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Introduction: Kidney transplantation remains the gold standard of treatment for end-stage renal disease

(ESRD), with improved patient outcomes compared with dialysis. Epigenome-Wide Association Analysis

(EWAS) ofDNAmethylationmay identifymarkers that contribute to an individual’s risk of adverse transplant

outcomes, yet only a limited number of EWAS have been conducted in kidney transplant recipients. This

EWAS aimed to interrogate the methylation profile of a kidney transplant recipient cohort with minimal

posttransplant complications, exploring differences in samples pretransplant and posttransplant.

Methods: We compared differentially methylated cytosine-phosphate-guanine sites (dmCpGs) in samples

derived from peripheral blood mononuclear cells of the same kidney transplant recipients, collected both

pretransplant and posttransplant (N ¼ 154), using the Infinium MethylationEPIC microarray (Illumina, San

Diego, CA). Recipients received kidneys from deceased donors and had a mean of 17 years of follow-up.

Results: Five top-ranked dmCpGs were significantly different at false discovery rate (FDR) adjusted P# 9 �
10�8; cg23597162 within JAZF1, cg25187293 within BTNL8, cg17944885, located between ZNF788P and

ZNF625-ZNF20, cg14655917 located between ASB4 and PDK4 and cg09839120 located between GIMAP6

and EIF2AP3.

Conclusion: Five dmCpGs were identified at the generally accepted EWAS critical significance level of FDR

adjusted P (PFDRadj) # 9 � 10�8, including cg23597162 (within JAZF1) and cg17944885, which have prior

associations with chronic kidney disease (CKD). Comparing individuals with no evidence of posttransplant

complications (N ¼ 105) demonstrated that 693,555 CpGs (89.57%) did not display any significant differ-

ence in methylation (PFDRadj $ 0.05), thereby this study establishes an important reference for future

epigenetic studies that seek to identify markers of posttransplant complications.
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C
KD is the 12th leading cause of mortality globally
and is predicted to become the fifth leading cause of

death by 2040.1–3 CKD may progress to ESRD,4 when
renal replacement therapy options are considered,
including kidney transplantation.5 In Europe, 24,013
kidney transplants were performed in 2019,6 compared
with 24,273 kidney transplants in the United States (US,
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n ¼ 24,273).7 The United States Renal Data System 2020
annual data report highlighted the global challenge of
ESRDwith a prevalence of treated ESRD 2354 permillion
population in the US, 3587 per million population in
Taiwan and 997 per million population in the UK
(excluding Scotland).8 Given the high cost to health care
systems of performing kidney transplants, and the fact
that the demand for kidney transplantation exceeds the
combined supply of living and deceased donor kidneys,
there is a need to improve kidney transplant outcomes.
Posttransplant complications include infection (e.g.,
cytomegalovirus), allograft rejection (acute and
chronic), cardiovascular disease, stroke, posttransplant
diabetes mellitus, and malignancy (in particular, skin
cancer). Kidney transplant recipients report that the
lifelong care required for their allograft is a significant
burden, which greatly impacts their quality of life.9
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Table 1. Participant characteristics
Characteristic Pretransplant Posttransplant

Number of participants 154 154

Number of females : males (%) 58 : 96 (38% : 62%) 58 : 96 (38% : 62%)

Mean age (� SD) 36.4 yr (14.4) 53 yr (13.5)

Primary renal diagnoses Chronic renal failure (n ¼ 15)
Glomerulosclerosis (n ¼ 5)

Hereditary/familial nephropathy (n ¼ 5)
IgA nephropathy (n ¼ 19)

Polycystic kidney disease (n ¼ 25)
Pyelonephritis/interstitial nephritis (n ¼ 35)

Type 1 diabetes mellitus (n ¼ 9)
Othersa with n < 5 individually (n ¼ 41)

CNI use in first 3 mo posttransplant - Ciclosporin: 104
Tacrolimus: 21b

Mean (� SD) follow-up time - 17.0 yr (5.2)

Number of individuals who experienced allograft rejection - 25 (16.2%)

Mean (� SD) graft survival time (n ¼ 129) at time of posttransplant sample collection - 17.1 yr (5.3)

