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Abstract
Background
Amyotrophic lateral sclerosis functional rating scale-revised (ALSFRS-R) has emerged as a clinical
prognostic marker for clinical and research purposes in amyotrophic lateral sclerosis (ALS). However, tools
for predicting disease progression are still underdeveloped. The aim of this study was to mathematically
model ALS progression to provide a reliable and personalized approach to the prognosis for ALS patients.
Also, it aimed to provide a reliable prediction tool for the current and newly diagnosed patients.

Methods
Twenty patients from the South-East England Amyotrophic Lateral Sclerosis register (SEALS) database were
included in the analysis. A non-linear logistic regression model was used to describe disease progression
from baseline health to the theoretical maximum disease. The reliability of predicted variables and
correlation between model parameters were assessed separately for each subject.

Results
The logistic regression model best described the disease progression in patients with a high progression rate.
Most notably, the model fitted better when a patient has progressed enough to approximately the midpoint
of the functional rating scale. The model failed to characterize the disease course in patients defined as slow
progressors. Furthermore, the linear relationship between the rate of progression and time since onset at
ALFRS-R score of 24 was evident in 65% of patients.

Conclusion
These results indicate that the rate of disease progression and time when ALSFRS-R declines to half the
maximum score are correlated with functional outcomes. Nonetheless, the logistic model failed to describe
disease course in patients with slow progression rates. Different rates of progression can be attributed to the
genetic heterogeneity of ALS. Thus, clinicians and patients can benefit from adding a gene factor to the
equation. With the outlined limitations, the model can provide a good prognostic tool.

Categories: Neurology
Keywords: amyotrophic lateral sclerosis, neuro degenerative diseases, alsfrs-r, disease progression, mathematical
modeling

Introduction
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease [1]. Most reported cases are
sporadic, but the analysis of the extended family has shown that up to 20% of ALS patients have a family
history of ALS [2]. The etiology of ALS is complex, with a growing number of underlying genetic and
environmental factors [3]. To date, several mutations in culprit genes have been linked to both familial and
sporadic forms of ALS, such as fused in sarcoma gene (FUS), C9orf72, superoxide dismutase 1 (SOD1), and
TAR DNA-binding protein (TARBDP) [4]

This genetically heterogeneous syndrome is characterized by a progressive loss of motor neurons in the
brain and spinal cord leading to a gradual and irreversible paralysis. Although it is often referred to as motor
neuron disease (MND), ALS patients also exhibit non-motor cognitive and behavioral manifestations [5].
Frontotemporal dementia and mild cognitive impairment are common comorbidities [5]. In a study
conducted by McLaughlin et al., ALS has been genetically linked to schizophrenia, suggesting a common
etiology [6].

Unfortunately, as the disease progresses, respiratory function deteriorates due to a weakening chest wall,
which then warrants assisted ventilation [7]. Death is usually eminent three years after the onset of
symptoms [7]. In Europe, the prevalence is 2·6-3·0 cases per 100 000 people [8,9]. In fact, the reported
incident rate is variable in different population-based studies: it has been estimated as 1·75 and 2·16 cases
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per 100 000 people worldwide [10] and of European descent, respectively [9]. The incident rate is slightly
higher among men than women (3·0:2·4) [9]. Also, the age of ALS disease onset was 61·8 ± 3·8 years (mean ±
SD) worldwide [9,11] while the median interquartile range age at diagnosis in Europe was 65·2 (56·0, 72·2)
years [9]. ALS is a diagnosis of exclusion based on the revised El Escorial criteria, which are mainly used for
patient recruitment in ALS research [12]. No confirmatory test exists, and the average duration between
symptoms onset and diagnosis is 11·5 months [13]. Probably, this delay is due to the insidious nature of the
disease, focal onset, and non-linearity of its progression. There is no cure for ALS but the battle against this
disease is promising. Riluzole, for example, is the standard of care in most countries and has been shown to
increase the median survival by two to three months [14].

