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ABSTRACT: Identifying the peptide responsible for generat-
ing an observed fragmentation spectrum requires scoring a
collection of candidate peptides and then identifying the
peptide that achieves the highest score. However, analysis of a
large collection of such spectra requires that the score assigned
to one spectrum be well-calibrated with respect to the scores
assigned to other spectra. In this work, we define the notion of
calibration in the context of shotgun proteomics spectrum
identification, and we introduce a simple, albeit computation-
ally intensive, technique to calibrate an arbitrary score function. We demonstrate that this calibration procedure yields an
increased number of identified spectra at a fixed false discovery rate (FDR) threshold. We also show that proper calibration of
scores has a surprising effect on a previously described FDR estimation procedure, making the procedure less conservative.
Finally, we provide empirical results suggesting that even partial calibration, which is much less computationally demanding, can
yield significant increases in spectrum identification. Overall, we argue that accurate shotgun proteomics analysis requires careful
attention to score calibration.
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1. INTRODUCTION

The core of any high-throughput shotgun proteomics analysis
pipeline is a procedure for assigning peptide sequences to
observed fragmentation spectra. Typically, this assignment is
done by treating each spectrum as an independent observation
and then iteratively scoring the spectrum against a given database
of peptides, considering only those candidate peptides whose
masses lie within a specified tolerance of the precursor mass
associated with the observed spectrum. The top-scoring
candidate peptide is then assigned to the spectrum, resulting in
a peptide−spectrum match (PSM). Sometimes the resulting
PSM is correct, the peptide assigned to the spectrum was present
in the mass spectrometer when the spectrum was generated, and
sometimes the PSM is incorrect. Therefore, after a PSM is
created for each observed spectrum, the PSMs are sorted by
score, and a threshold is selected such that the PSMs scoring
above the threshold (accepted PSMs) have a specified false
discovery rate, defined as the estimated percentage of accepted
PSMs that are incorrect.
An important but under-appreciated aspect of this spectrum

identification protocol is that the score function used to compare
a peptide to a spectrum is being asked to do two jobs at once.
First, the score function must identify which candidate peptide
best matches a particular observed spectrum. Second, the same
score function must rank the full set of PSMs in such a way that
correct PSMs outrank incorrect ones.
What might not be immediately obvious is that a given score

function might be very good at the first of these two tasks and

very bad at the second. To see that this is the case, consider a
hypothetical score function that depends strongly upon the total
number of peaks in the observed spectrum. Consequently,
candidate peptides scored with respect to spectrum σi receive
scores in the range, say, 0 to 1, whereas candidate peptides scored
with respect to spectrum σj receive scores in the range 1 to 2. In
this scenario, even if the score function identifies the correct
candidate peptide for σi, the resulting PSM can never out-rank
the PSM for σj. This is undesirable if, in fact, the score function
incorrectly identifies σj. An example of this phenomenon is
shown in Figure 1, where the SEQUEST score function XCorr1

assigned scores to 1000 randomly drawn shuffled candidate
peptides (decoys) for two different spectra. The spectrum σ14
yields scores in the range 0.29−0.89, whereas the spectrum σ716
yields scores in the range 1.0−2.2. Because the two
corresponding histograms do not overlap, if we use XCorr,
then all of the 1000 peptide matches to σ716 are considered to be
better than all of the 1000 peptide matches to σ14. Intuitively, this
is unreasonable: because these PSMs were found by scoring
decoy peptides, we expect the two histograms to look quite
similar.
The underlying issue here is that the XCorr score is not well-

calibrated. We say that a PSM score function is well-calibrated
with respect to spectra if a score of x assigned to spectrum σi has
the same meaning or significance as a score of x assigned to
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spectrum σj. Note that the notion of calibration can be defined
relative to any arbitrary partition of the PSMs, for example, based
on peptide length, precursor mass, total ion current, precursor
charge, etc. In practice, many PSM score functions are not well-
calibrated with respect to spectra. As in Figure 1, they tend to
assign systematically different scores to different spectra.
Therefore, we cannot use these scores to directly compare the
quality of PSMs involving two different spectra.
Our primary goal in this article is to call attention to the

importance of score calibration in the context of shotgun
proteomics analysis. It is important to recognize that simply
creating a score with a well-defined semantics, based on a
probabilistic model,2−4 on empirical p-values derived from a large
collection of decoy PSMs,5 or on p-values created by fitting
scores from many spectra to a parametric distribution,6 does not
address calibration as we have defined it because the above
methods do not take into account the statistics specific to each
spectrum. On the other hand, transforming scores separately for
each spectrum can indeed lead to better calibration. This can be
accomplished by fitting scores to a Poisson,7 exponential,8,9 or
Gumbel distribution.10,11 Alternatively, dynamic programming
can be used to enumerate the entire distribution of a particular
score function over all possible peptide sequences, yielding exact
p-values that condition on the spectrum,12−14 provided that the
score function can be represented as a sum of independent terms.
Alves et al.15 describe a generic methodology for calibrating PSM
scores that uses a collection of reference spectra, searched against
a decoy database, to fit a calibration function for any given
scoring scheme. However, in this case, the calibration is intended
to address the variability across different search tools (for a given
spectrum) rather than the variability across spectra. Finally,
another class of methods addresses per-spectrum calibration by
employing a machine learning postprocessor, such as linear
discriminant analysis16 or support vector machines.17−19 This
type of postprocessor can account for spectrum-specific effects
when appropriate spectrum features are provided as input to the
algorithm.
The large diversity in approaches to assigning significance to a

