A C T

Improving efficiency has long been a focal challenge in sampling literature. However, simulta-
neously enhancing estimator efficacy and optimizing survey costs is a practical necessity across
various fields such as medicine, agriculture, and transportation. In this study, we present a
comprehensive family of generalized exponential estimators specifically designed for estimating
population means within stratified sampling frameworks. Optimizing the survey cost is one the
major challenges in the stratified sampling because the cost of the survey is fixed and decided
before the survey. To optimize survey costs, we employ integer programming and Lagrange
multipliers. We have carefully derived the Mean Square Error (MSE) of the proposed estimators
and addressed this as an optimization problem to further refine estimator performance in light of
cost constraints and optimal sample sizes. The results have been rigorously validated using real-
world datasets, and both theoretical and empirical evaluations show that the proposed estimators
significantly outperform existing alternatives. These findings underscore the estimators’ practical
relevance and theoretical robustness.

1. Introduction

Stratified sampling is often used in research and surveys because it makes population figures more accurate than simple random
sampling, especially when the population is not all the same. Stratified sampling is a method used in poll research and statistical
analysis where a population is split into separate groups, or strata, and samples are taken from each group separately. This method
works especially well when the population is heterogeneous because it makes population figures like the mean or average more ac-
curate by taking into account differences within and between groups (Singh et al., 1996).

Extra information about the population, which is sometimes called an “auxiliary variable,” is often available in real life. These
factors are linked to the variable of interest and can be used to make estimators work better. Researchers can get more accurate
predictions of population statistics without raising the sample size by using extra information during the estimating process.

[1] pioneered the discussion of the ratio estimation method utilizing auxiliary information. Building on this foundation, numerous
researchers have expanded on this approach. Key contributions have been made by Ref. [2–4], and more recently [5]. These scholars
have collectively advanced the field of population parameter estimation through the innovative use of auxiliary data. Stratified
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sampling is a widely utilized sampling design, particularly effective for handling heterogeneous data. It typically requires a smaller
sample size compared to Simple Random Sampling while offering greater precision in estimates. The authors [6–13] have contributed
seminal works to the literature on stratified sampling, offering foundational insights and advancing key theoretical frameworks in the
field However, limitations like time, money, and resource shortages are common in real-world sampling. In these situations, figuring
out the best way to divide the overall sample size across the strata is essential to getting precise estimates while keeping expenses to a
minimum.

This problem is generally approached in two primary ways.

(i) Minimizing variance for a fixed cost.
(ii) Minimizing cost for a fixed variance.
[14] was the pioneer in addressing the problem of optimal sample allocation in stratified sampling. Since then, significant con-
tributions have been made by various researchers, including [15–21]. Notwithstanding its promise, careful methodological design
and optimization are necessary for the efficient use of auxiliary variables in stratified sampling when budgetary limitations are
present.

The motivation for this work lies in addressing the following challenges.

1. Heterogeneity Across Strata: The sizes, costs of data gathering, and degrees of variability may differ throughout strata. If these
distinctions are ignored, the allocation may be inefficient, either under sampling highly variable strata or oversampling less var-
iable ones.

2. Financial Limitations: In actuality, the cost of sampling often increases in direct proportion to the sample size. One such restriction
is that the whole cost of sampling cannot go beyond a certain spending limit. Sampling procedures must thus strike a compromise
between statistical accuracy and cost effectiveness.

3. Precision Maximization: By include auxiliary variables in the estimation procedure, stratified sampling aims to reduce the variance
of the population mean estimate. The advantages of stratified sampling, such as lower variance as compared to ordinary random
sampling, could not be fully realized if resources are not allocated appropriately.

The study attempts to give an allocation technique that minimizes the variation of the population mean estimate while remaining
within budget by using the cost and variance features of each stratum. In domains like economics, medicine, and environmental
studies, where effective resource usage is essential for extensive surveys and research initiatives, this optimization has immediate
applications.

In order to do this, we provide a new family of generalized exponential estimators for population mean estimation that includes
auxiliary variables and an economical sampling technique for the best distribution across strata. To estimate the populationmeanmore
precisely, the suggested technique makes use of the link between the study and auxiliary variables. Our method not only reduces the
estimate’s variance within financial limits, but it also shows how useful auxiliary data can be in improving stratified sampling’s
effectiveness. To find the ideal sample sizes for every stratum, we frame an optimization problem and use the Lagrange multiplier
approach. We compare the MSEs of the suggested and current estimators at these optimized sample sizes after applying this opti-
mization approach to both.

A thorough framework for enhancing the planning and execution of stratified sampling in resource-constrained environments is
provided by this combined emphasis on cost optimization and auxiliary variable use.

Fig. 1. Samples using Stratified Sampling.
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Let us consider a population having N units. It is divided into L homogeneous subgroups called strata and kth strata consist of Nk

units where k = 1,2, 3,…, L such that
∑L

k=1 Nk = N. Then nk sample units are drawn from the kth stratum by simple random sampling
without replacement scheme. And

∑L
k=1 nk = n. Fig. 1 shows how samples are drawn from the population using stratified sampling.