Number of individuals who developed cancer at $1 site - 49 (31.8%)

Number of individuals who developed skin cancer - 16 (10.4%)

CNI, calcineurin inhibitors.
aOthers include: Alport syndrome, amyloid, cortical tubular necrosis, cystinosis, congenital renal dysplasia, congenital renal hypoplasia, dense deposit disease, glomerulonephritis,
Goodpasture’s syndrome, Henoch-Schonlein purpura, lupus nephritis, membrano-proliferative glomerulonephritis type I, membrano-proliferative glomerulonephritis type II, rapidly
progressive glomerulonephritis, renal vascular disease, tubulo interstitial nephritis, type 2 diabetes mellitus, and granulomatosis with angiitis.
bRemaining individuals who did not receive either ciclosporin or tacrolimus were given alternative forms of CNI which were not reported.
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More than 50 candidate genes have been associated
with adverse transplant outcomes in kidney re-
cipients.10–14 Yet, consideration of an individual’s ge-
netic profile is not sufficient to fully understand disease
progression or predict adverse renal transplant out-
comes. Epigenetic, or nonsequence level modifications
such as DNA methylation, play a significant role in
health and disease.15 Epigenetic alterations provide a
dynamic link between an individual’s genetic back-
ground and the environment to which they have been
exposed.15,16 Differential methylation has important
implications in several diseases that are leading causes
of death globally, including CKD,12 cardiovascular
disease,17 and type II diabetes mellitus.18 Altered DNA
methylation may influence the regulation of immune
cells involved in allograft dysfunction, rejection, or
risk of posttransplant complications.19–21 Because DNA
methylation is dynamic, it may be reversible. DNA
methylation may provide potential targets for therapy,
for example apabetalone has been explored as an
epigenetic therapeutic for diabetic kidney disease
(DKD).22

EWAS have been made possible by the develop-
ment of high throughput microarrays, most recently
enabling interrogation of approximately 850,000 sites
across the epigenome.23 High quality, longitudinal
EWAS data remain scarce, particularly in the field of
kidney disease research, with only 2 EWAS publi-
cations cited in the EWAS atlas.24 EWAS have
identified differential methylation associated with
DKD in individuals with type 1 diabetes, CKD, and
ESRD.25–30 A limited number of EWAS have been
Kidney International Reports (2023) 8, 330–340
published, which evaluate kidney transplant out-
comes in recipients.31–33 Transplantation results in
significant molecular and metabolic alterations within
recipients due several factors, such as the introduc-
tion of the foreign donor genome and the recipient’s
response to immunosuppressive medication.34,35

Therefore, to identify clinically plausible epigenetic
markers of adverse posttransplant outcomes, it is
useful to first evaluate the baseline epigenetic profiles
of individuals who have received reasonably suc-
cessful transplants. The Northern Ireland Renal
Transplant cohort has more than 50 years of harmo-
nized, well curated longitudinal data of kidney
transplant donors and recipients.36

This study aimed to compare DNA methylation
profiles in the same individuals who received kidney
transplants in Northern Ireland, before and after
transplantation.
METHODS

Northern Ireland Renal Transplant Collection

All participants provided written informed consent.
Existing DNA was used; DNA was frozen at �80 �C in
multiple aliquots following extraction from whole
blood using the salting out method and normalized
using PicoGreen quantitation.37,38 All participants
(N ¼ 154) were of European ancestry (Table 1). DNA
samples were collected pretransplant for the purposes
of tissue matching between 1986 and 2005, with
excess diagnostic material stored and available for
analysis. Posttransplant samples were collected
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(between 2012 and 2014) with informed consent for
longitudinal biomarker studies by convenience of
those attending transplant clinics. The ethical
approval reference numbers for the Belfast Renal
Transplant samples are ORECNI 08/NIR03/79, 12/NI/
0003, 12/NI/0178.