ALS functional rating scale (ALSFRS)
A functional rating scale for ALS was developed to clinically monitor the degree of patient disability over
time [15]. Since then, it has become the most widely used outcome measure by clinicians and researchers
[16]. It is a questionnaire-based scale that covers four domains: bulbar, gross and fine motor, and respiratory
functions [16]. A scale from zero (maximum disability) to 48 (normal) is set, and a functional decline is
defined as a decreasing score over time [16]. Since 1999, a revised form has been adopted (ALFRS-R) that
incorporates more items to the respiratory function [15].

Modeling disease progression
In the transition from full health to a maximum disability, ALS patients deteriorate in a non-linear fashion
[17]. It has been shown that the observed rate of decline plays a significant role in predicting functional and
survival outcomes [11,18], This interesting finding urged researchers to investigate the exact shape of the
progression curve [19]. Poesen et al. argue that disability does not abruptly worsen as reflected by ALSFRS-R
scores after symptoms onset but declines slowly at first [19]. Then, a phase of constant progression follows
until the severity of disability attains a more gradual decline [19]. According to this observation, a sigmoidal
prediction model described ALS progression best [19]. It was able to characterize the disease course in two
parameters that can work independently: the time in months when the ALSFRS-R score reaches 24 and the
slope of the curve at that point [19]. A reliable prediction model will not only utilize ALSFRS-R scores of
current and future patients but also benefit from the stored data of deceased ALS patients.

The objective of this study was to mathematically model ALS progression to provide a reliable and
personalized approach to prognosis for current and newly diagnosed patients. Drawing upon the hypothesis
of Poesen et al., [19] we adopted their logistic model. The model is based on the ALS functional rating scale-
revised (ALSFRS-R) and the slope of progression which provided valuable insights into the disease
progression [18].

In summary, ALS is a fatal syndrome of multifactorial etiology. Currently, there is no available disease-
modifying treatment. Most importantly, ALS patients progress at variable rates, which indicates the need to
develop an individualized prediction tool to guide therapeutic endeavors. This article was previously posted
to the the Lancet preprint server on March 01, 2022 [20]. It is also a concise version of the dissertation
submitted to King's College London in July 2017.

Materials And Methods
Study subjects
This is a cohort of 20 patients from the South-East England Amyotrophic Lateral Sclerosis register (SEALS).
It is a population-based database, details of the register are described elsewhere [21]. The period of capture
runs from January 01, 1993 to February 16, 2017. The study was approved by the ethics committees of the
relevant institutions. Patients with at least three successive total ALSFRS-R scores were included (n= 20)
with an average number of 4·5± 2·2 (mean ± standard deviation (SD)) observations, first ALSFRS-R score of
40·8 + 4·7, and last score of 25·15+ 7·9. The average age of onset was 59·3 ± 13·49 (mean ± SD). Detailed
demographics can be found in Table 1.
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Age of onset Gender Site of Onset % ALSFRS-R scores/patient

59·3 ± 13·49 SD 45% Male (n = 9) 30% Bulbar (n = 6) Minimum: 3

(27·43–78·69) 55% Female (n = 11)

35% Lower Limb (n = 7)

Maximum: 11 Mean: 4·5 ± 2·2 SD 25% Upper Limb (n = 5)

10% Unknown (n = 2)

TABLE 1: Demographics of the cohort (n = 20).

Statistical analysis
The dependent variable (total ALSFRS-R scores) was obtained from the sum of the sub-scores of the
functional rating scale using the sum function in Microsoft® Excel for Mac (2016) version 15.24. None of the
subs-scores was missing. The independent variable (time since onset) was calculated from the dates since
symptoms onset to the time of the assessment in months. The months since symptoms onset and their
corresponding total ALSFRS-R scores were rearranged in increasing chronological order for each patient to
signify disease progression.

Disease progression model
The sigmoidal logistic regression model was selected because, previously, it was successfully applied to
describe disease course in a majority of ALS patients [19] with the following equation:

In the equation,  is the total ALSFRS-R score of a patient at a given time;  is the theoretical maximum
ALSFRS-R score of 48;  is the time in months since symptoms onset to the date of  estimation;  is the
time in months when the patient reaches half ;  is the slope at an ALSFRS-R score of 24. The
model parameters  and  are unknown and are estimated from the conventional slope equation from a
minimum set of two ALSFRS-R.