Let.
Y: be the study variable.
X: be the auxiliary variable.
Yk: Population mean of the study variable Y for the kth stratum.
Xk: Population mean of the auxiliary variable X for the kth stratum.
yk = 1

nk

∑nk
i=1 yki: Sample means of study variable from the kth stratum and yki be the ith unit in the kth stratum.

xk = 1
nk

∑nk
i=1 xki: Sample means of auxiliary variable from the kth stratum and xki be the ith unit in the kth stratum.

Then let us define the approximations as:

ξk0 =
yk
Yk

− 1 and ξk1 =
xk
Xk

− 1

Such that E(ξk0) = E(ξk1) = 0

E
(
ξ2k0
)
=

(
Nk − nk
Nknk

)

C2
ky

E
(
ξ2k1
)
=

(
Nk − nk
Nknk

)

C2
kx

E(ξ0ξ1)=
(
Nk − nk
Nknk

)

ρkxyCkxCky

where

Yk =
1
Nk

∑Nk

i=1
Yki ; Xk =

1
Nk

∑Nk

i=1
Xki; S2ky =

1
(Nk − 1)

∑Nk

i=1
(Yki − Y)2 ; S2kx =

1
(Nk − 1)

∑Nk

i=1
(Xki − X)2

Skxy =
1

(Nk − 1)
∑Nk

i=1
(Yki − Y)(Xki − X) ; C2

ky =
S2ky
Y2
k

; C2
kx =

S2kx
X2
k

; ρkxy =
Skxy
SkxSky

; fk =
(
Nk − nk
Nknk

)

2. Existing estimators

Separate Usual mean estimator T0 of Population mean Y

T0 =
∑L

k=1

Wkyk (1)

Where Wk =
Nk
N is the known proportion of population units.

The Variance of the estimator T0 is given by:

V(T0)=
∑L

k=1

W2
k

(
Nk − nk
Nknk

)

Y2
kC

2
ky (2)

Separate Ratio estimator T1 of Population mean Y

T1 =
∑L

k=1

Wkyk
(
Xk

xk

)

(3)

The Mean Square Error of the estimator T1 is:

MSE(T1)=
∑L

k=1
W2

kY
2
k

(
Nk − nk
Nknk

)(
C2
ky +C2

kx − 2ρkxyCkxCky

)
(4)

Separate Exponential Estimator T2 of Population mean Y

T2 =
∑L

k=1

Wkyke

(
Xk − xk
Xk+xk

)

(5)
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The Mean Square Error of T2 is:

MSE(T2)=
∑L

k=1

W2
kY

2
k

(
Nk − nk
Nknk

)(

C2
ky +

(
1
4

)

C2
kx − ρkxyCkxCky

)

(6)

Separate Regression estimator Treg of population mean Y

Treg =
∑L

k=1

Wk(yk + βk(Xk − xk)) (7)

The Mean Square Error of Treg is:

Min.MSE
(
Treg
)
=
∑L

k=1
W2

k

(
Nk − nk
Nknk

)

Y2
k

(
1 − ρ2kxy

)
C2
ky (8)

Estimators given in equations (1), (3), (5) and (7) are the existing estimators considered in this study and equations (2), (4), (6) and
(8) represents their MSE expression respectively.

3. Proposed estimators

Motivated by Ref. [5] we proposed generalized exponential estimator T3 for estimating population mean Y under stratified
sampling:

T3 =
∑L

k=1

Wkyka

(
Xk − xk
Xk+xk

)

Where a > 0. (9)

Estimator T3 is same as estimator T2 for a = 2.718
Using approximations we write equation (9) as:

T3 =
∑L

k=1

WkYk(1+ ξko)a

(
Xk − Xk(1+ξk1)
Xk+Xk(1+ξk1)

)

(10)

=
∑L

k=1
WkYk(1+ ξko)a

[

−
ξk1
2

(

1+
ξk1
2

)− 1]

Expanding
(

1+
ξk1
2

)− 1

and ignoring higher order terms as they become very small.

We write equation (10) as:

T3 =
∑L

k=1

WkYk

(

1+ ξko −
ξk1
2

log a+
ξ2k1
4

log a+
ξkoξk1
2

log a+
ξ2k1
8
(log a)2

)

(11)

Subtracting Y =
∑L

k=1 WkYk from both the sides of equation (11) and squaring it we get:

(T3 − Y)2 =
∑L

k=1
W2

kY
2
k

(

ξ2ko +
ξ2k1
4
(log a)2 − ξkoξk1 log a

)

(12)

Taking expectation on both the sides of equation (12)

MSE(T3)=E(T3 − Y)2 =
∑L

k=1

W2
k

(
Nh − nh
Nhnh

)

Y2
k

(

C2
ky +

C2
kx
4
(log a)2 − ρkxyCkxCky log a

)

(13)

