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The Asherman’s syndrome, also known as intrauterine adhesion, often follows
endometrium injuries resulting from dilation and curettage, hysteroscopic resection,
and myomectomy as well as infection. It often leads to scarring formation and female
infertility. Pathological changes mainly include gland atrophy, lack of vascular stromal
tissues and hypoxia and anemia microenvironment in the adhesion areas. Surgical
intervention, hormone therapy and intrauterine device implantation are the present
clinical treatments for Asherman’s syndrome. However, they do not result in functional
endometrium recovery or pregnancy rate improvement. Instead, an increasing number
of researches have paid attention to the reconstruction of biomimetic endometrium
interfaces with advanced tissue engineering technology in recent decades. From
micro-scale cell sheet engineering and cell-seeded biological scaffolds to nano-
scale extracellular vesicles and bioactive molecule delivery, biomimetic endometrium
interfaces not only recreate physiological multi-layered structures but also restore an
appropriate nutritional microenvironment by increasing vascularization and reducing
immune responses. This review comprehensively discusses the advances in the
application of novel biocompatible functionalized endometrium interface scaffolds for
uterine tissue regeneration in female infertility.

Keywords: endometrium interface, uterus regeneration, nano-scale, biomimetic scaffold, female infertility

INTRODUCTION

Secondary infertility is the most common type of female infertility worldwide, often because of
endometrium injuries and subsequent intrauterine adhesion (IUA). It poses a great threat to female
physical and mental health (Deans et al., 2018; Vander Borght and Wyns, 2018; Dreisler and Kjer,
2019). The uterus tissue is made up of three layers, among which the endometrium, composed
of functional and basal layers, is the inner-most layer. The functional endometrium is the site of
embryo implantation and is regulated by changes in ovarian hormones. The basal endometrium
regenerates and repairs the endometrium wound after menstruation, and forms the functional layer
again, possibly via the intrinsic endometrial cells, such as endometrial epithelial and stromal cells,
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endometrial stem cells and perivascular cells. They may secrete
bioactive molecules, growth factors, hormones and contribute
to angiogenesis and endometrium regeneration after uterus
injuries. The pathological changes include endometrial fibrosis
and scarring, loss or thinning of endometrium due to different
degrees of damage to the basal layer of endometrium, IUA
between anterior and posterior walls, and shrinkage of uterine
cavity (Conforti et al., 2013). Microscopic observation shows
gland atrophy, lack of vascular stromal tissues and hypoxia
and anemia microenvironment in the adhesion areas (Evans-
Hoeker and Young, 2014; Healy et al., 2016). Present clinical
techniques, such as hormonal therapy, surgical synechiotomy
and subsequent intrauterine device (IUD) implantation, show
unsatisfactory outcomes, recurrent adhesion and secondary
infection during the treatment of IUA, also known as Asherman’s
syndrome (Cai et al., 2016, 2017; Mo et al., 2019). The surgical
synechiotomy helps surgeons release the adhesive fibrosis with
blunt-end scissors. However, the postoperative recovery shows
a huge variation among different patients due to adhesion
severity. Some of them even experienced greater adhesion
recurrence. Hormonal therapy works effectively after surgical
release of IUA. Nevertheless, it is still hard to confirm a
suitable medication dosage and route due to the short half-
life period, low water solubility and big differences in response.
As for the IUDs, they only function as physical barriers.
However, they can barely induce regenerative process and thus
yield low endometrium recovery. Therefore, it is urgent and
vital to find alternative treatments for Asherman’s syndrome
(Dreisler and Kjer, 2019).

