
RESEARCH ARTICLE

Spatial mismatch analysis among hotspots of

alien plant species, road and railway networks

in Germany and Austria

Yanina Benedetti*, Federico Morelli

Department of Applied Geoinformatics and Spatial Planning Faculty of Environmental Sciences, Czech

University of Life Sciences Prague, Prague, Czech Republic

* ybenedetti73@gmail.com

Abstract

Road and railway networks are pervasive elements of all environments, which have

expanded intensively over the last century in all European countries. These transportation

infrastructures have major impacts on the surrounding landscape, representing a threat to

biodiversity. Roadsides and railways may function as corridors for dispersal of alien spe-

cies in fragmented landscapes. However, only few studies have explored the spread of

invasive species in relationship to transport network at large spatial scales. We performed

a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate

whether alien plant species hotspots in Germany and Austria correspond to areas of high

density of roads and railways. We tested this independently of the effects of dominant

environments in each spatial unit, in order to focus just on the correlation between

occurrence of alien species and density of linear transportation infrastructures. We found

a significant spatial association between alien plant species hotspots distribution and

roads and railways density in both countries. As expected, anthropogenic landscapes,

such as urban areas, harbored more alien plant species, followed by water bodies. How-

ever, our findings suggested that the distribution of neobiota is strongest correlated to

road/railways density than to land use composition. This study provides new evidence,

from a transnational scale, that alien plants can use roadsides and rail networks as coloni-

zation corridors. Furthermore, our approach contributes to the understanding on alien

plant species distribution at large spatial scale by the combination with spatial modeling

procedures.

Introduction

During the last century, linear human related infrastructures such as roads and railways have

become a conspicuous part of the anthropogenic landscape [1,2]. In Europe, roads have been

constructed for more than 2000 years, but expansion of this communication system is acceler-

ating, constituting, together with land-use, climate change, pollution, and other infrastructural
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developments, a main driver of biodiversity decline [3,4]. Currently there are about 35,500,000

kms of roads globally, according to data provided by the World Development Index of World

Bank, World Road Statistics of the International Road Federation and of World Factbook of

Central Intelligence Agency on the World [5].

Roads threaten biodiversity in at least three different ways: 1) fragment and modify

landscapes directly, 2) modify landscapes indirectly by promoting urbanization and, 3)

modify landscapes by facilitating the movement of people and goods, thereby increases the

risk of biological invasions [6]. Then, ecological disturbances caused by human activity

related to roads and railways, contribute to the spread of non-native species when their

construction involves the movement of soil contaminated with propagules of invasive spe-

cies [7]. Bacaro et al. [8], described three main mechanisms for how roads increase dispersal

of propagules of alien species: 1) they are a source of disturbance, creating new environ-

mental conditions that are suitable to ruderal and pioneer species, 2) they facilitate the dis-

persal of propagules via air movement associated with the transit of vehicles, and 3) they

facilitate colonization by alien species by suppressing the growth or removing stands of

native species [8,9].

Roads and railways therefore serve as dispersal corridors for many plant species, particu-

larly invasive ones [8,10–16]. These movements of species can cause significant changes in

affected ecosystems, because invasive species that compete with native ones can alter native

communities in all kind of landscapes [16–18]. Indeed, invasive species constitute a major

threat to biological diversity all around the world [19,20].

Abiotic and biotic variables together with dispersal mechanism strongly influence spatial

pattern and invasion rate of invasive species [21–25]. The close association between plant inva-

sions with roads and railways has long been established and repeatedly documented in several

studies [8,10–12,15,26–37]. However, most of these studies were focused at local spatial scale,

using detailed data collected by sample plots or linear transects [8,15,31,37]. Very few research

were focused on railways networks [32,38–40], and—most important—only few studies have

explored the spread of invasive species at large spatial scales [41,42], but these works were not

focused on alien plants distribution in relationship to the effects of both road/railways net-

works and land use composition.

Understanding the factors which facilitate and drive the spread of invasive species is neces-

sary for developing appropriate strategies for preventing and limiting ecological invasions.

Considering that: a) road and railways networks are among the most pervasive landscape fea-

tures accompanying the urbanization process; b) most of the studies which verifyied that these

infrastructures provide a vector of diffusion for neobiota were performed at local spatial scale;

and c) plant invaders are more frequently found in highly disturbed anthropogenic habitats;

we can expect a positive spatially association between the road/railways density and number of

aliens plant species at large spatial scale. Thus, an eco-informatic approach, based on a large

set of spatially explicit data focusing the pattern of alien plants, can provide new insights on

invasion ecology.