PSM that is evident in the above review underlines the difficulty
in score calibration. It stands to reason that every one of the
proposed methods is well-suited for some tasks, but there does
not seem to be any one method to rule them all. Indeed, we give
evidence below that two of the more theoretically supported
methods, one that relies on the assumption that the score of the
optimal PSM follows a Gumbel distribution10,11 and another that

uses exact p-values,12 do not always achieve optimal calibration.
In light of this observation and given that our primary goal here is
to study the effects of calibration, rather than the optimal
practical way to achieve it, we propose a different approach here,
one that asymptotically guarantees calibration while requiring
only minimal theoretical assumptions.
We begin by introducing a straightforward but computation-

ally expensive method for empirically calibrating an arbitrary
PSM score function. Note that, due to its computational expense,
we do not propose that this calibration procedure provides the
best practical tool for the job; rather, we use the procedure to
study the calibration properties of several existing approaches. In
particular, we demonstrate on several different combinations of
data sets and scoring functions the significant positive impact that
calibration has on our ability to identify spectra at a specified false
discovery rate threshold, using a standard decoy-based
estimation procedure called target−decoy competition
(TDC).20 We then investigate an alternative method for
estimating the false discovery rate, previously proposed by one
of us,21 and show that calibrating the PSM scores has a surprising
effect on this procedure, making it more liberal than TDC.
Finally, we investigate the trade-off between calibration and
computational expense, showing that even partial calibration can
lead to significant improvements in performance.

2. MATERIALS AND METHODS

2.1. Data

Analysis was performed using three previously described sets of
spectra (Table 1). All three data sets and their associated protein
databases are available at http://noble.gs.washington.edu/proj/
calibration.
The yeast data set was collected from Saccharomyces cerevisiae

(strain S288C) whole-cell lysate.19 The cells were cultured in
YPD media, grown to mid log phase at 30 °C, lysed, and
solubilized in 0.1% RapiGest. Digestion was performed with a
modified trypsin (Promega), and the sample was subsequently
microcentrifuged at 14 000 rpm to remove any insoluble
material. Microcapillary liquid chromatography tandem mass
spectrometry was performed using 60 cm of fused silica capillary
tubing (75 μm i.d.; Polymicro Technologies), placed in-line with
an Agilent 1100 HPLC system and an LTQ ion trap mass
spectrometer. MS/MS spectra were acquired using data-
dependent acquisition with a single MS survey scan triggering
five MS/MS scans. Precursor ions were isolated using a 2 m/z

Figure 1. Calibrated vs raw PSM scores. Two spectra, σ14 (red) and σ716 (green), and the corresponding histograms of XCorr scores generated by
searching each spectrum against 1000 randomly drawn decoys. The spectra are taken from the yeast data set.
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isolation window. The charge state of each spectrum was
estimated by a simple heuristic that distinguishes between singly
charged and multiply charged peptides using the fraction of the
measured signal above and below the precuror m/z.26 No
attempt to distinguish between 2+ or 3+ spectra was made other
than limiting the database search to peptides with a calculated M
+ H mass of 700 to 4000 Da. Thus, of the 35 236 spectra, 737
were searched at 1+ charge state, 30 were searched at 2+ charge
state, and the remaining (34 469) were searched at both 2+ and
3+ charge states.
The worm data set is derived from a Caenorhabditis elegans

digest.27 C. elegans were grown to various developmental stages
on peptone plates containing Escherichia coli. After removal from
the plate, bacterial contamination was removed by sucrose
floating. The lysate was sonicated and digested with trypsin. The
digest (4 μg) was loaded from the autosampler onto a fused-silica
capillary column (75 μm i.d.) packed with 40 cm of Jupiter C12
material (Phenomenex) mounted in an in-house constructed
microspray source and placed in line with a Waters NanoAcquity
HPLC and autosampler. The column length and HPLC were
chosen specifically to provide highly reproducible chromatog-
raphy between technical replicates, as previously described.27

Tandem mass spectra were acquired using data-dependent
acquisition with dynamic exclusion turned on. Each high-
resolution precursor mass spectrum was acquired at 60 000
resolution (at m/z 400) in the Orbitrap mass analyzer in parallel
with five low-resolution MS/MS spectra acquired in the LTQ.
Bullseye28 was then used to assign charges and high-resolution
precursor masses to each observed spectrum on the basis of
persistent peptide isotope distributions. Because a single
precursor m/z range may contain multiple such distributions,
Bullseye frequently assigns more than one distinct precursor
charge and mass to a given fragmentation spectrum. The final
data set consists of 7557 fragmentation spectra, with an average
of 2.10 distinct precursors per spectrum: 1423 +1, 7891 +2, 4646
+3, 1683 +4, and 228 +5. The +5 spectra were discarded from the
analysis.
The Plasmodium data set is derived from a recent study of the

erythrocytic cycle of the malaria parasite Plasmodium falcipa-
rum.29 P. falciparum 3D7 parasites were synchronized and
harvested in duplicate at three different time points during the
erythrocytic cycle: ring (16 ± 4 h postinvasion), trophozoite (26
± 4 h postinvasion), and schizont (36 ± 4 h postinvasion).
Parasites were lysed, and duplicate samples were reduced,

alkylated, digested with Lys-C, and then labeled with one of six
TMT isobaric labeling reagents. The resulting peptides were
mixed together, fractionated via strong cation exchange into 20
fractions, desalted, and then analyzed via LC−MS/MS on an
LTQ-Velos-Orbitrap mass spectrometer. All MS/MS spectra
were acquired at high resolution in the Orbitrap. We focused on
one of these fractions (number 10), consisting of 12 594 spectra,
and we discarded 470 spectra with charge state > +4, leaving
12 124 spectra.