The development of biomimetic tissue engineering provides
an alternative therapy that may increase the success of
uterine regeneration and reproductive capacity (Cervelló et al.,
2015). Biomaterial is an important factor in the tissue
engineering because it can provide structural support that
mimics native endometrium tissues and uterine organs (Zhang
et al., 2020). In addition, some biomedical materials are
characterized by physical, chemical and biological properties
that are closely related to uterus regeneration. The other
two factors in the tissue engineering are supporting cells
and bioactive molecules. They both facilitate cellular and
extracellular signaling, nutrient transport, stem cell recruitment,
proliferation and differentiation. Biomaterials can release drugs,
growth factors, small molecules and other bioactive compounds
in a controlled style, with or without cell loading and
modification. Recent researches have shown that, in addition to
traditional biomaterial based uterus regeneration, combination
and modification of cells and biomaterials, such as cell
sheets, cell-scaffold interfaces, surface-functionalized scaffolds
and decellularization of biological tissues may also display
functional or structural advantages and repair injured uterus
to different extents by inducing biomimetic changes and
recreating regenerative microenvironment (Liu et al., 2019a).
Therefore, we comprehensively reviewed current advances in
the biological interactions and applications of different types
of biomimetic endometrium and uterus scaffolds for female
infertility treatment and compared their potential therapeutic
effects in this review (Figure 1).

FIGURE 1 | Schematic illustration of different biomimetic endometrium
interfaces manufacturing.

STEM CELL SHEET ENGINEERING IN
THE ENDOMETRIUM REGENERATION

Cell sheet engineering (CSE) is an emerging technique for cell
transplantation using temperature-responsive culture dishes to
repair damaged organs or tissues and has displayed potential
capacity in the tissue regeneration (Okano et al., 1993). Cell
sheets naturally have two sides: apical and basal interfaces.
Both of them contained abundant extracellular matrix (ECM)
necessary for providing maximum strength and adherence to
the host tissue surface (Wang X. et al., 2018). CSE includes
cell culture in thermo-sensitive plates that develop compact cell
sheets which detach with temperature drop (Jun et al., 2017). As a
major advantage, this technology permits maintenance of growth
factors, ECM proteins, and other bioactive cytokines because cells
are detached spontaneously from the culture plates without the
need for enzymatic procedures and proteolytic treatments. The
endometrial epithelial cell is a local cell type in the endometrium
of uterus. It is suitable to seek these cells for cell engineering
(Kuramoto et al., 2018). However, in real practices, the collection
of endometrial cells is not a recommended option because it
is hard to collect adequate quantity of endometrial cells from
the uterus and collection may also be interfered by certain
inflammatory or contagious diseases, apart from the harm out
of invasive procedures (Logan et al., 2018). Stem cell sheet
engineering (SCSE) gradually becomes an important research
direction due to the minimal invasiveness, autologous tissue
supply, multi-differentiation potential, high proliferation, growth
factor secretion and signaling transduction of stem cells (Shum
et al., 2017; Hsu et al., 2019; Imafuku et al., 2019).

Oral mucosal epithelial cell sheets (OMECS) were applied
in IUA prevention and subsequent infertility as a novel
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regenerative technique (Kuramoto et al., 2015). OMECS were
obtained by minimal invasiveness surgery from oral mucosal
epithelial tissues and were composed of stratified squamous
epithelial cells. Therefore, cell collection was easy and harmless.
OMECS successfully retained the luminal structure of the
uterine and prevented re-adhesion occurrence by controlling
neutrophil infiltration.