In according to this, the aim of our study is to provide a spatially explicit correlation analy-

sis at large spatial scale, in order to assess the congruence between hotspots of invasive plant

species and density of linear transports elements in two countries of central Europe. Further-

more, by modeling, to assess the relative role of road/railway density and land use composition

on the distribution of alien plant species. Then, our approach can contribute to improve the

knowledge on alien plant distribution by the combination with spatial modeling, to obtain

more accurate predictive frameworks at large or regional spatial scale.

Alien plant species follow roads and railways
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Methods

Alien plant invasion hotspots data source

We used the available records of hotspots of alien vascular plant species using the database of

“Actual and potential future alien plant invasion hotspots under two emissions scenarios”

[43], a report available in https://www.eea.europa.eu/data-and-maps. This report provided a

dataset with 13,373 records, with number of alien plant species per spatial unit, quantified

following the methods of Kleinbauer et al. [44]. Each record was assigned to a grid cell 5.5

km x 5.5 km (5 � 3 geographic minutes, approximately 30.25 km2) of the Floristic Mapping

Project of Central Europe (FMA; Niklfeld, 1998). Each record presents the frequencies of 30

invasive alien vascular plant species in Austria and Germany (see detailed explanation on

http://www.eea.europa.eu/data-and-maps/figures/actual-and-potentialfuture-alien). In this

study, each FMA square was defined as the spatial unit for the further statistical and spatial

analysis.

Roads and railways networks and spatial density

The maps were generated with GIS soſtware (ArcGIS 10.1) [45] with geographical background

using data available under the Open Database Licence (“OpenStreetMap and contributors”;

cartography licensed as CC BY-SA), http://www.openstreetmap.org/copyright. The following

layers were used: road network and railways network from Germany and Austria. Roads term

included both motorways and residential roads. The vector data is derived from CORINE

land-cover (25-m resolution) [46]. Road density and railway density were calculated using the

command “line density” from Spatial Analyst in ArcGIS 10.1 [45]. The line density tool calcu-

lates the density of linear features in the neighborhood of each output raster cell, as the units of

length per unit of area [47]. In this study, the density of linear structures (road and railways)

was computed as the total length in kms per each km2 in each spatial unit.

Classification of spatial units on a dominant environment

Each spatial unit was classified on the basis of the percentages of the different land uses types

within each square. Land-use types considered here were based on the CORINE land-cover

vector data derived from 25-m resolution satellite data from 2006. CORINE is a national geor-

eferenced land-cover database available for the European Union, based on satellite digital

images [46]. The CORINE provides classified spatial land cover data in GIS format organized

hierarchically in three-level CORINE nomenclature [48], and has been used to define the dif-

ferent European land covers. The CORINE system includes 44 land cover classes. Land-use

categories taken from CORINE Land Cover (CLC) were grouped to obtain the 5 land-use

types used in this study (i.e. urban, agricultural, forest and seminatural environments, water-

bodies and coast area or wetland). The percentage of each land-use type was calculated by Arc-

GIS 10.1 software [45], using “intersect operator” between the grids (spatial units) and the

CLC map for both countries, obtaining a crosstab matrix. Units were classified in terms of

dominant environment in each category when the main land use was>60% [49], with the

exception of the category “urban”, which had a lower threshold of>30%. Units with mixed

composition, where none of land-use types had at least 60%, were classified as mixed

environments.

Statistical analyses

A preliminary exploration of the correlation among variables was performed using the Pearson

correlation coefficient [50] (S1 Fig). The comparison between the spatial pattern of alien plant

Alien plant species follow roads and railways
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species occurrence and density of roads and railways was initially explored using spatially

explicit tests (which consider the correlations in contiguous areas). The spatial associations

were tested using Mantel tests [51]. The statistic rM varies between −1 and +1 and behaves like

a correlation coefficient [52]; it evaluates the similarity between two distance matrices [53].

Mantel tests were also used to check for spatial autocorrelation of data [54], comparing the

geographic distance matrix and the matrix of differences in number alien plant species among

spatial units. Monte Carlo permutations with 9999 randomizations were used to test for signif-

icance [55].