Laboratory Methodology

DNA was bisulphite treated using the EZ Zymo
Methylation Kit (Zymo Research, Irvine, CA) following
the Illumina Infinium HD Assay for Methylation Kit
protocol.39 All samples were prepared and analyzed
using the Infinium MethylationEPIC Kit and BeadChips
(Illumina, San Diego, CA) protocol.40 Samples were
processed through a consistent laboratory workstream
with significant effort made to minimize unwanted
variation through batch effects: same lot numbers used
for consumables, minimization of freeze thaw cycles,
and pretransplant and posttransplant samples
randomly distributed across arrays.41 Methylation ar-
rays were scanned using a dedicated iScan machine
(Illumina, San Diego, CA) with regular monitoring of
laser intensity levels.

Quality Control (QC) and Data Analysis

Resulting .idat files were assessed using Illumina’s
BeadArray Controls Reporter software to assess QC and
evaluate hybridization, extension, dye specificity, and
bisulphite conversion.40 Concordance of average b
values for 7 duplicate samples was completed using
GenomeStudio (Illumina, San Diego, CA) v1.8,
methylation module including a sex check of all
included individuals.

Proportional white cell counts (WCCs) were esti-
mated using the Houseman method,42 the minfi Bio-
conductor (v3.10) package and .idat files. Estimation
of 6 peripheral WCCs was performed using the esti-
mateCellCounts function with a t test used to compare
WCC distributions between groups with a signifi-
cance threshold of P < 0.008. QC, preprocessing, and
differential methylation analyses were undertaken in
the R statistical environment (3.6.3) utilizing RnBeads
2.0 and Bioconductor packages.43 Cross-reactive
probes and those located within 3 base pairs of
common single nucleotide polymorphisms (SNPs)
were excluded because of their ability to map to
multiple areas of the genome and affect probe hy-
bridization, respectively. Unreliable probes and
samples were removed using the Greedycut algo-
rithm (P < 0.05). Those located on sex chromosomes
were also removed. Raw intensities were normalized
using the bmiq method.

b values were generated and M values were derived.
Association analysis directly compared methylation in
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the same individuals using samples collected both pre-
renal transplantation (N ¼ 154) and postrenal trans-
plantation (N ¼ 154), adjusting for chronological age,
sex, and proportional WCCs. In addition, methylation
profiles were compared when excluding n ¼ 49 in-
dividuals who developed posttransplant complications
(with the same adjustments). Because rejection and
posttransplant cancer were the 2 most common com-
plications developed, subanalyses were conducted in
these groups.Methylation profiles were evaluated in n¼
25 individuals who developed rejection compared with
n ¼ 129 who did not and n ¼ 47 individuals who
developed cancer compared with n ¼ 106 who did not.
P-values were computed using the limma approach for
each site with significance set at an FDR adjusted P#�
10�8.44 Genome Studio v1.8, (Illumina, San Diego, CA)
was used to ascertain the average number of beads per
probe for the pretransplant and posttransplant sample
groups and the average beta values for each significant
dmCpG (FDR adjusted P [PFDRadj] # 9 � 10�8). Hierar-
chical linear models from the limma package were
employed and fitted using Bayesian approach on the
derived M values.

All suggestively significant dmCpGs at PFDRadj #
9.9 � 10�5, were reported with CpG locations mapped
to Human Genome build 37. Significant dmCpGs
(PFDRadj # 9 � 10�8) were manually reviewed for
SNPs, which may affect methylation based on the
Infinium B5 manifest file (https://emea.support.
illumina.com/downloads/infinium-methylationepic-v1
-0-product-files.html), the Biobanking and Biomole-
cular Resources Research Infrastructure, the
Netherlands database,45 and dbSNP. CpG sites with
SNPs having a minor allele frequency >1% located
within 10 nucleotides of the target probe site were
removed from downstream analyses.46 Manhattan and
quantile-quantile plots were drawn using the qqman
package in R.47

Analyses of dmCpGs and Potential Overlaps With

Transcription Factors

Previous investigations suggested that SNPs and tran-
scription factors (TFs) influence methylation.46,48 The
top-ranked dmCpGs were examined using the eFORGE-
TF database (https://eforge-tf.altiusinstitute.org/), to
evaluate TF motif enrichment.49 The dmCpGs were
searched against previously acquired kidney data
available in the online database (“fkidney” data set
comprised 7 experiments). All significant motifs (q #
0.01) were reported.