Although the thermo-responsive approach is very effective,
it is further modified and improved due to the high cost, and
time-consuming properties. Sun et al. (2018) developed a new
and user-friendly method by adding ascorbic acid into adipose-
derived stem cells (ADSC) to construct cell sheets. ADSCs are
widely used for tissue engineering due to their self-renewable,
proliferative and regenerative characteristics (Mao et al., 2019;
Rogan et al., 2020). After in vitro culture, ADSCs secreted and
were surrounded by ECM proteins. The expansion of cell sheet
constructs further increased expression of many ECM proteins
and trophic growth factors including vascular endothelial growth
factor (VEGF) and fibroblast growth factor (FGF) (Yu et al.,
2018). The implantation of ADSC sheets in the damaged
rat uterus prevented luminal stenosis or scar formation by
decreasing transforming growth factor-β (TGF-β) and collagen
I levels, similar to sham operation. The cell sheets stimulated
blood vessel development and endometrial gland proliferation
in the endometrial stromal layer. In contrast, the blank control
group displayed hyperplastic fibrosis. ADSCs were successfully
differentiated into endometrial stromal cells under uterine
microenvironment. The findings indicated implantable ADSC
sheets attached closely to the injured uterine and facilitated
endometrium repair by providing a biomimetic trophic support
that was vital for cell proliferation. Natural cell sheet constructs
did not induce any inflammation and thus caused insignificant
scar formation (Sun et al., 2018). SCSE is very beneficial for
uterus repair by secreting growth factors and nutritional proteins.
However, the cell viability remains a serious question in vivo and
requires better scaffold support for long-term survival (Table 1).

CELL-SCAFFOLD INTERFACE-BASED
ENDOMETRIUM REGENERATION

Biomaterials provide structural and mechanical support for tissue
repair by helping to restore the architecture and functionality
of the wounded tissues. They may also partially mimic
native environment by inducing physicochemical changes and
simulating changes of growth factors, signaling molecules and
extracellular vesicles like cellular materials (Kim S. et al., 2019;
Liu et al., 2019a). However, it is insufficient to simply use
scaffold biomaterial for repairing large uterus defects (Xin et al.,
2019). Several factors should be considered carefully, such
as vascularization, native cell recruitment, and scar inhibition
(Owusu-Akyaw et al., 2019). Cell seeding on the scaffold
materials increases biological functions by prolonging cell
survival and stimulating cell proliferation, differentiation and
vascularization (Frost et al., 2019).

Kim Y. Y. et al. (2019) also used decidualized endometrial
stromal cells (dEMSCs) encapsulated in hyaluronic acid (HA)

hydrogel in a murine uterine infertility model. At 2 weeks after
injury, the fibrous tissues were decreased and the endometrium
thickness was increased. Some embryonic markers, including
desmin, CD44, and platelet endothelial cell adhesion molecule,
were highly expressed and secreted in the functional regenerated
endometrium. Successful implantation of transferred embryos
was followed by normal development and live birth of offspring
after the dEMSC-loaded HA hydrogel treatment. The selection
of bioprocessed isotopic cells shortened the recovery time
significantly compared to bone marrow mesenchymal stem
cells (BMSCs) or human embryonic stem cell (hESC)-derived
endometrium-like cells. In addition, HA appeared to be very
suitable for the repair of endometrium where plenty of
hyaluronidase could degrade HA. Furthermore, the limiting
mobility of cross-linkage with porosity allowed seeding cells to
maintain in the injured site and provided the ideal scaffold
stiffness for endometrium regeneration.

Li Z. et al. (2019) focused on the restoration of angiogenesis
and inhibition of scar tissue formation in the selection of
cell types for uterine repair. Endometrial perivascular cells
(CD146 + platelet derived growth factor receptor (PDGFR) β +)
(En-PSCs) worked similarly as stem cells in the endometrial
layer. Cysteine-rich angiogenic inducer 61 (CYR61) contributed
to vascular formation (Zhao et al., 2018). They thus designed a
CYR61-transfected En-PSC-loaded collagen scaffold and found
it significantly increased the blood vessel density because the
scaffold stimulated the release of angiogenic factors from the
ECM and accelerated an overall process of neovascularization
in vivo.