Hypothesis testing
To test whether a logistic regression model given by the model equation is a good tool to describe ALS
progression, a non-linear regression analysis was run by the statistics software, SPSS version 23 (IBM Corp.,
Armonk, NY). The model parameters ,  and  were substituted in the model equation as initial
values were derived from the conventional slope equations. Model stability was assessed using non-linear
regression analysis with bootstrapping as an internal model evaluation technique. The optimal model
parameter estimates were compared to a preset confidence interval of 95%. The predictive model
performance was evaluated using reliability analysis to ascertain the absolute agreement between the
observed ALSFRS-R scores and predictions generated by the model.

Results
Estimation of model parameters
For the cohort of 20 patients in our database, we have determined  and  in 65% of patients (n = 13)
using the non-linear regression analysis with initial values derived from the conventional estimation of
ALSFRS-R progression shown in Table 2.
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 N Minimum Maximum Mean SD

Initial dx 13 0·70 8·00 2·2002 1·87686

Optimal dx 13 1·26 17·18 6·4615 3·84198

Initial D50  13 14·11 54·14 30·9701 12·74267

Optimal D50  13 13·90 51·72 29·5540 11·95293

TABLE 2: Descriptive statistics of initial and optimal values of the model parameters.
 is the rate of progression, and  is the time since symptoms onset in months at ALSFRS-R =24.

SD: standard deviation.

Model evaluations in 35% of patients (n = 7) could not find a better fit of the model iteratively and the
simulation stopped after 0 evaluations. The software reported that optimal solutions of  and  were
equal to the initial values derived from the conventional slope equation as shown in Table 3.

 N Minimum Maximum Mean SD

dx 7 0·08 0·40 0·2117 0·11187

D50 7 59·14 282·00 135·9184 73·11256

TABLE 3: Descriptive statistics of initial values of the model parameters.
The initial values were equal to the optimal values estimated. Dx is the rate of progression, and D50 is the time since symptoms onset in months at
ALSFRS-R =24.

SD: standard deviation.

Hypothesis testing
The graphic representation in Figure 1 demonstrates predicted ALSFRS-R scores generated by model
evaluations using optimal parameter estimates solved by iteration. Here the initial value for the slope was
1·076, and by iteration, it was 10·641. Additionally, the initial value for  was 46·505, and iteratively, it
was 40·796. Noticeably, for 65% of patients (n = 13) 65% whose parameter estimates were found iteratively,
similar sigmoidal curves were produced.
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FIGURE 1: Scatterplot of predicted ALSFRS-R scores vs. months since
symptoms onset of one representative patient.
The first five predicted ALSFRS-R scores were plotted against months since symptoms onset of the documented
patient's visits (red squares). Predicted ALSFRS-R scores were also plotted against months since symptoms
onset of increments of =1 (green circles). A horizontal line is shown at the inflection point (ALFRS-R score = 24) of
the sigmoidal curve. The predictions were generated using optimal parameter values by iteration.

ALSFRS-R: amyotrophic lateral sclerosis functional rating scale-revised.

The graphic representation in Figure 2 demonstrates predicted ALSFRS-R scores generated by model
evaluations. Here, the initial values for the slope and D50 were 0·4 and 119, respectively. Noticeably, for 35%
of patients (n = 7), whose parameter estimates were found iteratively sigmoidal curves with a similar shape
were produced, in which the predicted ALSFRS-R scores have equal values of 48 repetitively at first, and
then sharply decrease from 48 to 24 and zero scores. In this case, the inflection point is perpendicular to
both ends of the curve.
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FIGURE 2: Scatterplot of predicted ALSFRS-R scores vs. months since
symptoms onset of one representative patient.
First five predicted ALSFRS-R scores were plotted against months since symptoms onset of the documented
patient's visits (red squares). Predicted ALSFRS-R scores were also plotted against months since symptoms
onset of increments of = 1 (green circles). A horizontal line is shown at the inflection point (ALFRS-R score = 24)
of the sigmoidal curve. The predictions were generated using initial parameter values.