The relationship between hotspots of alien plant species and road and railway density in

each spatial unit was examined using Generalized Linear Mixed Models (GLMMs), with the

package ‘lme4’ [56,57]. Number of alien plant species was modeled as response variable and

road and railways density as fixed factors [58], while the interaction between country and

dominant environment was included as random factor to control for possible consistent differ-

ences among countries and environments (model 1). Variance inflation factor (VIF) was cal-

culated to examine whether there is no risk of multicollinearity between predictors (road and

railway density), but the value was 1.46 (< 2) suggesting that there was no collinearity issues in

our dataset [59]. VIF was estimated using ‘fmsb’ package [60]. Model was fitted assuming a

Poisson distribution after having explored the distribution of variables using the package

‘MASS’ [61]. The confidence intervals for the significant variables were calculated using the

Wald method from the package ‘MASS’ [61].

In order to focus separately the role of road / railways density and land use composition on

the hotspots of neobiota, we adopted a double approach. First, a new series of Generalized Lin-

ear Models (GLM) was ran using the number of alien plant species as response variable, intro-

ducing road density and country as predictors (model 2), and then the land use composition

(measured as the percentage of each land use type) and country as predictors (model 3). Coun-

try was added in the model to explore if some variation in neobiota occurrence is due to intrin-

sic differences of each country. For example, considering that Germany is biggest country than

Austria, we can expect also more linear structures in terms of absolute values, and then a

potential increase in number of neobiota. Moreover, these differences can also mirror the

higher population density in Germany [62], and a slightly great coverage of land uses poten-

tially associated positively to alien plant species (as urban or water bodies). Finally, because the

occurrence of alien plant species is negatively correlated to the gradient of elevation [63], we

can expect an overall lower number of alien species in Austria than in Germany, since average

elevation for Germany is lower than Austria [62]. In order to avoid redundancy, only road

density was modeled in model 2, because railways density is strongly spatially correlated with

road network (S1 Fig). Road density and land use composition were modeled separately, in

order to avoid multicollinearity related to a differential distribution of road networks in each

type of land use. Akaike’s Information Criterion (AIC) was used to determine the performance

of best models explaining variation in the data [64]. The assessment of the variance explained

for the models was based on a comparison between observed and predicted values from the fit-

ted models [65]. For the computation of R square in Generalized Linear Mixed models

(GLMM) we followed the method explained by Nakagawa and Schielzeth [66].

Second, a variation partitioning by partial regression analysis was used to isolate the pro-

portion of the variation on neobiota explained by each of the two sets of factors exclusively

(road / railways density and land use composition), and the proportions attributable to inter-

actions between factors [67,68]. To test whether explanatory variables account for a significant

variance, we used function ‘rda’ to test for fractions. Variation partitioning was performed

using the ‘vegan’ package for R [55].

All statistical tests were performed with R software [69].

Alien plant species follow roads and railways
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Results

The maximum number of invasive plant species per spatial unit (30.25 km2) was 28 for Austria

and 30 for Germany. On average, grid units contained 6.86 species in Austria and 12.09 in

Germany. In both countries, the hotspots of alien plant species were more related to anthropo-

genic landscapes, such as urban habitat types (Fig 1). The land use types with the next highest

number of alien plant species were water bodies and agricultural. The forest and seminatural

areas and wetlands contained the fewest alien plant species (Fig 1).

We found a maximum value of 12.77 km of road per km2 for Austria and 11.68 km per km2

for Germany, with average values of 1.07 km per km2 for Austria and 1.06 km per km2 for Ger-

many. The maximum value for railways density was 5.48 km per per km2 in Austria and 7.33

km per km2 in Germany, with average values of 0.28 km per km2 in Austria to 0.36 km per

km2 in Germany.

Spatial grid units were treated as statistically independent observations because the values

of spatial autocorrelation for the number of alien plant species calculated by comparing the

geographic distance matrix with that of dissimilarity in number of alien plant species was weak

and not significant (rM = 0.038, permutations = 9999, p> 0.05) [70]. Spatial pattern of alien

plant species was congruent with spatial pattern of road network (rM = 0.330, permuta-

tions = 9999, p< 0.01) and railways network (rM = 0.343, permutations = 9999, p < 0.01) in

Germany and Austria, indicating that grid units that differed more in number of alien plant

species also differed more in density of linear transport features (Fig 2).

The mixed models evaluate the association between number of alien plant species and road

density and railways density, independently from country and dominant environment. The

results confirmed that grid units with higher road density and with higher railways density

(model 1) contained more number alien plant species (Table 1, Fig 3). The variance explained

by the model based on road/railways density was 45%.