2.2. Assigning Peptides to Spectra

Searches were carried out using two different search engines: the
Tide search engine,22 as implemented in Crux v2.0,30 and MS-
GF+.12

The yeast spectra were searched against a fully tryptic database
of yeast proteins. The trypsin cleavage rule did not include
suppression of cleavages via proline.31 The precursor m/z
window was ±3.0 Th. No missed cleavages were allowed, and
monoisotopic masses were employed for both precursor and
fragment masses. A static modification of C + 57.02146 was
included to account for carbamidomethylation of cysteine. For
Tide, the mz-bin-width parameter was left at its default value of
1.0005079. For MS-GF+, the -inst parameter was set to 0, and no
isotope errors were allowed.
The worm spectra were searched against a fully tryptic

database of C. elegans proteins plus common contaminants.
Searches were performed using the same parameters as for the
yeast data set, except that candidate peptides were selected using
a precursor tolerance of 10 ppm. For MS-GF+, the -inst
parameter was set to 1, and no isotope errors were allowed. Note
that, due to the Bullseye processing of the worm spectra, a single
spectrum may have been assigned multiple high-resolution
precursor windows with the same charge state. In such cases, we
identified the maximum scoring PSM per charge state.
Eliminating spectra with no Bullseye-assigned precursor window
or no candidate peptides within the assigned precursor range
yielded a total of 9312 worm PSMs.
The Plasmodium spectra were searched against a database of

Plasmodium peptides, digested using Lys-C. In addition to C +
57.02146, static modifications of +229.16293 were applied to
lysine and to the peptide N-termini to account for TMT labeling.
All searches were performed using a 50 ppm precursor range. For
Tide, the mz-bin-width parameter was set to 0.10005079. For
MS-GF+, the -inst parameter was set to 1, and no isotope errors
were allowed. For some spectra, no candidate peptides occur
within the specified precursor tolerance window; hence, the
number of PSMs (11 625) is smaller than the total number of
spectra (12 594).
As noted below, a subset of the results, Table 2 and Figures 9

and 10, were obtained using the XCorr score computed by the
search-for-matches search engine in Crux v1.39.23

2.3. Decoy Generation

Decoy databases were generated by independently shuffling the
nonterminal amino acids of each distinct target peptide. For each
database, the decoy creation procedure was repeated 11 000
times, creating a 10K decoy set (used for calibration as explained
next) and an independent 1K decoy set (used for evaluating the
performance of the search methods).

2.4. Calibrating the Scores

The raw score we use in our database searches is SEQUEST’s
XCorr.1 For each spectrum σ in each of our charge sets, we use

Table 1. Properties of the Three Data Sets

data set yeast worm Plasmodium

precursor resolution low high high
fragment resolution low low high
+1 spectra 737 1423 
+2 spectra 34 499 7891 1311
+3 spectra 34 469 4646 8441
+4 spectra 1683 2372
+1 PSMs 737 241 
+2 PSMs 34 499 4494 790
+3 PSMs 34 467 3173 8382
+4 PSMs 1288 2362
enzyme trypsin trypsin lys-c
peptides in database 165 930 462 523 223 602
precursor m/z tolerance ±3 Th ±10 ppm ±50 ppm
fragment m/z bin width 1.0005079 1.0005079 0.10005079
average candidates/spectrum 955.7 22.0 48.7
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Crux23 to find the XCorr score of the best match of σ against the
peptide database DB:

σ σ=
∈

S S p( ,DB): max ( , )
p DB

Our calibration of the raw score is spectrum-specific: we replace s
= S(σ, db) by an estimate of the p-value of s

σ ≥P S s[ ( ,DB) ]

where db is the target database and DB is a decoy database that is
randomly generated as described above.
The p-value is estimated using a straightforward Monte Carlo

scheme: each spectrum σ is searched against each decoy database
dc in the 10K decoy set, and the optimal (raw score) PSM for that
database z = S(σ,dc) is noted (we loosely refer to these as the
decoy PSMs). We next use this null sample of N = 10 000 decoy
PSM scores {zi}i=1

N to construct a spectrum-specific empirical null
distribution. This distribution is then used to assign the
spectrum-specific p-value of an observed raw score s = S(σ,
db), which is essentially the rank of s in the combined list of s and
{zi}. Technically, the calibrated score is the negative of the
empirically estimated p-value.
Note that we can use this procedure to calibrate optimal PSMs

generated by searching either the target database db or any of the
decoy databases dc in the 1K decoy set. We stress that the 1K set
is disjoint from the 10K decoy set that is used to calibrate the
scores.
For the 1K decoy calibration, we used the first 1000 decoys of

the 10K decoy set to estimate the empirical distribution of the
spectrum-specific optimal PSM.
2.5. Estimating FDR Using Target−Decoy Competition

In target−decoy competition, the number of false or incorrect
PSMs is estimated by searching a decoy database. Specifically, a
decoy database of the same size as the target database is drawn
according to the null model of choice (shuffling in our case,
Section 2.3), and each spectrum is searched against the
concatenated database, retaining the single best-scoring PSM
for each spectrum. The concatenation of the database creates a
target−decoy competition, where any optimal target PSM that
scores less than the corresponding optimal decoy PSM is
eliminated from consideration.
Here, we use a target-only version of the TDC procedure,

where the list of reported discoveries consists only of those PSMs
that score higher than the threshold and that are matched with a
target peptide from the concatenated database. The number of
false discoveries in this filtered discovery list is estimated by the

number of PSMs whose score exceeds the threshold and that are
matched to a decoy peptide in the concatenated database. The
FDR at level t is then estimated by the ratio of the number of
decoy to target PSMs that exceed the level t.