Apart from endometrium-derived cells, BMSCs were largely
used for endometrium and uterus regeneration due to their
convenient isolation, abundant resources and reparative potential
(Xia et al., 2019). Ding et al. (2014) transplanted BMSC-
loaded collagen scaffolds to the wounded rat uterine horn.
BMSCs were mainly recruited at the regenerated basal membrane
of the endometrium. The injured tissue next to the cell-
scaffold composite showed high expression levels of basic FGF
(bFGF), insulin-like growth factor 1 (IGF-1), TGF-β1, VEGF
and prominent microvasculature regeneration. BMSC-loaded
scaffold recovered the receptive ability of the new endometrium.
Yang et al. (2017) reported that BMSCs were encapsulated
by thermo-responsive gelation of pluronic F-127 (PF-127) and
vitamin C, which added to the membrane stability. In addition,
vitamin C, as a prominent antioxidant, downregulated tumor
necrosis factor α (TNF-α) and interleukin 6 (IL-6) secretion,
maintained redox homeostasis and facilitated a pro-regenerative
tendency by increasing interleukin 10 (IL-10) level (El Banna
et al., 2019; Qi et al., 2019). The BMSC/PF-127 + vitamin
C hydrogel recovered endometrial thickness and decreased
the fibrotic regions of the stromal tissues of endometrium.
Xiao et al. (2019) loaded BMSCs on a synthetic Poly(glycerol
sebacate) (PGS) scaffold which potentially recovered different
deformations of soft tissues in various dynamic conditions
without external irritations. They compared different cell-scaffold
constitutes, including BMSC/collagen, BMSC/poly(lactic-co-
glycolic acid) (PLGA), and BMSC/PGS. They found PGS
showed a stronger improvement in proliferation and endometrial
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TABLE 1 | Fabrication and functions of different biomimetic scaffolds for endometrium and uterus regeneration.

Interface type Cells Construct technique Biological effects Model Author/year

Cell sheet OMEC Thermo-sensitive plate Maintenance of luminal structure, little
neutrophil infiltration

F344/NJcl-rnu/rnu
rats

Kuramoto et al.,
2015

Cell sheet ADSC Fusion of ascorbic acid Trophic factor release, angiogenesis, no
inflammation

SD rats Sun et al., 2018

Cell-scaffold dEMSC In vitro decidualization and
encapsulation

Shortening recovery time, better mimicking
native tissues and stiffness

C57BL/6 mice Kim Y. Y. et al.,
2019

Cell-scaffold En-PSC CYR61-transfected cell loading Increasing the blood vessel density and
angiogenic growth factor

SD rats Li Z. et al., 2019

Cell-scaffold BMSC Cell seeding on collagen Stem cell recruitment and microvasculature
regeneration

SD rats Ding et al., 2014

Cell-scaffold BMSC Encapsulation by thermo-responsive
gelation of PF-127 and vitamin C

Redox homeostasis, endometrial thickness
recovery

SD rat Yang et al., 2017

Cell-scaffold BMSC Solvent casting and particle leaching Improving BMSC proliferation and
differentiation, in situ retention, vascularization

SD rats Xiao et al., 2019

Cell-scaffold BMNC Cell seeding on collagen Downregulating 1N p63 expression and
inhibiting endometrial quiescence

Human patients Zhao et al., 2017

Cell-scaffold UCMSC Cell seeding on collagen Endometrial proliferation, differentiation and
vascularization

Human patients Cao et al., 2018

Cell-scaffold UCMSC Cell mixture with collagen fibers Collagen deposition and reduced scar
formation

SD rats Xu L. et al., 2017

Cell-scaffold UCMSC Freeze-drying and thermal treatment
crosslinking

Increasing estrogen, progesterone and growth
factor levels; epithelial reconstruction

SD rats Xin et al., 2019

Cell-scaffold hESC Cell seeding on collagen High differentiation ratio SD rats Song et al., 2015

Functionalized
scaffold

/ Fermentation and lipholization Vascularization and endometrium maturation SD rats Cai H. et al., 2019

Functionalized
scaffold

/ CBD-modified bFGF Target delivery of bFGF and prolonging
retention time

SD rats Li et al., 2011

Functionalized
scaffold

/ CBD-modified VEGF Activation of MMP and remodeling of ECM SD rats Lin et al., 2012

Functionalized
scaffold

/ Droplet microfluidics Steady bFGF release, no side effects or
excessive loss of burst delivery