The last two models, including separately road density and land use composition on each

spatial unit as potential predictors, showed a positive association between number of alien

Fig 1. Number of alien plant species in relation to the dominant environment of each spatial unit. This

elaboration is based on the intersection between data of alien plant species hotspots [43] and the land use

composition in each 5.5 km x 5.5 km spatial unit extracted from CORINE land cover for Germany and Austria

[48]. The box plots show medians, quartiles, 5- and 95-percentiles and extreme values.

https://doi.org/10.1371/journal.pone.0183691.g001

Alien plant species follow roads and railways
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plant species and road density and country Germany (model 2, Table 2). The strongest positive

association between the number of alien plant species and land use categories was found for

urban environments, while the strongest negative associations were found for wetlands and

forest and semi-natural areas (model 3, Table 2). Finally, comparing the performance of the

last two models, the first one (road density model) was largely superior, presenting the lower

AIC (Table 3). The variance explained by the model based on land use composition was 19%.

The results of variation partitioning analysis provided additional confirmation that number

of alien plant species is significantly correlated with road/railways density and land use compo-

sition. However, the large effect was found for road/railways density, followed by the intersec-

tion between road/railways density and land sue composition, and then land use composition

in each spatial unit (Fig 4).

Fig 2. Alien plant species hotspot distribution, road and railway networks and density distribution in Germany

and Austria. All maps were generated with GIS soſtware (ArcGIS 10.1) [45] with geographical background using data

available under the Open Database Licence (“OpenStreetMap and contributors”; cartography licensed as CC BY-SA)

http://www.openstreetmap.org/copyright, and the map of alien plant species hotspots was based on free available data

from http://www.eea.europa.eu/data-and-maps/figures/actual-and-potential-future-alien. All values were calculated by

intersection in each spatial unit 5.5 km x 5.5 km.

https://doi.org/10.1371/journal.pone.0183691.g002

Table 1. Results of GLMM for best model relating number of alien plant species to road density and railway density for each spatial unit in Ger-

many and Austria. The interaction between country and dominant environment was added as random factor in the model (11 groups). The table shows esti-

mates, 95% confidence intervals (CI), SE, Z and p values.

Predictors / model Estimate CI SE Z p

Model 1: road and railway density

Intercept 2.444 2.071 / 2.374 0.042 57.37 <2e-16

Road density 0.085 0.081 / 0.089 0.002 40.63 <2e-16

Railways density 0.095 0.084 / 0.107 0.006 16.09 <2e-16

https://doi.org/10.1371/journal.pone.0183691.t001

Alien plant species follow roads and railways
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Discussion

Historical and current interactions between abiotic and biotic variables, including anthropo-

genic influences to natural communities and landscapes, determines invasion rate and

Fig 3. Number of alien plant species in relation to road density and railway density. These relationships were

estimated as km of linear structures per km2, classified in quantiles in each 5.5 km x 5.5 km spatial unit in Germany and

Austria. The box plots show medians, quartiles, 5- and 95-percentiles and extreme values.

https://doi.org/10.1371/journal.pone.0183691.g003

Table 2. Results of GLM for best models relating number of alien plant species separately to road density and country (model 2) and to dominant

environment based on land use composition and country (model 3) for each spatial unit in Germany and Austria. Only significant variables are

shown in table. The table shows estimates, 95% confidence intervals (CI), SE, Z and p values.

Predictors / model Estimate CI SE Z p

Model 2: road density

Intercept 2.002 1.987 / 2.017 0.008 258.44 <2e-16

Road density 0.149 0.147 / 0.152 0.001 107.40 <2e-16

Country: Germany 0.335 0.319 / 0.351 0.008 41.98 <2e-16

Model 3: land use

Intercept 2.207 2.191 / 2.224 0.008 262.24 <2e-16

Forest and semi-natural -0.482 -0.497 / -0.467 0.007 -64.71 <2e-16

Mixed -0.022 -0.039 / -0.005 0.009 -2.48 0.013

Urban 0.559 0.531 / 0.588 0.014 38.74 <2e-16

Wetland -1.251 -1.700 / -0.860 0.213 -5.86 4.4e-09

Water 0.073 0.049 / 0.097 0.012 6.07 <1.2e-09

Country: Germany 0.343 0.327 / 0.359 0.008 41.72 <2e-16

https://doi.org/10.1371/journal.pone.0183691.t002

Table 3. List of GLMs performed in this study, relating number of alien plant species separately to road density (model 2) and to dominant environ-

ment based on land use composition (model 3) for each spatial unit in Germany and Austria. The choice of the best model is based on Akaike’s infor-

mation criterion (AIC) in the package AICcmodavg from R (Mazerolle, 2016).