2.6. Estimating FDR Using the Käll Procedure

Executing two separate searches, one against the target database
and one against the randomly drawn decoy database, the Kal̈l
procedure uses the set of optimal decoy PSM scores to estimate
the p-values of optimal target PSMs. Applying the standard FDR
analysis of Storey32 to these target PSM p-values, the Kal̈l
procedure estimates π0, the proportion of incorrect target hits.
The list of discoveries at threshold t includes all target PSMs

that score above t. Unlike TDC, no target−decoy competition is
done; however, like TDC, decoys are filtered out of the reported
list of discoveries. The number of false discoveries in that list is
estimated by the product of π0 and the number of decoy PSMs
that score above t. The estimated FDR at level t is then the ratio
of these two numbers.

2.7. Number of Discoveries at a Given FDR

Note that for both TDC and the Kal̈l procedure, the estimated
FDR is not necessarily a monotone function of the score
threshold t. Hence, when determining a score cutoff to achieve a
desired FDR threshold α, the procedure is to select the most
permissive (lowest) cutoff score t for which the FDR is still ≤α.
For computational efficiency, we computed this number for only
120 selected values of α: from 0.001 to 0.01 in increments of
0.001, from 0.012 to 0.05 in increments of 0.002, and from 0.055
to 0.5 in increments of 0.005.

2.8. Evaluating the Differences in Discovery Lists

The differences in the discovery lists between methods A and B
were evaluated at a given FDR level α ∈ {0.01,0.05,0.1} as
follows. First, we identified the largest discovery list reported by
each method for which the FDR was still ≤α. Then, the two lists
were compared to see which PSMs appear only in A and not in B
and vice versa. Finally, the number of PSMs present only in A’s
list was expressed as a percentage of the total number of PSMs in
this list (and vice versa).

3. RESULTS

3.1. A Procedure for Producing Calibrated Scores

One common way to calibrate scores is to assign them a p-value.
Suppose that the top-scoring PSM produced by scanning a
spectrum σ against a peptide database has score s. The p-value of s
is defined as the probability of observing an optimal match with a
score ≥ s, assuming that the spectrum σ is scanned against a
randomly drawn database. Because this procedure assigns to each
PSM a universal measure of surprise, we can use the resulting p-
values to directly compare PSMs regardless of whether they share
the same spectrum: the smallest p-value indicates the largest level
of surprise and should therefore coincide with the most
promising match.
Of course, this definition of p-value depends on the notion of a

randomly drawn database, known more generally as the null
model. In the best case, the null model can be characterized
analytically, and the corresponding p-value can be calculated
exactly. This is the approach taken by most familiar statistical
tests, such as a t-test or χ2-test. If, however, the null model is too
unwieldy to allow an exact computation of the p-value, then one
can always rely on a Monte Carlo estimation if one has sufficient
computational resources.

Table 2. Variability in PSMDiscoveries Reported by Different
Applications of TDC Using Calibrated and Raw XCorr Scores

% only in one
T-TDC raw score

% only in one
T-TDC calibrated

score

set FDR 0.01 0.05 0.10 0.01 0.05 0.10

yeast 0.05 quantile 0.1 0.5 1.1 0.0 0.1 0.3
median 1.0 0.9 1.6 0.6 0.6 0.8
0.95 quantile 3.1 2.1 2.8 2.4 1.7 2.0

worm 0.05 quantile 0.1 0.6 1.5 0.0 0.2 0.5
median 1.5 1.5 2.5 1.1 0.8 1.2
0.95 quantile 4.7 3.5 4.6 3.9 2.5 3.0

Plasmodium 0.05 quantile 0.0 0.6 1.4 0.0 0.1 0.2
median 1.1 1.3 2.2 0.6 0.5 0.7
0.95 quantile 6.0 3.3 3.9 2.6 1.6 2.3
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In our case, we propose a straightforwardMonte Carlo scheme
for estimating PSM p-values (Section 2.4). The procedure
involves creating multiple databases according to a specific null
model, in which nonterminal amino acids in each peptide are
shuffled uniformly at random. We refer to these shuffled
databases as decoy databases and to the original database as the
target database. We then scan each decoy database for matches
against σ, and we record the best PSM for each random database.
Using the resulting scores, we generate an empirical null
distribution for each spectrum, which is then used to assign the p-
value of the best match of σ against the target database. This p-
value is our calibrated score.
To understand the impact of calibration in practice, consider

again the two tasks mentioned above: identifying which
candidate peptide best matches a particular observed spectrum,
and ranking the full set of PSMs in such a way that correct PSMs
outrank incorrect ones. Because calibration is carried out
separately for each spectrum, it should be clear that calibration
will not affect the first task: the best PSM for a given spectrum is
the same regardless of whether the score is calibrated. However,
the changes in the ranking of PSMs involving different spectra
can be substantial (Figure 2).

Figure 2. Calibration changes the ranking of PSMs. Scatter plot of
calibrated versus raw XCorr score rank of each optimal PSM from
34 469 +3 spectra from the yeast data set. The tail at the right end of the
graph consist of 2438 PSMs with the same minimal calibrated score
(maximal p-value), so their calibrated rank is somewhat arbitrarily
determined within that set of poorly scored PSMs. Similar figures (not
shown) were obtained for all other data sets that we examined.