SD rats Cai Y. et al., 2019

Functionalized
scaffold

/ Sol-gel transition Increasing autophagy by inhibition of mTOR
signaling pathway

SD rats Xu H. L. et al., 2017

Functionalized
scaffold

/ Lipholization and rotary evaporation Increasing vascularity by activation of ERK1/2
pathways

SD rats Zhang et al., 2017

Functionalized
scaffold

/ Ultraviolet irradiation and gel
formation

Increasing regeneration-related cytokines and
prolonging secretome retention

SD rats Liu et al., 2019b

Decellularized
scaffold

/ Aortic perfusion with detergents Preservation of native ECM and vasculature SD rats Miyazaki and
Maruyama, 2014

Decellularized
scaffold

/ Decellularization by detergents or
high hydrostatic pressure

Collagen retention, uterine tissue repair
combined with cell migration

SD rats Santoso et al.,
2014

Decellularized
scaffold

/ Perfusion with Triton, dimethyl
sulfoxide or sodium deoxycholate

Recellularization of the scaffold and infiltration of
regional stem cells

Lewis rats Hellström et al.,
2016

Decellularized
scaffold

/ Whole organ perfusion Successful recellularization by human side
population stem cells

/ Campo et al., 2017

Decellularized
scaffold

/ Perfusion with 0.25% and 0.5% SDS
and preservation in 10% formalin

Biomimetic mechanical, structural, and
angiogenic characteristics

Wistar rats Daryabari et al.,
2019

Decellularized
scaffold

/ Perfusion with SDS Orientation of smooth muscle layers and ECM SD rats Miki et al., 2019

OMEC, oral mucosal epithelial cell; ADSC, adipose-derived stem cell; dEMSC, decidualized endometrial stromal cell; En-PSC, endometrial perivascular cell; CYR61,
cysteine-rich angiogenic inducer 61; BMSC, bone marrow mesenchymal stem cell; BMNC, bone marrow mononuclear cell; UCMSC, umbilical cord derived mesenchymal
stem cell; hESC, human embryonic stem cell; CBD, collagen binding domain; bFGF, basic fibroblast growth factor; MMP, matrix metalloprotein; ECM, extracellular
matrix; mTOR, mammalian target of rapamycin; ERK 1/2, extracellular regulated protein kinases 1/2; SDS, sodium dodecyl sulfate; SD, Sprague Dawley. “/” means “not
applicable.”

differentiation of BMSC. Furthermore, in vivo studies showed
a longer in situ retention time of BMSC and higher areas
of vascularization from PGS-based scaffold. It was vital for

successful recuperation of damaged uterus tissues. Bone marrow
mononuclear cells (BMNCs) are derived from hematopoietic
stem cells in the bone marrow and develop in the bone marrow.
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Zhao et al. (2017) applied collagen scaffolds loaded with BMNCs
in patients of Asherman’s syndrome by downregulating 1Np63
expression and inhibiting endometrial quiescence and other
related pathological changes. BMNC-loaded collagen scaffolds
restored estradiol (E2) stimulation and reaction to functional
endometrium growth. Five patients were successfully pregnant
and delivered live births.

Umbilical cord derived mesenchymal stem cells (UCMSCs)
have displayed their merits in adequate sources, pain-free
acquisition and excellent proliferation capacity (Lee et al., 2019).
UCMSCs were loaded on collagen scaffolds and transferred to
injured uterus of human patients. Cao et al. (2018) confirmed
an improvement in endometrial proliferation, differentiation
and neovascularization following the implantation of this cell-
scaffold mixture without introducing exogenous DNA to the
regenerated endometrium. Furthermore, most babies were born
without any obvious birth defects or placenta complications.
Xu L. et al. (2017) also focused on UCMSCs and their potentials
for reducing scar formation. They found UCMSCs mixed
with gelatinous degradable collagen fibers showed prominent
angiogenesis and insignificant scarring in the injured site. The
cell-scaffold composite degraded collagen in scarring areas by
increasing matrix metalloprotein 9 (MMP-9), FGF-2 and VEGF
and led to angiogenesis and endometrial cyclic regeneration. Xin
et al. (2019) found UCMSC-loaded collagen scaffold reduced
cellular apoptosis and improved human endometrial stromal
cell via a paracrine route. The scaffold barely caused any
inflammation because it contributed to collagen remodeling in
the reconstructed endometrium. In addition, UCMSC-loaded
collagen scaffold induced early rapid re-epithelialization by
increasing proliferation and cytokeratin expression levels, which
were vital for subsequent endometrium repair after damages.
The scaffold subsequently elevated circulating estrogen and
progesterone levels as well as growth factor expression.