To get Min. MSE we Differentiate equation (13) with respect to log a and equate it to zero

ak = exp
(2ρkxyCky

Ckx

)

(14)

Substituting this value given in equation (14) in MSE expression we get the min. MSE of estimator T3 as:

Min.MSE(T3)=
∑L

k=1
W2

k

(
Nk − nk
Nknk

)

Y2
k

(
1 − ρ2kxy

)
C2
ky (15)

Min. MSE (T3) expression given in equation (15) is same as MSE expression of the regression estimator given in equation (8).
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Table 1
Showing members of generalized family of estimators Tprop

λ1 λ2 α1 α2 β1 β2 Members of estimator Tprop

0 1 – 0 – 0 T0 =
∑L

k=1
Wkyk

0 1 – 1 – 0
T1 =

∑L
k=1

Wkyk
(
Xk

xk

)

0 1 – 1 – 1

T21 =
∑L

k=1
Wkyk

(
Xk

xk

)

a

(
Xk − xk
Xk+xk

)

0 1 – α2 – β2

T22 =
∑L

k=1
Wkyk

(
Xk

xk

)α2
a

(
Xk − xk
Xk+xk

)β2

1 0 0 – 1 –

T31 =
∑L

k=1
Wkyka

(
Xk − xk
Xk+xk

)

λ1 0 0 – 1 –

T32 =
∑L

k=1
Wkλ1kyka

(
Xk − xk
Xk+xk

)

λ1 0 1 – 1 –

T33 =
∑L

k=1
Wkλ1kyk

(
Xk

xk

)

a

(
Xk − xk
Xk+xk

)

λ1 0 − 1 – 1 –

T34 =
∑L

k=1
Wkλ1kyk

(
xk
Xk

)

a

(
Xk − xk
Xk+xk

)

λ1 0 1 – − 1 –

T35 =
∑L

k=1
Wkλ1kyk

(
Xk

xk

)

a

(
xk − Xk
Xk+xk

)

λ1 0 − 1 – − 1 –

T36 =
∑L

k=1
Wkλ1kyk

(
xk
Xk

)

a

(
xk − Xk
Xk+xk

)

λ1 0 α1 – β1 –

T37 =
∑L

k=1
Wkλ1kyk

(
Xk

xk

)α1
a

(
Xk − xk
Xk+xk

)β1

λ1 λ2 0 0 1 − 1

T38 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyka

(
Xk − xk
Xk+xk

)

+ λ2kyka

(
xk − Xk
Xk+xk

)⎞

⎟
⎠

λ1 λ2 1 1 1 0

T41 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)

a

(
Xk − xk
Xk+xk

)

+ λ2kyk
(
Xk

xk

)
⎞

⎟
⎠

λ1 λ2 1 0 1 0

T42 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)

a

(
Xk − xk
Xk+xk

)

+ λ2kyk

⎞

⎟
⎠

λ1 λ2 1 0 0 1

T43 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)

+ λ2kyka

(
Xk − xk
Xk+xk

)⎞

⎟
⎠

λ1 λ2 1 1 − 1 0

T44 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)

a

(
xk − Xk
Xk+xk

)

+ λ2kyk
(
Xk

xk

)
⎞

⎟
⎠

λ1 λ2 1 1 1 − 1

T45 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)

a

(
Xk − xk
Xk+xk

)

+ λ2kyk
(
Xk

xk

)

a

(
xk − Xk
Xk+xk

)⎞

⎟
⎠

λ1 λ2 1 − 1 − 1 1

T46 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)

a

(
xk − Xk
Xk+xk

)

+ λ2kyk
(
xk
Xk

)

a

(
Xk − xk
Xk+xk

)⎞

⎟
⎠

λ1 λ2 α1 α2 β1 β2

T47 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)α1
a

(
Xk − xk
Xk+xk

)β1

+ λ2kyk
(
Xk

xk

)α2
a

(
Xk − xk
Xk+xk

)β2⎞

⎟
⎠

λ1 1-λ1 α1 α2 β1 β2

T48 =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)α1
a

(
Xk − xk
Xk+xk

)β1

+ (1 − λ1k)yk
(
Xk

xk

)α2
a

(
Xk − xk
Xk+xk

)β2⎞

⎟
⎠
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Motivated by Ref. [11], we proposed generalized family of estimators given as:

Tprop =
∑L

k=1
Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)α1
a

[
X− x
X+x

]β1

+ λ2kyk
(
Xk

xk

)α2
a

[
X− x
X+x

]β2⎞

⎟
⎠ (16)

where λ1k + λ2k ∕= 1 and (α1, α2, β1, β2 and a) are suitably chosen constants which reduces estimator Tprop into different forms. For a =

2.718 all the members of generalized family of estimators reduces to exponential estimators. Members of the proposed class of esti-
mators are mentioned in Table 1. To study the properties of estimator Tprop, we calculate the bias and mean square error of the
estimator. For deriving MSE (Tprop), equation (16) can be written as:

Tprop =
∑L

k=1

Wk

{

λ1kYk(1+ ξ0)
(

1+α1ξ1 +
α1(α1 + 1)

2
ξ21

)(

1 −
β1ξ1
2

log a+
β1ξ21
4

log a+
β21ξ21
8

(log a)2
)

+ λ2kYk(1+ ξ0)
(

1+α2ξ1 +
α2(α2 + 1)

2
ξ21

)(

1 −
β2ξ1
2

log a+
β2ξ21
4

log a+
β22ξ21
8

(log a)2
)} (17)

Tprop =
∑L

k=1
Wk
{

λ1kYk
(
1+ ξ0 − a0ξ1 − a0ξ0ξ1 + a1ξ21

)
+ λ2kYk

(
1+ ξ0 − b0ξ1 − b0ξ0ξ1 + b1ξ21

)}
(18)

where a0 = α1+ β1
2 log a

b0 =α2 +
β2
2
log a

a1 =
α1(α1 + 1)

2
+

α1β1
2

log a+
β1
4
log a+

β21
8
(log a)2

b1 =
α2(α2 + 1)

2
+

α2β2
2

log a+
β2
4
log a+

β22
8
(log a)2

subtracting Y from both the sides of equation (18) and squaring we get

(
Tprop − Y

)2
=
∑L

k=1

W2
hY

2
h
{
1+ λ21k

(
1+ ξ20 +

(
a20 +2a1

)
ξ21 − 4a0ξ0ξ1

)
+ λ22k

(
1+ ξ20 +

(
b20 +2b1

)
ξ21 − 4b0ξ0ξ1

)

+2λ1kλ2k
(
1+ ξ20 +(a1 + a0b0 + b1)ξ21 − 2(a0 + b0)+ ξ0ξ1

)
− 2λ1k

(
1+ a1ξ21 − a0ξ0ξ1

)
− 2λ2k

(
1 − b0ξ0ξ1 + b1ξ21

)}

(19)

taking expectation on both the sides of equation (19)

MSE
(
Tprop

)
=
∑L

k=1

W2
kY

2
k
{
1+ λ21kA1k + λ22kA2k +2λ1kλ2kA3k − 2λ1kA4k − 2λ2kA5k

}
(20)

where A1k = 1+ fk
(
C2yk +

(
a20 + 2a1

)
C2xk − 4a0ρxykCykCxk

)

A2k =1+ fk
(
C2
yk +

(
b20 +2b1

)
C2
xk − 4b0ρxykCykCxk

)

A3k =1+ fk
(
C2
yk +(a1 + a0b0 + b1)C2

xk − 2(a0 + b0)ρxykCykCxk

)

A4k =1+ fk
(
a1C2

xk − a0ρxykCykCxk
)

A5k =1+ fk
(
b1C2

xk − b0ρxykCykCxk
)

differentiating equation (20) with respect to λ1k and λ2k, equate it to zero we get:

λ1k =
A3kA5k − A2kA4k

A2
3k − A1kA2k

λ2k =
A3kA4k − A1kA5k

A2
3k − A1kA2k

substituting value of λ1k and λ2k in equation (20) we get minimum mean square error expression of Tprop as:
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Min.MSE
(
Tprop

)
=
∑L

k=1

W2
kY

2
k

(

1 −
A1kA2

5k + A2kA2
4k − 2A3kA4kA5k

A1kA2k − A2
3k

)

Particular case of Tprop: When λ1k + λ2k = 1, then Tprop becomes

T48 =
∑L

k=1

Wk

⎛

⎜
⎝λ1kyk

(
Xk

xk

)α1
a

(
Xk − xk
Xk+xk

)β1

+(1 − λ1k)yk
(
Xk

xk

)α2
a

(
Xk − xk
Xk+xk

)β2⎞

⎟
⎠ (21)

proceeding in the same way as for the estimator Tprop, we obtain MSE for T48 given in equation (21) as follows:

MSE(T48)=
∑L

k=1
W2

kY
2
k
(
1+ λ21k(A1k +A2k − 2A3k) − 2λ1k(A2k − A3k +A4k − A5k)+ (A2k − 2A5k)

)
(22)

differentiating equation (22) with respect to λ1k and equating it to zero we get:

λ1k =
(A2k − A3k + A4k − A5k)

(A1k + A2k − 2A3k)
= λ*1k(Say) (23)

substituting value of λ1k given in equation (23) in equation (22) we get minimum mean square error expression of T48 same as the
regression estimator:

Fig. 2. Density plot of the data used for estimation.

Table 2
Population I [6].

Stratum
Population Parameters

Nk nk hth hth Syk Sxk Syxk ρk

1 127 31 703.74 20804.59 883.835 30486.75 25237154 0.936
2 117 21 413 9211.79 644.922 15180.77 9747943 0.996
3 103 29 573.17 14309.3 1033.467 27549.7 28294397 0.994
4 170 38 424.66 9478.85 810.585 18218.93 14523886 0.983
5 205 22 267.03 5569.95 403.654 8497.776 3393592 0.989
6 201 39 393.84 12997.59 711.723 23094.14 15864574 0.965

Table 3
Population II [22].