Analysis of Gene Expression Profiles Using

NephroSeq Transplant Datasets

Genes which contained significant dmCpGs located
either side of the nongene-centric dmCpGswere searched
Kidney International Reports (2023) 8, 330–340
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Figure 1. Manhattan plot of CpG sites drawn based on PFDRadj values.
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in NephroSeq v5 (https://www.nephroseq.org/).50 Sig-
nificant differential gene expression (P # 0.01; fold
change (FC) � 1.5) from “Disease vs. Control” analysis
were reported.

Functional Analysis of Gene Ontology (GO),

Pathways and Protein networks

Gene functionality was examined by GO enrichment
and pathway analysis in genes containing dmCpGs
with suggestive significance (PFDRadj # 9.9 � 10�5). GO
enrichment analysis was performed using the Database
for Annotation, Visualization, and Integrated Discov-
ery v6.8, to identify enriched biological process,
cellular component, and molecular function GO terms
at P < 0.01, with a fold enrichment of at least �2,
which included at least 3 genes (https://david.ncifcrf.
gov).51–54 Database for Annotation, Visualization, and
Integrated Discovery was also utilized to identify any
significantly enriched Kyoto Encyclopedia of Genes
and Genomes pathways, which included at least 3
genes with an enrichment threshold of at least �2 at
P # 0.01.55,56

The Reactome Pathway Database (https://reactome.
org/) was analyzed for enriched pathways at P #
0.01, which included at least 3 of the genes in which
suggestive dmCpGs were located.57 Computational
predictions of protein interactions were generated
Kidney International Reports (2023) 8, 330–340
using STRING v11 (https://string-db.org/).58 Discon-
nected nodes were removed from the network, dis-
playing only connected nodes with the highest
confidence of interaction score (0.9).

RESULTS

Population Description

Of the 154 transplant recipients, 58 were females (38%)
and 96 were males (62%). The average age of partici-
pants was 36 years pretransplant with a mean follow-
up time of 17 years (range 9�28 years). Of the 154
participants, 49 (31.8%) developed posttransplant ma-
lignancy and 25 (16.2%) experienced allograft rejec-
tion. The number of participants included in each
analyses is detailed in Supplementary Figure S1 as a
Strengthening the Reporting of Observational Studies
in Epidemiology diagram.

Data QC and Preprocessing

No samples failed analysis in BeadArray Controls Re-
porter (Supplementary Table 1). No significant differ-
ence was observed for proportional WCCs between
pretransplant and posttransplant sample groups
(Supplementary Table S2).

No samples were removed from this analysis during
the QC or preprocessing steps performed via RnBeads.
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Table 2. Statistically significant dmCpGs at PFDRadj # 9 � 10�8

Probe ID Gene Genomic location Probe site
PFDRadj-
value

UCSC gene region
category

Average number of beads per
probe

Nephroseq evidence (P
valuea)

cg17944885 Between ZNF788P and ZNF625-
ZNF20

19:12114860-
12114981

19:
12225735

2.4 � 10
�15

Intronic 13.24 (All)
13.31 (pre-tx)
13.17 (post-tx)

0.007 (ZNF788P)
2.17 � 10�4 (ZNF625)

cg23597162 Within JAZF1 7:28062662-
28062783

7:
28102341

1.63 � 10
�11

Gene body 9.72 (All)
9.96 (pre-tx)
9.47 (post-tx)

5.22 � 10�11 (JAZF1)

cg14655917 Between ASB4 and PDK4 7:95550298-
95550419

7:
95179670

3.15 � 10
�11

Intronic 12.04 (All)
12.10 (pre-tx)
11.98 (post-tx)

5.25 � 10�9 (ASB4)
3.92 � 10�18 (PDK4)

cg09839120 Between GIMAP6 and EIF2AP3 7:150668851-
150668972

7:
150365999

7.57 � 10
�11

Intronic 12.69(All)
12.71 (pre-tx)
12.66 (post-tx)

1.61 � 10�12 (GIMAP6)

cg25187293 Within BTNL8 5:180909216-
180909337

5:
180336276

1.45 � 10
�8

TSS1500; Gene body 14.32 (All)
14.17 (pre-tx)
14.47(post-tx)

2.05 � 10�5 (BTNL8)