Song et al. (2015) loaded hESC-derived endometrium-like
cells on collagen scaffolds to repair uterine horn damages.
They innovatively induced endometrial differentiation by adding
endometrial stromal cells and achieved a differentiation rate
of above 80%, 2.2 fold higher than the cytokine induction.
Large quantities of endometrium-like cells improved endometrial
function and development by simulating an in vivo endometrium
stem cell niche, and secreted growth factors that modulated the
effects of estrogen and progesterone-driven basal layer repair.
Cell loading on the scaffolds improves the biological activity of
biomaterials and keeps the physiochemical properties to support
the mechanical stability of tissue regrowth (Table 1).

SURFACE FUNCTIONALIZED
SCAFFOLD-BASED ENDOMETRIUM
REGENERATION

In addition to direct cell loading in the scaffolds, many strategies
are focused on the surface or structure modification for better
biocompatibility and stronger absorption for cell attachment and
delivery of bioactive growth factors, hormones and extracellular
vesicles (Li C. et al., 2019; Shadish et al., 2019). Bacterial

cellulose (BC) is a biocompatible and water adsorbable bacteria
scaffold. It was used in bone, vessel and nerve repair (Huang
et al., 2017; Wang B. et al., 2018; Rebelo et al., 2019). Cai H.
et al. (2019) improved the BC porosity by supplementing silk
fibroin (SF) and stromal cell derived factor 1 α (SDF-1α).
The functionalized nanoscaffold delivered SDF-1α from SF-BC
membrane carrier and induced uterine cell migration in vitro
and increased endometrium thickness and number of fetuses.
They explained the effects of functionalized BC scaffold as it
specifically improved migration and regeneration of glandular
epithelial cells, which were vital for decidualization, implantation,
and embryo development. In addition, the scaffold significantly
increased arterial formation. These findings were mainly due to
the dual effects of SDF-1α loaded SF-BC scaffolds: vascularization
and endometrium maturation.

Li et al. (2011) designed a collagen scaffold loaded
with collagen binding domain (CBD)-modified bFGF. This
combination significantly reduced the random diffusion of bFGF
in vivo and increased target delivery at the endometrium. The
recombinant proteins were transported in a location specific style
with collagen and kept the effective concentration in the injured
area. The complex scaffold induced high neovascularization,
muscle fiber alignment and thick endometrium layers, which
was very effective to tissue repair. However, the embryo rate
was low in this study, indicating the functional recovery of the
endometrium was not achieved.

Similarly, Lin et al. (2012) loaded CBD/VEGF on the
collagen scaffold for improving angiogenesis and endometrium
re-epithelialization. They compared different release manners of
VEGF, including CBD and native injection, in the regeneration
of full-thickness injury of rat uterus. The vascular tissue growth
provided the scar areas with nutrients and oxygen. Furthermore,
target release of VEGF activated MMP and initiated ECM
remodeling by increasing inflammatory cells at early stages. The
findings showed a 31.2% improvement of pregnancy rate in the
application of CBD/VEGF collagen (50.0%) compared with local
VEGF injection only (18.8%).