ALSFRS-R: amyotrophic lateral sclerosis functional rating scale-revised.

The scatterplot in Figure 3 shows the real ALSFRS-R scores (red dots) fitted to a sigmoidal curve model
(continuous black line). Here, the ALSFRS-R score reaches 0·9 and 0·0 at 118 and 159 months, respectively.
The estimate is 51·724 months. The black square represents the point when the patient reaches half the
maximum ALSFRS-R score i.e., for ALSFRS-R score of 24, the slope estimate here is 17·184. Notice the
model performance when this patient gained back five ALSFRS-R scores at 48 months from ALSFRS-R of 22
at month no. #40.
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FIGURE 3: Simulated amyotrophic lateral sclerosis (ALS) disease curve.
Real data (red dots) the model curve fitted by the simulation model (continuous black line) of one representative
ALS patient.

Scatterplot with the best fit line in Figure 4 describes the intermediate linear relationship (R squared =
0.455) between model parameters (slope =  and ). The confidence interval is 95% from bootstrap
percentiles.

FIGURE 4: Relationship between slopes and D50 in 65% (n = 13) of
patients.

Scatterplot with the best fit line in Figure 5 demonstrates a strong linear relationship (R squared = 0·972)
between the observed ALSFRS-R scores and predicted ALSFRS-R scores estimated by the model. P-value <
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0·001, 95%, confidence interval (0·958-0·999), Cronbach's alpha 0·993.

FIGURE 5: Relationship between observed vs. predicted ALSFRS-R
scores of a representative ALS patient.
ALSFRS-R: amyotrophic lateral sclerosis functional rating scale-revised, ALS: amyotrophic lateral sclerosis.

Scatterplot with best fit line in Figure 6 shows strong linear relationship (R squared = 0.967) between
calculated  using conventional slope equation and the optimal solutions generated by the model in 65%
of patients (n = 13). P-value < 0·001, 95% confidence interval (0·962-0·996), Cronbach's alpha 0·991.
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FIGURE 6: Relationship between values of conventional D50 (y axis) vs.
optimal values estimated iteratively (x axis).

Discussion
The results of the analyses show that the logistic regression model provided an accurate description of the
course of ALSFRS-R score decline p-value < 0·001 (Figure 5). It proves that the ALSFRS-R score decays in a
curvilinear fashion rather than linearly. These results are consistent with what has been reported by Gordon
et al. and Poesen et al. [17,19]. Furthermore, Gomeni and Fava confirmed that using a linear model based on
ALSFRS-R scores produced significant bias when describing disease course as compared to a non-linear
model [8]. However, we found that the model describes the disease course best in 65% of cases, while Poesen
et al. reported this percentage as high as 98% [19]. This discrepancy is probably due to the small sample size
analyzed in our study and using different techniques in implementing the iterative method and different
statistical software. Interestingly, the model could not estimate optimal solutions for parameters, i.e. 
time in months at ALSFRS-R score of 24 and  slope at that point, iteratively in 35% of patients (Figure 2).
These patients had slower progression rates than the rest, with an average of 0·2117 scores/month (0·08-
0·40). No further analysis was used to define this rate as slow, but it is consistent with Poesen et al.’s
definition of slow progressors (  < 0·365) [19]. Table 2 outlines the details of parameter values in this
population.

These findings are in line with what has been reported by Labra et al, where three groups with different
progression rates were identified [22]. Most noticeably, a group with a median progression rate of < 0·47 was
identified with a slow functional decline with a lower risk of death compared to a group with a faster
progression rate of > 1·11. Based on the recently published studies and our findings, the prognostic value of
the slope appears to be identical in different ALS cohorts. We suggest that a reliable cut-off value of
progression speed should be developed. This important step can aid clinicians in the proper identification of
patients with a more aggressive disease course and earlier introduction of treatment and rehabilitation.