Figure 3.Calibrating a noncalibrated score, on average, yields more discoveries (TDC). Each panel plots the median number of discoveries as a function
of FDR threshold using TDC applied to the raw and calibrated scores (the median is with respect to 1000 applications, each using a single independently
drawn decoy set). Calibration substantially increases the number of TDC discoveries when using the noncalibratedMS-GF+ and Xcorr scores. MS-GF+
E-value is designed as a calibrated score; hence, calibration adds little to the yeast and Plasmodium data sets. Surprisingly, though, calibration makes a
substantial impact even on the E-value in the worm data set.
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3.2. The Impact of Calibration on Statistical Power Assessed
Using Target−Decoy Competition

Given calibration’s substantial impact on the ranking of PSMs,
we expect calibration to have a corresponding impact on the
number of spectra successfully identified as a function of FDR
threshold. Ideally, we would like the calibration procedure to
boost our statistical power, which is defined in this setting as the
probability of correctly identifying the correct PSM. From a
practical perspective, improving statistical power corresponds to
increasing the number of spectra identified at a fixed FDR
threshold.
To assess the effect of calibration on statistical power, we

employed a previously described, decoy-based method for
estimating false discovery rate, called target−decoy competition
(TDC).20 Briefly, the method consists of searching a given set of
spectra against a database containing an equal number of target
and decoy peptides, retaining the single best-scoring PSM for
each spectrum. As a result of this selection, any optimal target
PSM that scores less than the corresponding optimal decoy PSM
is eliminated from consideration. Subsequently, at a given score
threshold, the number of accepted decoy PSMs provides an
estimate of the number of accepted incorrect target PSMs. Note
that, in this work, we use a variant of the originally proposed
TDC protocol, in which we estimate the FDR with respect to the

list of target PSMs rather than with respect to the combined list
of target and decoy PSMs (Materials and Methods, Section 2.5).
It is intuitively clear that our simple calibration procedure does

not depend on the particular score function. However, the
magnitude of the improvement achieved via calibration
obviously varies according to how well or ill calibrated the
score function is. We therefore looked at three different score
functions: the SEQUEST XCorr score, as implemented in the
Tide search tool,22 the MS-GF+ raw score, and the MS-GF+ E-
value.12 Note that MS-GF+ E-value is designed as a calibrated
score function, so, in principle, our calibration procedure should
not be able to improve it.
Using TDC, we find that calibrating the scores yields more

discoveries across the entire practical range of FDR values for
both XCorr andMS-GF+ raw scores and across all three data sets
that we examined (Figures 3 and 4). At FDR 1% and using Xcorr,
we observe an increase in the number of discoveries of 22, 8.0,
and 31% for the yeast, worm, and Plasmodium data sets,
respectively. Using the MS-GF+ raw score, the corresponding
improvements at the same 1% FDR level are 37, 61, and 27%.
Presumably, MS-GF+’s raw score is even less calibrated than
XCorr. Note that these are median improvements across 1000
raw-vs-calibrated applications of TDC to that many independ-
ently drawn decoy databases. This improvement in statistical
power occurs because when we sort PSMs according to their

Figure 4. Calibrating a noncalibrated score mostly yields more discoveries (TDC). Each panel plots, as a function of estimated FDR, the ratio of the
number of TDC discoveries at FDR ≤ 0.1 when using the calibrated score (numerator) versus the number of discoveries at the same FDR when using
the raw score (denominator). The solid line represents the median ratio (with respect to 1000 ratios, each comparing the raw vs calibrated TDC
discoveries using a single independently drawn decoy set), whereas the 0.95 and 0.05 quantiles of the ratios are represented as dots. For small FDR
values, the calibrated score yields considerably more discoveries than the uncalibrated score (MS-GF+ and Xcorr).

Journal of Proteome Research Article

dx.doi.org/10.1021/pr5010983 | J. Proteome Res. 2015, 14, 1147−11601152



calibrated score, higher quality PSMs are moved higher up the
list. In the context of target−decoy competition, these higher
quality PSMs are less likely to be surpassed by corresponding
decoy matches. In the end, the increased number of discoveries
provides strong motivation to perform score calibration as part of
any mass spectrometry identification procedure.
An additional benefit that calibration provides is a reduction in

the variability in the list of identified spectra. This variability
arises because of the random nature of the decoys in TDC: the
set of target PSMs that win the target−decoy competition differs
each time the procedure is run. Note that the use of reversed,
rather than shuffled, decoy peptides simply hides this problem by
arbitrarily fixing the decoys and the corresponding filtered
peptides. To quantify the amount of decoy-induced variation in
the list of discoveries, we randomly drew 2000 nonidentical pairs
of decoys from our list of 1000 independent decoy sets and
recorded, for a few selected levels of FDR, the number of
discoveries that are found in one application of TDC and not the
other (Materials and Methods, Section 2.8). The results (Table
2) show that the decoy-induced median variation in the
composition of the discovery list is smaller when using the
calibrated score than when using the raw score. Note that these
results, as well as those in Figures 9 and 10, were obtained using
the XCorr score as implemented in the Crux tool search-for-
matches.23

The MS-GF+ E-value score is designed to be calibrated; thus,
it is not surprising that at 1% FDR level there is little difference
between using the E-value score and its 10K-calibrated version:
1.2 and 3.3% more calibrated TDC discoveries in the yeast and
worm data sets, respectively, and 0.5% fewer discoveries in the
Plasmodium data set. Similarly, at 5% FDR level, the calibrated
version of the MS-GF+ E-value identifies 1.5% more discoveries
in the yeast data set and 0.2% fewer discoveries in the Plasmodium
data set. It is, however, surprising that at the same 5% FDR level
the calibrated version yields 12% more discoveries in the worm
data and that number increases to 16% at 10% FDR level. We
suspect that some of the assumptions that go into computing the
MS-GF+ E-value are violated for the worm data set, but these do
not affect our robust albeit costly calibration procedure.