Model No. variables AIC ΔAIC

Road density 2 86775.6 0

Environment (land use) 6 107535.2 20759.7

Null model 1 120456.3 33680.7

https://doi.org/10.1371/journal.pone.0183691.t003

Alien plant species follow roads and railways
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distribution pattern of all alien species throughout the world [23–25,39,71]. Invasive species

are often physiologically plastic [72], which permits them to colonize new environments, par-

ticularly disturbed ones modified by humans. Good knowledge of their ecological aptitude

and dispersal strategies are essential for developing and deploying relevant, effective strategies

to prevent and minimize or to control invasion [73,74].

Only spatially explicit information based on large dataset can be used to elaborate accurate

macroecological patterns of plant invasions, suitable to predict or identify the areas of potential

risk of invasions in future scenarios, as well as to elaborate adequate conservation strategies

[75]. In this regard, the main innovative aspects of our study are: a) the use of spatially explicit

analysis; b) the focus on associations among alien plant distribution, road/railways density and

land use composition at a large spatial scale; and c) the potentialities to create predictive mod-

els at large spatial scale offered by the modeling approach.

In this study, we provide new evidence highlighting the spatial congruence between the pat-

tern of hotspots of alien plant species and the pattern of road and railway density at large spa-

tial scales in two European countries. This approach remains descriptive, and cannot truly

demonstrate causality between alien plant species and modern transportation infrastructures.

However, other studies provide additional compelling evidence for how roads and railways are

instrumental in spreading of invasive species (see for example: [7,11,12,76]). Our study there-

fore confirms these ideas but at a much larger geographical scale, by applying a modeling

approach.

We found that while the average values on human-related infrastructures (roads and rail-

ways density) were similar between countries, the average values of neobiota was higher in

Germany. This difference could be partially due to differences on the gradient of elevation

between both countries [63].

Fig 4. Venn diagram showing the results of variation partitioning analysis on number of alien plant

species in relation to road and railways density and the land use composition in each spatial unit. The

diagrams represent the adjusted percentages of unique contribution of road and railways density, and

dominant environment based on land use composition in Germany and Austria. The fraction between two

overlapped circles represents the variation explained between the components while the residuals are the

variation left unexplained by the canonical model. The fractions of variation displayed in the diagram are

computed from adjusted r2. Both unique contributions were statistically significant (*).

https://doi.org/10.1371/journal.pone.0183691.g004

Alien plant species follow roads and railways
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The distribution and expansion of alien plants depends on roads as a main driver, but is

also related to the land use composition around the roads [36]. The urban areas can be consid-

ered at higher risk of invasion, mainly because are habitats characterized by large fluctuations

of resources availability, and the invasive species are more adaptable to strongly disturbed

environments [75]. We, similarly, found more alien plant species in sampling units that had

higher representation of urban habitats and of water bodies, over and above the effect of road

and rail networks. On the other hand, we found the lower values of invasive plant species in

wetlands [76] and forest areas. Similar results have been observed in other studies, evidencing

that the frequency of alien plant species decline in forest habitat [39,77]. Additionaly, our find-

ings provided a demonstration that the distribution of neobiota is strongest correlated to road/

railways density than to land use composition. This result was emphasized by comparing both

the explained variance and AIC of best models performed separately for both predictors, as

well as by the direct comparison of the isolated proportion of variation on neobiota data

explained by each of these two sets of factors exclusively.

Bacaro et al. [8], highlighted the major role of road edges as well as the distance from the

road side [8,78] in determining plant species richness distributions. Much of this effect is due

to the number of alien species increasing close to roads, while less disturbed areas (away from

roads) are characterized by fewer alien species [9]. Several studies show that regular road

maintenance can spread alien plant species, for example on the maintenance machinery or the

footwear of road maintenance workers. Furthermore alien species may establish particularly

well in the disturbed soil or cleared areas associated with road maintenance work [79,80].