Stratum k
Population Parameters

Nk nk hth hth Syk Sxk Syxk ρk

1 106 9 1536 24,375 6425 49,189 259152246.5 0.82
2 106 17 2212 27,421 11,552 57,461 570858945.9 0.86
3 94 38 9384 72,409 29,907 16,0757 4326983639 0.90
4 171 67 5588 74,365 28,643 2,85,603 8098721462 0.99
5 204 7 967 26,441 2390 45,403 77044350.7 0.71
6 173 2 404 9844 946 18,794 15823420.36 0.89
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Min.MSE(T48)=
∑L

k=1

W2
k

(
Nk − nk
Nknk

)

Y2
k

(
1 − ρ2kxy

)
C2
ky

4. Empirical study

For the empirical study we have considered the following two real data sets and density plot has been presented in Fig. 2, providing
insights into the shape of the data used for the empirical study.

Data SetI [6]: For elementary and secondary schools spread throughout 923 districts in six regions of Turkey in 2007, the number
of teachers is the study variable, and the number of students is the auxiliary variable. With the designations of Stratum 1, 2, 3, 4, 5, and
6, the six areas are regarded as strata. Table 2 contains information on Data SetI.

Data Set II: The amount of apples produced in 854 Turkish villages in 1999 is the main variable, while the number of apple trees is
the auxiliary variable. The data is categorised according to Turkey’s regions, and neyman allocation is used to choose random samples
(villages) from each stratum (region). Table 3 contains information on Data Set II.

Table 4
MSE table for the population I and population II

MSE of estimators for population I MSE of estimators for population II Rank

Estimator MSE Estimator MSE 
T0 2229.266 T0 697800.2 
T1 129.8228 T1 165100.1 XI
T2 571.6983 T2 352641 
Treg 107.341 Treg 111918 VIII
T3 107.341 T3 111918 VIII
Members of Tprop a MSE Members of Tprop a MSE 
T21 (Performs better for 0<a<2.718 …) 1.5 297.0492 T21 (Performs better for 0<a<2.718 …) 1.5 133969.52 

2 536.9064 2 127777.67 
2.718 … 903.6387 2.718 … 135177.39 
4 1528.073 4 165822.15 

T31 2.718 … 571.6983 T31 2.718 … 352641 VIII

exp
(

2ρk
Cyk

Cxk

)
107.341

exp
(

2ρk
Cyk

Cxk

)
111918

T32 (Performs better for 2.718<a<11) 2.718 … 567.9373 T32 (Performs better for 2.718<a<10) 2.718 … 285388.18 VII
3 471.9605 5 184770.8
5 156.9212 10 106942.7
11 106.54 20 111876.7

T33 (Performs better for 0<a<2.718) 2.718 783.8644 T33 (Performs better for 0<a<2.718) 2.718 112021.59 
2 485.4033 2 106958.09 
0.5 306.1075 0.5 105223.78 

T34 (Performs better for a>2.718) 2.718 4171.273 T34 (Performs better for a>2.718) 2.718 660450.04 X
5 2859.802 20 286184.6
40 120.9056 65 107710.2

T35 (Performs better for 0<a<2.718) 2.718 567.8754 T35 (Performs better for 0<a<2.718) 2.718 285388.18 
2 306.1075 1.5 186842 
1.5 161.6897 0.5 106958.1 

T37 (Performs better for a>2.718)
(for α = 0.5 and β = 0.5)

2.718 198.1782 T37 (Performs better for a>2.718)
(for α = 0.5 and β = 0.5)

2.718 200508.27 IX
4 135.1029 4 173578.7
6 116.9228 28 107057

T38 (Performs better for 1<a<2.718) 2.718 92.3099 T38 (Performs better for 1<a<2.718) 2.718 96832.33 III
2 84.44973 2 93004.3 
1.5 78.725485 1.5 90345.86 

T41 (very small effect of a, no variation in
MSE)

2.718 106.353322 T41 (very small effect of a, no variation in
MSE)

2.718 97436.754 VI

T42 (Performs better for a>2.718) 2.718 95.65255 T42 (Performs better for a>2.718) 2.718 96014.664 II
4 75.881426 4 93502.15
11 31.60157 11 78978.52

T43 (Performs better for 0<a<2.718) 2.718 105.78164 T43 (Performs better for a>2.718 …) 2.718 96122.5 V
2 105.57572 2 92119.85
1.1 105.1318 1.5 82665.47

T44 (Performs better for a>2.718) 2.718 105.78177 T44 (Performs better for a>2.718) 2.718 96124.3 IV
4 105.5200 4 90391.73
6 105.22009 6 62028.99

T45 (Performs better for a>2.718) 2.718 100.606181 T45 (Performs better for a>2.718) 2.718 97737.5 I
5 80.15791254 11 74972.25
10 2.73783011 20 49452.56

T46 (Performs better for a>2.718) 2.718 92.3154242 T46 (Performs better for a>2.718) 2.718 96834.14 III
5 78.49649273 5 90240.99
11 78.60822805 11 89695.98

T48 (MSE does not depends on value of a) 2.718 107.341 T48 (MSE does not depends on value of a) 2.718 111918 VIII
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Utilizing the data sets presented in Tables 2 and 3, we have computed the MSE of the estimators defined in Table 1 to assess the
efficiency of our proposed estimators. The MSE values for these estimators are summarized in Table 4. In our analysis, we varied the
parameter a around 2.718, recording the corresponding values of a and minimum MSE obtained. We have opted not to include MSE
values for all possible a to avoid unnecessarily lengthening Table 4.