3.3. Calibration’s Effect on the Method of Ka ̈ll et al
To further investigate the effect of calibration on the statistical
analysis of PSMs, we considered an alternative method for
estimating the FDR, proposed by Kal̈l et al.21 The method differs
from the TDC method in two ways (Materials and Methods,
Section 2.6). First, the Kal̈l method estimates the FDR by using
the empirical distribution function of all of the optimal decoy
PSMs, rather than just those optimal decoy PSMs that win the
target−decoy competition. Similarly, the list of accepted target
PSMs from the Kal̈l method includes all of the optimal target
PSMs that score above a certain threshold, regardless of whether
they win the target−decoy competition. Second, the Kal̈l method

Figure 5. A calibrated score, on average, yields more discoveries (Kal̈l). Each panel plots the median number of discoveries as a function of FDR
threshold using the Kal̈l method applied to the raw and calibrated scores (themedian is with respect 1000 applications, each using a single independently
drawn decoy set). For small FDR values, the calibrated score yields considerably more discoveries than the uncalibrated score. Note that even forMS-GF
+ E-value our calibration procedure typically increases the number of Kal̈l discoveries.
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requires estimation of a parameter π0, representing the
percentage of the optimal target PSMs that are incorrect. The
final FDR estimate includes π0 as a multiplicative factor.
Similar to the TDC procedure, using Kal̈l’s procedure with

calibrated scores yields a significant boost in the number of
discoveries across the entire range of practical FDR thresholds
(Figures 5 and 6). For example, at FDR 1%, Kal̈l’s method
suggests that when using XCorr calibration increases the number
of discoveries by 43, 20, and 53% for the yeast, worm, and
Plasmodium data sets (again, these are median improvements
using 1000 independently drawn decoy sets). Notably, this
increase in the number of discoveries is substantially larger than
we observed previously for TDC using XCorr, which yielded
corresponding percentages of 22, 8.0, and 31%. The correspond-
ing increases at 1% FDR when using MS-GF+’s raw score are 70,
79, and 49% for the 10K-calibrated Kal̈l’s method over using the
raw score (compared with 37, 61, and 27% increases when using
TDC).
To better understand this difference, we directly compared the

number of discoveries produced by the two methods as a
function of FDR threshold. Surprisingly, this comparison yields
opposite results depending upon whether we use calibrated or
noncalibrated scores. Using noncalibrated scores (Xcorr, MS-GF
+ raw score), the TDC procedure systematically yields more
discoveries than the Kal̈l procedure (Figure 7), whereas the
behavior is reversed when we use calibrated scores (Figure 8).

We claim that this reversal in behavior arises because the Kal̈l
procedure implicitly assumes a calibrated score. Recall that the
Kal̈l procedure estimates the p-value of each PSM by using the
empirical score distribution from a single set of decoy PSMs. If
the score is not calibrated, then the resulting p-values can differ
substantially from the p-value that we estimate using 10 000 sets
of decoys. To illustrate this phenomenon, we estimated the p-
value of each target PSM raw score (yeast, charge 2 set) in two
different ways: by constructing a single distribution of optimal
PSM scores from a single decoy set (single-decoy p-values) and
by constructing spectrum-specific distributions using 10 000
decoy sets (per-spectrum p-values). The two resulting sets of p-
values are positively correlated (Pearson correlation of 0.825)
but exhibit substantial differences (Figure 9A). Because the per-
spectrum p-value accounts for spectrum-to-spectrum variability
in scores, we conclude that the single-decoy p-values estimated
by the Kal̈l procedure method from raw scores are inaccurate. In
contrast, when we switch to calibrated scores and repeat this
comparison, the single-decoy and per-spectrum p-values are in
almost perfect agreement (Figure 9B, Pearson correlation of
1.000). Thus, the Kal̈l procedure yields accurate p-values only
when the given scores are well-calibrated.
In our example, the inaccuracies in estimating the p-values

based on raw scores accumulate to yield an overall conservative
bias in the estimated single-decoy p-values (Figure 9C, blue
curve). In contrast, the analogous curves generated when using

Figure 6. A calibrated score mostly yields more discoveries (Kal̈l). Each panel plots, as a function of estimated FDR, the ratio of the number of Kal̈l
method discoveries at FDR ≤ 0.1 when using the calibrated score (numerator) versus the number of discoveries at the same FDR when using the raw
score (denominator). The solid line represents the median ratio with respect to 1000 independently drawn decoy sets, whereas the 0.95 and 0.05
quantiles of the ratios are represented as dots.
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the calibrated scores with per-decoy p-values (green) or per-
spectrum p-values (magenta) perfectly overlap.
This conservative bias has two undesired consequences. First,

higher (more conservative) p-values means fewer discoveries
(Figure 5). Second, it also means that the percentage of incorrect
targets, π0, is incorrectly estimated because the estimation relies
on correctly estimated p-values. To demonstrate the effect of
calibration on estimating π0, using each of 1000 randomly drawn
decoy sets, we estimated π0 in the list of target PSMs generated
by scanning the yeast charge 2 spectra set against the target
database. This was done twice: once when both target and decoy
PSM were evaluated using the raw scores and once using the
calibrated scores for both. We estimated π0 using the smoother
option in the R function qvalue. Clearly, using the calibrated
score yields a significantly lower (less conservative) estimate of
π0 (Figure 10A). This result is problematic because the value of
π0 should not depend on which score we use.
Interestingly, Kal̈l et al.21 reported a problem they observed in

estimating π0 (Figure 6B in ref 21): “The increasing trend in the
plot is evidence of a conservative null model. Apparently, there is
an enrichment of target PSMs with very low scores, which likely
correspond to poor quality spectra. A significant avenue for
future research is finding a better null model that does not yield
this type of artifact.” In our experiments, when we estimated π0
using the raw scores, we observed the same problem (Figure 10B,
blue curve). However, when the same procedure is applied to the

calibrated scores, the problematic increasing trend is all but gone
(green curve).