The model was not successful in describing the ALS disease course in slowly progressing patients. This is
probably because a smaller slope =  means a value closer to zero and positive figures, which converts the
function of decay toward growth in the logistic model. This phenomenon was ascertained by running the
simulation without constraining the numerator  in the model equation between (0,48). The predicted
values of ALSFRS-R scores were > 48 and < zero despite inserting 48 as the initial value for the numerator.
Unlike findings reported by Poesen et al, the model failed to describe the disease course in 35% of patients
compared to 2% in their study [19]. Moreover, in Figure 4, we found that the model parameters were
moderately linear (R squared = 0·455). Meanwhile, Poesen et al. showed strong linearity (R squared= 0·932)
[19]. Therefore, neither can serve as an independent prognostic factor to describe the decay in ALSFRS-R
sufficiently.
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The Weibull model in a study by Gomeni and Fava categorized ALS patients in a bivariate distribution (slow
and fast) according to the rate of decline from the baseline ALSFRS-R score [18]. They were able to identify
two sub-groups within their sample with a significant comparable probability of a patient belonging to a
certain cluster [18]. The robustness of the predicted ALSFRS-R scores also support our results about the two
categories that emerged as slow and fast progressors. In our model, we constrained the ALSFRS-R to the
maximum of 48 as the highest possible functional outcome at disease onset. This value produced falsely
repeated predictions of 48 in patients with a slow progression rate. But, in the study by Gomeni and Fava,
the baseline ALSFRS-R score was used to estimate accurate predictions in both clusters [18]. This, perhaps,
suggests a more prognostic significance to the first observed ALSFRS-R score rather than the theoretical
maximum. The prognostic potential for the initial ALSFRS-R score has also been validated by Labra et al.
[22].

The calculation of the initial values of , indicated that the ALSFRS-R set, from which the slope of the
midpoint is derived, should be sufficiently less than 48 to give a better estimation. Apparently, an ALSFRS-R
set from the second one-third of the scale between 0 to 48, produced a better approximation to the
midpoint. This method suggests that for the model to fit accurately, the patient must progress markedly
enough from the baseline. Obviously, the logistic model has defined added constraints to the inclusion
criteria as necessary for a successful application of this methodology. In fact, this limits the recruitment
process to a certain population of ALS patients.

According to the results of the  estimation in Figure 6, strong linearity is evident (R squared= 0·967)
between the iterative and the conventional estimation of the parameter. On the other hand,  estimates
could not show that same relationship. This might indicate that the midpoint of the ALSFRS-R strongly
correlates with the disease course, which warrants more investigation on this point.

Expectedly, the fitted model curve in Figure 3 depicted a sigmoid-shaped curve with defined downward
steepness. This behavior is based on the decay function of the slope coefficient. It assumes that ALS patients
constantly deteriorate and lose their ALSFRS-R scores at each point in time throughout the disease course.
Thus, when a patient's condition improved probably due to therapeutic interventions [18], the model did not
behave accordingly. For example, in Figure 3, the patient gained back 5 ALSFRS-R scores at 48 months from
ALSFRS-R of 22 at 40 months. However, the model predicted ALSFRS-R scores of 31 and 26. This
phenomenon may also explain the reason why the model describes fast progressors best rather than slow
progressors. A patient with a slow deterioration rate is represented in Figure 2, where  is 0·4. Because this
is a novel approach suggested by Poesen et al. [19], we did not encounter similarly shaped curves for slow
progressors.

Conclusions
In summary, with the relevant limitations, we tested the performance of a logistic regression model in
describing the disease course in ALS patients of different progression rates. We found that the ALS disease
progression model can describe the disease course in a limited number of patients. These results indicate
that the rate of disease progression  and time when ALSFRS-R declines to half the maximum score 

 are correlated with functional outcomes reflected by ALSFRS-R scores. Further, these results suggest
that the logistic model failed to describe disease course in patients with slow progression rates. Thus,
clinicians and patients can benefit from adding a gene factor to the equation that could address the role of
heterogeneity in ALS. One must determine the extent to which an individual gene mutation contributes to
the disability first. In addition to other prognostic factors, such as gender, site of disease onset, age, and
therapeutic interventions, a sub-score analysis for the ALSFRS-R components might offer additional clarity
to determine the weight of each functional aspect on the overall prognosis in an independent cohort with
large sample size.
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