From Table 4, we draw the following conclusions.

• Performance of Generalized Exponential Estimators: The members of the proposed family of generalized exponential esti-
mators consistently outperform the existing estimators. This is evidenced by the fact that the Mean Square Error (MSE) of the
proposed estimators is notably lower compared to that of the existing estimators.

• Comparison of MSE: Our comparison of the MSEs reveals that the proposed estimators offer superior precision. The reduced MSE
indicates that the proposed estimators provide more accurate estimates of the population mean under stratified sampling.

• Convergence to Exponential Estimators: It is observed that all proposed estimators converge to exponential estimators when the
parameter a approaches the value 2.718 (the base of the natural logarithm, e). This demonstrates the flexibility and generalizability
of the proposed estimators within the framework of exponential estimators.

Table 5
PRE table for the proposed and existing estimators.

Estimators PRE of Estimators (n = 30) PRE of Estimators (n = 60) PRE of Estimators (n = 90)

T0 100 100 100
T1 128.1927 129.2832 131.4731
T2 240.0782 241.8273 242.8073
Treg 373.8135 373.9876 374.4867
T3 373.8135 373.9876 374.4867
Members of Tprop a PRE a PRE a PRE
T21 (Performs better for 0<a<2.718) 1.5 227.7501 1.5 227.9872 1.5 228.2462

2 205.1442 2 205.8332 2 205.8445
2.718 182.6632 2.718 183.2213 2.718 183.4563
4 157.4030 4 158.2321 4 158.3452

T31 2.718 240.0782 2.718 240.8976 2.718 241.9232

exp
(

2ρk
Cyk

Cxk

)
373.8135

exp
(

2ρk
Cyk

Cxk

)
374.3421

exp
(

2ρk
Cyk

Cxk

)
374.4322

T32 (Performs better for 2.718<a<11) 2.718 240.7384 2.718 241.4321 2.718 241.5621
3 244.524 3 245.4325 3 245.5432
5 256.1329 5 256.8732 5 256.9992
11 258.4824 11 259.2321 11 259.4022

T33 (Performs better for 0<a<2.718) 1.5 233.6703 1.5 234.2132 1.5 234.5422
2.718 189.143 2.718 189.9872 2.718 189.9922
4 164.2214 4 164.7823 4 164.8228

T34 (Performs better for a>2.718) 2.718 105.5624 2.718 106.3421 2.718 106.4452
5 110.4826 5 110.8982 5 110.9923
40 120.4687 40 120.8762 40 120.8882

T35 (Performs better for 0<a<2.718) 2.718 240.7452 2.718 241.2323 2.718 241.2672
2 242.4734 2 242.8762 2 242.9642
1.5 248.1682 1.5 248.8672 1.5 248.8852

T37 (Performs better for a>2.718)
(for α = 0.5 and β = 0.5)

2.718 375.6724 2.718 376.8222 2.718 376.8972
4 379.8578 4 380.2342 4 380.4521
6 380.4025 6 380.8976 6 380.9234

T38 (Performs better for 1<a<2.718) 2.718 378.4762 2.718 378.8765 2.718 378.9987
2 380.5445 2 380.8876 2 380.8976
1.5 382.6754 1.5 382.7656 1.5 382.8765

T41 (very small effect of a, small variation in MSE) 2.718 374.6294 2.718 374.6543 2.718 374.7865
T42 (Performs better for a>2.718) 2.718 377.3478 2.718 377.2245 2.718 377.8876

4 378.3715 4 379.2321 4 378.8865
11 381.8026 11 382.4532 11 381.8976

T43 (Performs better for 0<a<2.718) 2.718 374.6139 2.718 375.3212 2.718 374.7265
2 374.8008 2 375.2132 2 374.8976
1.5 375.0213 1.5 375.7632 1.5 375.1113

T44 (Performs better for a>2.718) 2.718 374.6139 2.718 375.2343 2.718 374.7842
4 374.8573 4 375.6782 4 374.8982
6 375.1978 6 375.9872 6 375.2445

T45 (Performs better for a>2.718) 2.718 374.9811 2.718 375.3242 2.718 374.9921
5 377.158 5 377.9872 5 378.1232
10 384.3127 10 384.7621 10 384.3127

T46 (Performs better for a>2.718) 2.718 374.1115 2.718 374.1243 2.718 374.1248
5 374.5115 5 374.6222 5 374.6245
11 374.5146 11 374.6573 11 374.6643

T48 (PRE does not depends on value of a) 2.718 373.8135 2.718 373.9876 2.718 374.4867
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• The estimators T21, T33, T35, T38 and T43 demonstrate greater efficiency compared to the exponential estimators for values of 0 <

a < 2.718. This indicates that within this range of a, the proposed estimators yield lower MSE and hence provide more accurate and
reliable estimates of the population mean in stratified sampling.