3.4. How Many Decoys Do We Need for Calibration?

To calibrate our scores, here we paid a hefty price: multiplying
the search time by a factor of 10 000. While for a small set of
spectra and a reasonably sized peptide database this approach
might be feasible, analysis of larger data sets would require
considerable computing resources. It is therefore natural to ask
whether we can still enjoy some of the benefits of calibration if we
use only a semicalibrated score, say by calibrating using only 1000
decoys (1K calibration). Note that, as with the 10K decoy
calibration, these 1K decoys are independent of the 1000 decoy
sets used for the target decoy analysis. In fact, here we simply use
the first 1000 of the decoy sets used for the full 10K calibration.
Our experiments suggest that semicalibrated scores are useful,

as long as we do not seek to set the FDR threshold too low. In
particular, when we use an FDR threshold (estimated via TDC)
in the range of 2−10%, the semicalibrated scores yield improved
performance relative to noncalibrated scores (Xcorr and MS-GF
+ raw score) across all three data sets that we examined (Figure
11). Especially for thresholds of 5 or 10%, the benefit provided by
semicalibration is nearly as good as that of full 10k calibration
(Figure 12).
At a lower FDR threshold of 1%, however, semicalibration is

not beneficial. This is because, in general, our calibration
procedure does not allow us to distinguish among target PSMs

Figure 7.With noncalibrated scores, Kal̈l’s method is more conservative than TDC. The ratio of the number of Kal̈l discoveries to TDC discoveries at
FDR ≤ 0.1 when using the raw score. The median ratio (with respect to 1000 independently drawn decoys) in solid line is flanked by the 0.95 and 0.05
quantiles of the ratios. Results are for raw scores, but keep in mind that MS-GF+ E-value is partially calibrated even in its raw form, so the ratio of Kal̈l to
TDC discoveries fluctuates above and below 1.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr5010983 | J. Proteome Res. 2015, 14, 1147−11601155



that out-score all of the 1K or 10K decoys. All such target PSMs
receive an equivalent p-value of 0.001 in the 1K case or 0.0001 in
the 10K case. The main difference between 1K and 10K
calibration is the size of this set of maximal scoring PSMs. If our
spectra set contains a relatively high percentage of incorrect
target PSMs (i.e., a large value of π0), then some of those
incorrect targets will inevitably make it into the list of maximal

scoring PSMs, particularly when that list is relatively large due to
using only 1000 decoy sets. In such a situation, the minimal
attainable FDR level might be higher than the threshold we
desire. We observe exactly this phenomenon with XCorr applied
to the yeast charge 3 set, which yields a relatively high estimated
π0 of 83.5% (compared with 43.4 and 65.9% for the charge 1 and
2 sets, respectively). When using semicalibrated scores to analyze

Figure 8.With calibrated scores, Kal̈l’s method gives more discoveries than TDC. The ratio of the number of Kal̈l discoveries to TDC discoveries at FDR
≤ 0.1 when using the calibrated score. The median ratio (with respect to 1000 independently drawn decoys) in solid line is flanked by the 0.95 and 0.05
quantiles of the ratios. After calibrating, all three scores typically yield more Kal̈l than TDC discoveries at any given FDR.

Figure 9.Decoy-estimated p-values: calibrated versus raw scores. The target PSM p-values were estimated from XCorr scores in three different ways: (i)
p-values were estimated using the same 10K decoys per spectrum that we use to define our calibrated scores or (ii, iii) a single-decoy set was arbitrarily
chosen and used to estimate the target PSM p-value according to Kal̈l’s procedure, but once using the raw scores for both decoy and target PSMs and
another time using the calibrated scores for both. (A) Scatter plot of raw score p-values (yeast, charge 2 set) computed using Kal̈l’s procedure (a single-
decoy set, y axis) and using spectrum-specific distributions generated from 10K decoys (x axis). (B) Similar to panel A, but computed using calibrated
rather than raw scores. (C) The figure plots, as a function of p-value threshold, the fraction of target PSMs with p-values less than or equal to the
threshold. For any nominal p-value t ≤ 0.95, we find fewer target PSMs whose raw score estimated p-value is ≤ t (blue) than when the same p-value is
estimated using the calibrated scores with either the single-decoy or per-spectrum method (magenta and green, essentially in perfect agreement).
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the charge 3 spectra, we find that the median (across the 1000
independent decoy sets) of the minimal attainable FDR level is
higher than 1%; hence, the list of TDC discoveries at 1% FDR
level is empty (100% loss relative to the 10K list at the same FDR

level of 1%). Thus, in general, the benefit of semicalibration
depends strongly upon the value of π0: higher values of π0 will
yield larger sets of indistinguishable maximal scoring PSMs,
which in turn will preclude using a low FDR threshold. Note that

Figure 10. Estimating Kal̈l’s percentage of incorrect targets: calibrated versus raw scores. (A) The value of π0 in the yeast charge 2 optimal target PSM set
was estimated separately using each of 1000 decoy sets. The red histogram corresponds to raw XCorr scores, and the white, to calibrated scores. (B)
Using the first decoy set, π0 was estimated using a fixed p-value threshold (again, yeast charge 2 set). The increasing trend that troubled Kal̈l et al.21

(Figure 6B in their paper) is visible in blue here when using the raw score, but it disappears when the estimate is based on calibrated score (green).

Figure 11. Semicalibrated scores mostly yield more discoveries than using raw scores (TDC, FDR levels > 2%). Each panel plots, as a function of FDR
threshold, the ratio of the number of TDC discoveries at a given FDR threshold when using the semicalibrated score (numerator) versus the number of
discoveries at the same FDR when using the raw score (denominator). The solid line represents the median ratio with respect to 1000 independently
drawn decoy sets, whereas the 0.95 and 0.05 quantiles of the ratios are represented as dots.
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in practice the user will be aware of this limitation because the
lowest reported estimated FDR will be higher than 1%. In such a
situation, the user could opt to do further calibration to achieve
better precision until the desired FDR threshold yields some
discoveries.
We stress that in practice the user should consider the

applicability of parametric approaches (e.g., refs 10 and 11) in
addition to semi- or 10K calibration.