Adj, adjusted; FDR, false discovery rate; ID, identification; TSS, transcription start site; tx, transplant; UCSC, University of California Santa Cruz.
aWhere more than one P value was ascertained for a specific site, the top-ranked P value is listed in this table.
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Probes enriched for SNPs (17,371) were removed
alongside 16,808 probes filtered by the Greedycut al-
gorithm. Filtering, normalization of probes, and
removal of those located on sex chromosomes
(Supplementary Figures S2 and S3) resulted in 771,145
probes and all 308 samples included in association
analysis. The quantile-quantile plot follows a normal
distribution with a slight left skew (Supplementary
Figure S4). Concordance of b values for 7 duplicate
samples was completed, average r2 ¼ 0.99.
Identification of Top-Ranked dmCpGs

The epigenetic profiles were largely similar in pre-
transplant and posttransplant DNA samples from the
same individual (Supplementary Figure S5, r2 ¼ 0.999).
Comparison of the methylation patterns between blood
samples collected for the same individuals both pre-
transplant and posttransplant identified 5 top-ranked
dmCpGs (PFDRadj # 9 � 10�8; Figure 1); cg23597162
within JAZF1; cg25187293 within BTNL8; cg17944885
between ZNF788P and ZNF625-ZNF20; cg14655917
between ASB4 and PDK4; and cg09839120 between
GIMAP6 and EIF2AP3 (Table 2, Supplementary
Table S3).

The number of beads per probe for each of the 5
dmCpGs which met the EWAS threshold was >9.4
(Table 2). The average b values for pretransplant and
posttransplant groups have been included for each of
the 5 dmCpGs in Supplementary Figure S6. A further
278 dmCpGs showed suggestive significance (PFDRadj #
9.9 � 10�5); 172 were located within known genes
(Supplementary Table S3). Twelve dmCpGs (PFDRadj #
9.9 � 10�5) were located within promoter regions.
Analysis of TF motifs using the eFORGE-TF database
identified that none of the top-ranked dmCpGs over-
lapped with TF binding sites.
334
Analysis of the 105 individuals who did not expe-
rience posttransplant complications (Table 2, n ¼ 49
individuals developed posttransplant malignancy, and
of these, n ¼ 25 experienced allograft rejection),
showed that 693,555 of 774,343 CpG sites (89.57%)
displayed no significant difference in methylation
(PFDRadj $ 0.05). The top 5 ranked differentially
methylated CpG sites remained significant in the anal-
ysis excluding participants with posttransplant com-
plications; (cg17944885: PFDRadj ¼ 1.9 � 10�10;
cg14655917: PFDRadj ¼ 1.6 � 10�8; cg23597162:
PFDRadj ¼ 1.9 � 10�8; cg25187293: PFDRadj ¼ 1.2 � 10�6;
cg09839120: PFDRadj ¼ 1.6 � 10�6).

In the subanalyses of 25 individuals who experi-
enced allograft rejection posttransplant compared with
participants who did not, no dmCpGs were significant
following FDR adjustment. One dmCpG site
(cg04366076) was statistically significant at unadjusted
(P ¼ 4.13 � 10�7) and further 14 sites were sugges-
tively significant (P # 1 � 10�5, Supplementary
Table S4). These did not include any of the top 5
ranked dmCpGs from the primary analysis of the full
participant cohort.

In individuals who developed posttransplant ma-
lignancy (n ¼ 47), no dmCpGs were significant
following FDR adjustment. One dmCpG site
(cg24184919) was statistically significant at unadjusted
(P ¼ 6.86 � 10�6) and a further 5 sites were sugges-
tively significant (P # 1 � 10�5, Supplementary
Table S5). These did not include any of the top 5
ranked dmCpGs from the primary analysis of the full
participant cohort.

Analysis of Gene Expression Profiles Using

NephroSeq Transplant Datasets

Genes in which the 5 significant dmCpGs (PFDRadj #
9 � 10�8) were located within or between, were further
Kidney International Reports (2023) 8, 330–340
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investigated using NephroSeq; ZNF788P and ZNF625-
ZNF20 (cg17944885), JAZF1 (cg23597162), ASB4 and
PDK4 (cg14655917), GIMAP6 and EIF2AP3
(cg09839120), and BTNL8 (cg25187293). Functional
data were found for 7 of the 9 genes examined
(Supplementary Table S6); EIF2AP3 is a pseudogene
and was therefore not covered by the NephroSeq
analysis. No results were obtained for ZNF20.