• The estimators T22,T31,T32,T34,T36,T37,T41,T42.T43,T44,T45 and T46 exhibit superior efficiency compared to the exponential es-

timators for values of 2.718 < a < exp
(

2ρk
Cyk
Cxk

)

.This means that within this range of a, the proposed estimators achieve lower MSE

and thus offer more precise and effective estimates of the population mean in stratified sampling.
• The estimator T48 is unique in that it does not depend on the value of a. Consequently, its MSE remains consistent regardless of a,
and is equivalent to the MSE of the regression estimator. This property highlights T48’s robustness and stability in estimation,
making it a reliable choice when compared to other estimators that vary with a.

• MSE of the ratio cum dual to ratio estimator T45 is the smallest among all the estimators discussed. Consequently, this estimator is
identified as the best performer in terms of accuracy and reliability, providing the most precise estimates of the population mean

Overall, the results affirm that the generalized exponential estimators proposed in this study deliver enhanced estimation per-
formance compared to traditional methods.

5. Simulation study

To confirm our findings, simulation research was carried out.

Step 1. Using the multivariate normal distribution, we created a population of size N = 1050 for the simulation research (study
variable Y and auxiliary variable X with a specific correlation coefficient).

Step 2. Since stratified sampling is what we are working with, we create random samples for every stratum using various factors to
create a heterogeneous stratum. To create the population for the three stratums k = 1,2,and 3, we utilized the following parameters:

N1 =350;N2 = 350 and N3 = 350; Y1 = 50;Y2 = 40 and Y3 = 30 ;

X1 =51;X2 = 41 and X3 = 31 ; σ2x1 = 121; σ2x2 = 49 and σ2x3 = 81

σ2y1 =25; σ2y2 = 36 and σ2y3 = 64 ; ρ1 = 0.70; ρ2 = 0.80 and ρ3 = 0.90

Step 3. Next, we use basic random sampling without replacement to choose 1500 bi-variate samples of sizes n = 30,60, and 90 from
each stratum.

Step 4. We calculate the MSE of estimators for each sample drawn from the population using this sample data. To get the MSE of the
estimator, we average the total of the MSEs of the three strata.

MSE(Ti)=
1

1500
∑1500

j=1
MSE

(
Tj
i

)

Where j is number of iterations and Ti is ith estimator and MSE
(
Tj
i

)
=
∑3

k=1MSE
(
Tj
ik

)
.

Percent Relative Efficiency of the estimators is calculated as PRE
(
Tj
i

)
=

MSE(T0)
MSE(Tj

i)
*100where Tj

i = T0,T1,T2,Treg,T3,T21,T22,T31,T32,

T34,T35,T36,T37,T41,T42.T43,T44,T45 and T46
Results of simulation study are illustrated in Table 5.
From the analysis of Tables 4 and 5, it is evident that both the empirical study and the simulation study produce consistent and

comparable results. This similarity in outcomes suggests a strong alignment for results discussed for the proposed estimators.
Consequently, within the specified range, the proposed estimators demonstrate superior performance and reliability. As a result, they
are recommended over the traditional exponential estimators for achieving more accurate and efficient estimates.

Table 6
Data set for the empirical analysis from [6].

Stratum
Population Parameters

Nk Yk Xk Syk Sxk Syxk ρh

1 127 703.74 20804.59 883.835 30486.75 25237154 0.936
2 117 413 9211.79 644.922 15180.77 9747943 0.996
3 103 573.17 14309.3 1033.467 27549.7 28294397 0.994
4 170 424.66 9478.85 810.585 18218.93 14523886 0.983
5 205 267.03 5569.95 403.654 8497.776 3393592 0.989
6 201 393.84 12997.59 711.723 23094.14 15864574 0.965
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6. Optimization problem

Perpetually, budget for a survey is fixed and, in such cases, statistician has to minimize the variance of the estimator due to the cost
curtailment or he has to minimize the cost for the acceptable value of variance.

Therefore, in stratified sampling to get the better results the allocation of sample sizes to different strata is made in any one of the
following ways.

• Sampling variance is minimized for a given cost, or
• The cost is minimized for specified precision.

Here we will discuss the problem of sample allocation to different strata to minimize the variance for the fixed cost.
Our objective is to minimize the mean square error of the discussed estimators for the fixed cost. So, we set an optimization problem

as:
Minimize MSE (Ti) ; where i = 0,1,2,3,…
Subject to

∑L
k=1 cknk = C0

nk ≥ 2

nk ≤ Nk, nk are the integers.and we solve this problem using Lagrange’s multiplier method. It is a technique that is used to find the
local minima or maxima of a function subject to constraints. This method follows these simple steps.