4. DISCUSSION

Our study aims to communicate three primary points. First, we
define the notion of calibration in the context of mass
spectrometry analysis, and we provide empirical evidence for
the importance of calibration in this domain. We propose a
nonparametric calibration procedure, and we use it to provide
evidence that two of the more theoretically founded calibration
methods, the parametric Gumbel EVD and the MS-GF+ exact p-
value computation, can fail in some cases to properly calibrate
scores. Our second point concerns the surprising effect that
calibration has on the FDR estimation procedure proposed by
Kal̈l et al. Using the XCorr or MS-GF+ raw score, the Kal̈l
procedure yields fewer discoveries than the TDC procedure, but
this situation is reversed when these scores are calibrated. Finally,
we investigate the trade-off between statistical power and
computational cost, suggesting that in many cases a less
computationally expensive but also less exact calibration
procedure is preferable to no calibration at all.

As pointed out in the Introduction, we are not the first to point
out the value of calibration. For example, Jeong et al.24 showed
that using the MS-GF spectral probability instead of its raw score
yields substantially more discoveries at each FDR level. In those
experiments, the FDR was estimated using the TDC method,
and the authors attributed the improvement in statistical power
to the better calibration (which they referred to as normal-
ization) of the spectral probability. However, whereas the
calibration procedure proposed by Jeong et al. is specific to a
single score function, the one proposed here can be applied to
any score function.Moreover, as shown on the worm data set, the
MS-GF+ E-value is not always perfectly calibrated: applying our
simple calibration procedure to the E-value increased the number
of a discoveries at 4−10% FDR range by a nontrivial amount.
Another approach to calibration that seems to be theoretically

supported is based on the presumed Gumbel extreme value
distribution of the null optimal PSM score.10,11 While this
approach generally gives good results, there are cases where it can
fail badly. For example, when the XCorr score is applied to the
yeast charge 1 set and calibration is done using p-values estimated
using the Gumbel distribution whose parameters are estimated
from 100 decoy runs, we lose 23% of the discoveries at 1% FDR
compared with the nonparametric 10K-decoys calibration. The
results are much worse when using the MS-GF+ E-value score:
almost all of the discoveries were lost at 1% FDR when
calibrating using a Gumbel distribution estimated from 100
decoys. While it is possible that applying some transformation of

Figure 12. 1K semicalibrated scores yield similar improvements to 10K-calibrated scores (TDC, FDR levels > 2%). Same as Figure 11, but now the ratio
of the number of TDC discoveries when using the 10K-calibrated scores to the number of discoveries when using the 1K (semicalibrated) scores is
analyzed.
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the E-value score will improve this result, the point is that
applying this or other less theoretically founded parametric
approaches hinges on establishing their applicability, whereas the
nonparametric method we propose here is universally applicable.
Similarly, the conservative nature of a simplified version of the

Kal̈l procedure was demonstrated by Wang et al.,25 using the
XCorr score applied to a data set derived from rat kidney on an
LTQmass spectrometer. That version, whichWang et al. refer to
as the separate search, omits the π0 term; hence, it is more
conservative than the Kal̈l procedure. Wang et al.’s findings are
consistent with our results on raw scores. However, our analysis
takes the Wang et al. model one step further, demonstrating that
the observed conservative nature of the Kal̈l procedure is a
function of the poor calibration of the underlying XCorr score.
Consequently, after score calibration, the Kal̈l procedure actually
yields lower FDR estimates than TDC and, on average, more
discoveries than TDC at a given FDR (Figure 8). On the basis of
this result, one might be tempted to use Kal̈l procedure on
calibrated scores; however, we caution that in a follow-up work
we will show that in fact Kal̈l’s method is a bit too liberal and
hence not statistically valid, even when applied to calibrated
scores.
One important caveat of our proposed procedure is that, like

other target−decoy methods for FDR estimation, it is database-
dependent. In other words, the calibrated score that our Monte
Carlo procedure produces depends upon the choice of decoy
peptide database. This is also true of methods that produce
confidence estimates directly from decoy score distributions20 or
methods that parametrically fit observed score distributions,7−11

but not of methods that analytically compute a database-
independent confidence measure.12−14 Note, however, that,
despite this database dependence, we have shown that our
proposed procedure nevertheless reduces that database-depend-
ent variability associated with TDC.
We have demonstrated the utility of our method for databases

that range in size by more than an order of magnitude, from 22
candidates per spectrum for the worm data set up to 956
candidates per spectrum for the yeast data set (Table 1). In
principle, because our method is nonparameteric, it should apply
to even smaller databases containing only a handful of candidates
per spectrum. Such searches might arise in experiments using
purified protein complexes or other simple mixtures. Note that
this is in contrast to parametric curve-fitting methods,7−11 which
require sufficient candidate scores from which to estimate
parameters.
Finally, it is fair to ask how many randomly drawn peptide

databases is enough. In this article, we used 10 000 null sampled
databases to calibrate our scores, but can you do better by
drawing more? In general, the answer to this question depends
on several factors including the size of the spectra set and the
(unknown) percentage of incorrect target PSMs. We noted that
when we limited ourselves to 1000 null databases our calibrated
score was doing rather poorly at low FDR levels (∼1%). In
practice, this is something the user can observe: the minimal
reported FDR is relatively high. If that is the case, then it is
generally advisible to double the size of the null set by drawing
another set of null databases of the same size as the initial set.
More generally, one can use this doubling procedure as a rule of
thumb: if the improvement relative to using the previous set
(which consists of one-half of the doubled set) is marginal, then it
is very likely that not much gain will be made by further increases
of the null set.
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