ZNF788P showed an increase in FC (þ6.2; P ¼
0.007) on comparing expression in renal biopsy samples
collected from 5 individuals with CKD to 3 control
biopsies collected from kidneys of healthy in-
dividuals.59 RNA sequencing analysis for ZNF625 us-
ing 31 renal biopsy tubulointerstitial samples from
individuals with lupus nephritis compared with 5
healthy living donors revealed an FC of þ1.7; P ¼
2.47 � 10�4.

Four alterations in gene expression were recorded
for JAZF1, the most significant of which was P ¼
5.22 � 10�11, FC of þ1.9 from renal biopsy samples
comparing CKD (n ¼ 48) to control biopsies (n ¼ 5).59

Two significant differences were seen for ASB4 (P ¼
5.25 � 10�9; FC, þ3.2 and P ¼ 0.006; FC, þ6.2), gained
from the Nakagawa discovery and validation cohorts
respectively.59

Twenty-four significant differences were observed
for PDK4, the most significant of which compared 21
individuals with membranous glomerulonephritis to
healthy individuals; P ¼ 3.92 � 10�18; FC, �3.2.60

For GIMAP6, 13 significant changed gene expres-
sion were returned, the most significant of which was
for CKD (P ¼ 1.61 � 10�12; FC, þ1.9).59 The expression
of BTNL8 was significantly altered for CKD (P ¼
2.71 � 10�6; FC, �1.8) and DKD (P ¼ 2.05 � 10�5;
FC, �1.8) cohorts.59,61

In silico Functional Analysis

Eighteen enriched GO processes were identified,
including 15 biological processes and 3 molecular
functions.

Of the GO processes, several immunogenic activities
were identified (Supplementary Table S7) including
interleukin-12 production (P ¼ 0.0008, fold
enrichment þ12.0), regulation of immune system pro-
cess (P ¼ 0.0027, fold enrichment þ2.0) and immune
response-regulating cell surface receptor signaling
pathway (P ¼ 0.0045, fold enrichment þ3.1).

Encyclopedia of Genes and Genomes analysis did not
return significant results. The Reactome database
identified 2 pathways (Supplementary Table S8),
estrogen-dependent nuclear events downstream of
ESR-membrane signaling (P ¼ 4.77 � 10�5), which
involved 3 genes from our data set, CCND1, BCL2,
MAPK1; and interleukin-4 and interleukin-13
Kidney International Reports (2023) 8, 330–340
signaling (P ¼ 0.0006), which included 5 genes from
our data set (IL4R, CCND1, BCL2, RORA, CD36).

Network analysis using STRING v11 connected 143
protein nodes linked by 31 edges (Supplementary
Figure S7). No significant enrichment of protein in-
teractions was identified.

DISCUSSION

Differential DNA methylation has been associated with
CKD,62 DKD,28 ESRD,27 IgA nephropathy,63 lupus
nephritis,64 and polycystic kidney disease.65 DNA
methylation has also been considered in relation to
kidney transplantation.20,21 In this investigation, we
identified a strong correlation (r2 ¼ 0.999) in the
methylation profiles pretransplant and posttransplant
within the same individuals who received largely
successful kidney transplants. Analysis of individuals
with no evidence of posttransplant complications
demonstrated that 89.57% of CpG sites did not display
any significant difference in methylation (PFDRadj $
0.05). In the full analysis of 154 matched individuals
pretransplant and posttransplant, 5 CpGs were identi-
fied as significantly different using stringent criteria
(PFDRadj # 9 � 10�8) between longitudinal samples
compared pretransplant and posttransplant. The find-
ings of this study are important for future epigenetic
studies of postkidney transplant complications,
because we have determined a baseline epigenetic
profile that can be used for comparison.