Step 1. for the given multivariate function i.e. MSE (Ti) and the constraints
∑L

k=1 cknk = C0 , the Lagrange’s function is defined as:

φ(nk) = MSE(Ti) − λ
(∑L

k=1 cknk − C0
)
where λ is a Lagrange’s multiplier.

Step 2. differentiate φ(nk) with respect to nk to get the partial derivative and set it equal to zero.

Step 3. Search for any immediate solution of nk, if not then precede further drop out λ and equate the equation to get the value of nk.

To solve our problem, we have considered following data set given in table:
Using above data, we will derive the integer programming problem for minimizing the mean square error of our proposed estimator

T3 by taking fixed cost as c1 = 2, c2 = 3, c3 = 4, c5 = 5, c4 = 6, c5 = 7 and C0 = 400. The optimization problem for estimator T4 is
written as:

Minimize 96789.38
n1 + 3320.74

n2 + 12778.2
n3 + 22149.75

n4 + 3564.889
n5 + 34837.95

n6
Subject to 2n1+ 3n2 + 4n3 + 5n4 + 6n5 + 7n6 ≤ 400

nk ≥2nk ≤ Nk

where k = 1,2,3,4,5 and 6
Similarly, we write optimization problem and derive optimum sample size for the existing estimators T0, T1 and T2. To get the

optimum values of nk we use the Lagrange’s multiplier technique. We define the Lagrange’s function as:

φ(nk)=
∑L

k− 1

1
nk
Y2
kC

2
yk
(
1 − ρ2k

)
+ λ

(
∑L

k=1
cknk − C0

)

(24)

differentiating equation (24) with respect to nk and equation it to zero, we get:

nk =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Y2
kC

2
yk
(
1 − ρ2k

)

λck

√

(25)

and differentiating equation (24) with respect to λ and equating it to zero we get:

∑L

k=1
cknk =C0

substituting value of nk from equation (25) in equation (24) we get

∑L

k=1

ck

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Y2
kC

2
yk

(
1 − ρ2k

)

λck

√

=C0

⇒
̅̅̅
λ

√
=
∑L

k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Y2
kC

2
yk
(
1 − ρ2k

)
ck

C0

√

(26)

put this value of equation (26) in equation (25), we get:
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nk =
C0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Y
2
kC2yk(1− ρ2k)

ck

√

∑L

k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Y2
kC

2
yk
(
1 − ρ2k

)
ck

√

nk is the optimum sample size for kth stratum for fixed cost C0 for the estimator T3. In the same way using Lagrange’s multiplier method
we have computed optimum sample sizes for each estimator and the values are given in Table 7. MSE and PRE for the remaining
members of the proposed estimator can be obtained in the similar manner.

The MSE and PRE for both existing and proposed estimators are presented in Table 7 numerically and allocations for the different
estimators is visualized in Fig. 3. This table clearly depicts that the MSE of the proposed estimator has been significantly reduced when
considering fixed cost and the optimal sample sizes for the stratum determined using Lagrange’s method.

7. Conclusion

In this article, we have introduced a family of estimators Tprop that, for various values of appropriately chosen constants (α1,β1,α2,
and β2), Tprop reduces to different forms, collectively referred to as members of the generalized exponential family of estimators. We
compared the MSE of these proposed estimators with those of traditional estimators, including the usual mean estimator, ratio esti-
mator, exponential estimator, and the more general exponential estimators. Our analysis demonstrates that the proposed estimators
consistently outperform the existing alternatives, offering superior accuracy and efficiency in estimating the population mean under
stratified sampling.

Then, we addressed an optimization problem for improving the performance of the estimators by minimizing the MSE through the
determination of optimal sample sizes. The solution is obtained using the Lagrangemultiplier technique, and the results are thoroughly
validated using real-world dataset. Our findings reveal that the proposed estimators outperform existing methods by a significant
margin, highlighting their practical effectiveness and strong theoretical foundation.

The analysis makes the somewhat simplistic assumption that sampling costs follow a linear relationship. In actuality, costs may
have nonlinear elements like fixed costs or stratified logistical costs. This may be the study’s future focus. Additional research on the
non-linear cost may be done.
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Table 7
MSE and PRE table for the Population given in Table 6 for optimized sample size (using Lagrange’s multiplier) and fix cost.

Estimators Allocations MSE PRE

n1 n2 n3 n4 n5 n6

T0 (Usual Mean estimator) 27 16 23 16 7 12 6084.404 100
T1 (Ratio Estimator) 55 8 14 14 5 15 272.3166 2234.313
T2 (Exponential estimator) 27 15 21 16 7 13 1571.178 387.2511
T3 (Proposed Estimator) 51 8 13 15 6 16 237.6476 2560.263

Fig. 3. MSEs of the different estimators.
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