The importance of transport networks on alien plant species is particularly important, since

the accumulation of alien species across all taxonomic groups shows no sign of saturation,

worldwide [81]. Invasive species continue to arrive and establish, and the accelerating increase

in transportation networks will only facilitate this process, emphasizing the importance for con-

servation of roadless areas [82]. Knowing the most threatened habitat types and situations can

help direct oversight efforts at local and regional scales. This can therefore help to set in place

adequate measures for early detection and more efficient control measures for invasive species.

Supporting information

S1 Fig. Correlation among road density, railways density and land use composition in each

spatial unit for Germany and Austria. The diagonal shows the name of variables using the

following codes: URB, urban; AGRI, agricultural, FOR, forest and semi-natural areas; WET,

wetlands; WAT, waterbodies; ROAD, road density; RAIL, railways density. The squares below

the diagonal show the bivariate plots and the squares above the diagonal the corresponding

correlation coefficients, with level of significance indicated by symbols (.,�,��).
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36. Dostálek J, Frantı́k T, Šilarová V. Changes in the distribution of alien plants along roadsides in relation

to adjacent land use over the course of 40 years. Plant Biosyst—An Int J Deal with all Asp Plant Biol.

2016; 150: 442–448. https://doi.org/10.1080/11263504.2014.986244

37. Lembrechts JJ, Milbau A, Nijs I. Alien roadside species more easily invade alpine than lowland plant

communities in a subarctic mountain ecosystem. PLoS One. 2014; 9: 1–10. https://doi.org/10.1371/

journal.pone.0089664 PMID: 24586947

38. Penone C, Machon N, Julliard R, Le Viol I. Do railway edges provide functional connectivity for plant

communities in an urban context? Biol Conserv. 2012; 148: 126–133. https://doi.org/10.1016/j.biocon.

2012.01.041

Alien plant species follow roads and railways

PLOS ONE | https://doi.org/10.1371/journal.pone.0183691 August 22, 2017 11 / 13

https://doi.org/10.1111/nph.12429
http://www.ncbi.nlm.nih.gov/pubmed/24712050
https://doi.org/10.1614/IPSM-D-13-00099.1
https://doi.org/10.1111/j.1469-8137.2007.02207.x
https://doi.org/10.1111/j.1469-8137.2007.02207.x
http://www.ncbi.nlm.nih.gov/pubmed/17822399
https://doi.org/10.1111/j.1365-2435.2011.01857.x
https://doi.org/10.1111/j.1461-0248.2006.00908.x
http://www.ncbi.nlm.nih.gov/pubmed/16706916
https://doi.org/10.1016/j.foreco.2012.10.019
https://doi.org/10.1659/MRD-JOURNAL-D-10-00036.1
https://doi.org/10.1371/journal.pone.0102109
https://doi.org/10.1371/journal.pone.0102109
https://doi.org/10.1007/s10531-016-1103-0
https://doi.org/10.1007/s10531-016-1103-0
https://doi.org/10.1111/j.1523-1739.2004.00300.x
https://doi.org/10.1371/journal.pone.0089664
http://www.ncbi.nlm.nih.gov/pubmed/24586947
https://doi.org/10.1111/j.1442-9993.2010.02134.x
https://doi.org/10.1111/j.1442-9993.2010.02134.x
https://doi.org/10.3176/eco.2013.3.03
https://doi.org/10.3176/eco.2013.3.03
https://doi.org/10.1016/j.biocon.2009.05.024
https://doi.org/10.2478/jlecol-2014-0003
https://doi.org/10.2478/jlecol-2014-0003
https://doi.org/10.1111/j.1523-1739.2004.00300.x
https://doi.org/10.1080/11263504.2014.986244
https://doi.org/10.1371/journal.pone.0089664
https://doi.org/10.1371/journal.pone.0089664
http://www.ncbi.nlm.nih.gov/pubmed/24586947
https://doi.org/10.1016/j.biocon.2012.01.041
https://doi.org/10.1016/j.biocon.2012.01.041
https://doi.org/10.1371/journal.pone.0183691


39. Hansen MJ, Clevenger AP. The influence of disturbance and habitat on the presence of non-native

plant species along transport corridors. Biol Conserv. 2005; 125: 249–259. https://doi.org/10.1016/j.

biocon.2005.03.024

40. Ozaslan C, Farooq S, Onen H. Do Railways Contribute To Plant Invasion in Turkey. J "Agriculture For.

2016; 62: 285–298. https://doi.org/10.17707/AgricultForest.62.3.23
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