Biological Significance of dmCpGs

(PFDRadj # 9 � 10�8)

The dmCpG identified with the strongest EWAS level
of significance was cg17944885 (PFDRadj ¼ 2.4 � 10�15),
located between ZNF788P and ZNF625-ZNF20 on
chromosome 19. This CpG site has strong previous
links to kidney disease, associates with estimated
glomerular filtration rate in CKD from population-based
studies (P ¼ 1.2 � 10�23, P ¼ 8.7 � 10�41),26,66 DKD
(PFDRadj ¼ 2.0 � 10�44)67 and transethnic (P ¼ 1.24 �
10�13) cohorts with sensitivity analyses confirming that
this was not influenced by smoking, age, and body
mass index.30 Schlosser et al.,66 also identified evidence
for a functional role of cg17944885 through its associ-
ation with the transcriptional regulator ZNF439. Dif-
ferential methylation at cg17944885 was consistently
associated with estimated glomerular filtration rate in
blood and kidney biopsy samples. The underlying
biological mechanism by which cg17944885 exerts an
effect or is affected by declining renal function war-
rants further investigation.

Differential methylation has been reported in this
study for cg23597162 (JAZF1) located on chromosome 7
(PFDRadj ¼ 1.63 � 10�11), with supporting gene
335
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expression data from renal biopsy samples collected
from 48 individuals with CKD compared with 5 with no
evidence of renal disease (P ¼ 5.22 � 10�11 and
FC þ1.9).59 Differential methylation at cg23597162 was
also associated with estimated glomerular filtration rate
in CKD (P ¼ 2.8 � 10�19) and human immunodefi-
ciency virus (P ¼ 1.0 � 10�4) studies.26,68 Dayeh
et al.,69 assessed methylation of >470,000 CpG sites
using pancreatic islets from 15 individuals with type II
diabetes mellitus and 34 nondiabetic donor individuals,
and identified 3 dmCpGs associated with type II dia-
betes mellitus within JAZF1, including cg23597162
(P ¼ 6.1 � 10�5; Db � 2.79). JAZF1 affects gluco-
neogenesis, lipid metabolism, insulin sensitivity, and
inflammation.70 It is also thought to be a negative
regulator of interferon gamma and interleukin-17 in
macrophages, but has been solely examined in murine
models.70 Eleven individuals within our cohort had
DKD, and this may be relevant to the development of
posttrasplant diabetes mellitus. However, in 2009,
Kang et al.,71 assessed the association of type II diabetes
mellitus risk gene variants and posttrasplant diabetes
mellitus in 589 individuals, and found that the variant
rs864745 within JAZF1 was one of the major risk al-
leles, but that it was not significantly associated with
posttrasplant diabetes mellitus. Therefore, the role of
JAZF1 and the development of posttrasplant diabetes
mellitus remains unclear.

Cg14655917 is located between genes ASB4 and
PDK4. This dmCpG has not previously been linked to
altered methylation patterns, or renal disease. Never-
theless, ASB4 encodes a protein which is a member of
the ankyrin repeat and SOCS box-containing family
and has potential involvement in tumorigenesis.72,73

CpG sites within this gene have been linked to
pancreatic cancer, in which a decrease in the level of
messenger RNA expression was also reported.74 The
identification of a tumorigenesis associated biomarker
within our participant cohort was unsurprising given
that 49 (31.8%) developed cancer within 17 years of
receiving their transplant.

The mitochondrial protein coding gene PDK4 is
located on chromosome 7. The encoded protein is
known to contribute to the regulation of glucose
metabolism, and gene expression is regulated by in-
sulin, glucocorticoids, and retinoic acid.75,76 PDK4
dysfunction may therefore plausibly be linked with
insulin resistance and/or diabetes associated ESRD and
renal transplantation. However, in this study we did
not identify a significant difference in PDK4 methyl-
ation between pretransplant and posttransplant in-
dividuals (P ¼ 0.16). GIMAP6 is located on
chromosome 7 and encodes a member of the guanosine
triphosphatases of immunity associated proteins,
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which may function in cell survival. Ho and Tsai,77

reported that human GIMAP6 is primarily expressed
in T cells, with sensitivity to apoptosis and an accel-
eration in the activation of T cells. In a case study of 2
siblings with a predicted deleterious homozygous
variant in GIMAP6 and no expression of the GIMAP6
protein, both individuals reported accelerated
apoptosis, but normal levels of lymphocytes.78

Cg09839120 is located between GIMAP6 and pseudo-
gene EIF2AP3. Neither GIMAP6 nor EIF2AP3 have
been linked to kidney disease or altered methylation
patterns previously.79

Differentially methylated cg25187293 is located on
chromosome 5, within BTNL8 (PFDRadj ¼ 1.45 � 10�8)
with changes in gene expression observed in Neph-
roSeq where in the Nagawaka CKD Kidney discovery
cohort (P ¼ 2.71 � 10�6; FC, �1.8) and in an investi-
gation by Woroniecka et al.,61 comparing individuals
with DKD to healthy living donors (P ¼ 2.05 � 10�5;
FC, �1.8).59 BTNL8 may be involved in the stimulation
of primary immune response, including T-cell prolif-
eration.80–82 Altered methylation of this gene has not
previously been reported in kidney disease, and
therefore may reflect a novel epigenetic marker asso-
ciated with immunologic alterations postkidney
transplant.

In silico functional analyses revealed that several
processes linked to immunology were significantly
enriched, including interleukin-12 production, regu-
lation of immune system process, immune response-
regulating cell surface receptor signaling pathway,
and regulation of immune response (P < 0.01; FC of at
least �2). This is unsurprising because of the use of
immunosuppressants, including calcineurin inhibitors
in over 80% of the individuals included in this study.
In addition, both aging and cell aging processes were
significantly enriched (P < 0.01; FC of at least �2),
which was expected because the mean follow-up time
between the sample collections was 17 years.

Strengths and Limitations

Overall, this investigation has several strengths. This
EWAS was conducted to ascertain the methylation
profiles of 154 individuals who received a renal trans-
plant, using DNA extracted from peripheral blood
samples collected both pretransplant and posttrans-
plant with systematic variation minimized. This is the
largest EWAS study conducted for renal transplant
recipients. Samples compared pretransplantation and
posttransplantation are matched, being longitudinal
samples obtained from the same individuals at 2 time-
points. We have utilized the most cost-effective, high-
density methylation array available, the Infinium
MethylationEPIC.23 The methylation status was
Kidney International Reports (2023) 8, 330–340



LJ Smyth et al.: Epigenome Analysis of Kidney Transplant Recipients TRANSLATIONAL RESEARCH
assessed using blood-derived DNA samples from both
timepoints, accounting for proportional WCCs, age,
and sex of participants. We employed a very stringent
significance threshold for dmCpGs (PFDRadj # 9 �
10�8); to reduce the rate of false-positives in studies
which use the Infinium MethylationEPIC array.83

DmCpGs which gained a level of suggestive signifi-
cance (PFDRadj # 9.9 � 10�5) were included for the GO
and pathway analyses to ascertain whether any of the
genes in which the dmCpGs were located have had a
cumulative effect.

This project sought to identify changes in methyl-
ation using a readily accessible biomarker source that
could be sampled during routine clinic visits, hence the
use of blood-derived DNA methylation. Several recent
studies have shown that the PBMC methylome is
effective in the identification of disease specific epige-
netic biomarkers,17,84,85 including in kidney disease.26

The inclusion of individuals with a wide range of
primary kidney disease diagnoses reflects the nature of
our Northern Ireland Transplant cohort. We sought a
replication cohort with similar phenotypic criteria and
long-term follow-up, but have been unsuccessful in
identifying a similar cohort with longitudinal samples
and/or methylation data.

A larger scale, multiomic analysis, which includes
genetic variation, epigenetic alterations, and gene
expression analyses on the same samples would be
helpful to further determine the markers of interest for
this phenotype and to improve understanding of the
biological mechanisms involved.

CONCLUSION

Blood-derived DNA methylation levels in longitudi-
nally collected samples were similar for most markers
in these matched prekidney transplant and postkidney
transplant recipients. Differentially methylated regions
were identified within markers of CKD, including
cg23597162 within JAZF1 and cg17944885, with
cg17944885 having particularly strong prior associa-
tions with estimated glomerular filtration rate and
DKD.30,66–68 We have established a reference epigenetic
profile of a largely successful kidney transplant cohort
with a mean allograft survival time of approximately 17
years.
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