Cai Y. et al. (2019) invented a new method for bFGF controlled
release because of the porous surface and external–internal
based open porous architecture. They fabricated the bFGF-
loaded porous scaffold from microfluidic droplets. The adjustable
porous design could be controlled precisely. It facilitated steady
bFGF release and avoided side effects and excessive loss of
burst delivery in high concentrations. The long-term reparative
performance was excellent due to adhesion inhibition, vascular
promotion and induction for endothelial cell migration by this
bFGF-loaded porous scaffold.

Xu H. L. et al. (2017) fabricated a temperature sensitive
hydrogel loaded by keratinocyte growth factor (KGF), a kind
of reparative factor. The scaffold allowed controlled release and
prolonged retention of the drug in the injured uterus. They found
KGF-modified hydrogel scaffold facilitated cell autophagy by
inhibition of mammalian target of rapamycin (mTOR) signaling
pathway and improved CD31 expression levels, endothelial
migration and proliferation of endometrial glandular epithelial
cells and luminal epithelial cells. Functional epithelial repair
was due to restoration of appropriate micro-milieu by reducing
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inflammation and immune responses (Gargett et al., 2008;
Zhang Z. et al., 2016).

Similarly, Zhang et al. (2017) fabricated 17β-E2-loaded
heparin-poloxamer hydrogel and found it significantly decreased
endoplasmic reticulum (ER) stress-related apoptosis. E2
sustained release effectively reduced fibrotic tissue areas and
stimulated vascularity to provide more nutrients, oxygen,
and hormones to the injured tissues, supported by activated
extracellular regulated protein kinases 1/2 (ERK1/2) pathways
that closely participated in some cellular activities, such
as proliferation, viability, and motility (Peng et al., 2010;
Matsumura et al., 2017).

In addition to bioactive proteins, some researches focused
on the secreted extracellular vesicles from stem cells for uterus
repair (Zhang Y. et al., 2016; Azizi et al., 2018). Liu et al.
(2019b) innovatively created stem cell secretome modified-HA
hydrogel that increased release of a number of regeneration-
related growth factors, such as epidermal growth factor (EGF),
FGF, IGF-1, and IGF binding protein (IGFBP). The crosslinked
HA gel served as a carrier and prolonged the in vivo retention
time of stem cell secretome, thus leading to thicker endometrium
and more glands compared to gel application only. Nano-scale
functionalization of endometrium scaffolds mimics the natural
environment, provides steady release of bioactive molecules and
transmits signaling from extracellular vesicles in the process of
uterus regeneration (Table 1).

DECELLULARIZED BIOMIMETIC
SCAFFOLDS FOR SEVERE UTERINE
INJURY REGENERATION

Decellularized scaffolds are one of the alternatives for treatment
of severe uterine injury because of their biocompatibility
compared with synthetic material (Chen et al., 2019). These
scaffold increased pregnancy and birth rate initially at the
cost of long-term immunosuppressive therapy when scientists
attempted in whole-organ transplantation in the early stage
(Brännström et al., 2015). However, it ignited hope for
decellularization of biomimetic scaffolds for severe uterine injury
repair. Miyazaki and Maruyama (2014) fabricated decellularized
uterine matrix scaffold from rat uterus by aortic perfusion with
detergents. The scaffold provided not only mechanical support
for uterine but also vascular architecture for blood perfusion.
In addition, it induced recellularization, uterus regeneration and
high pregnancy rate, close to the uninjured uterus. Santoso
et al. (2014) used different methods for decellularization of the
uterine matrix from rat uterus by sodium dodecyl sulfate (SDS)
or high hydrostatic pressure (HHP), and found the latter better
preserved ECM and was more efficient in cell removal. The
HHP method also avoided collagen denaturation and reduction
of protein contents. Interestingly, these two methods yielded
entirely different manners of structural repair. In the SDS group,
the repair mode was regeneration of tissue from native uterine
tissue under the decellularized ECM. Nevertheless, cell migration
and tissue restoration were combined as a unit in the HHP group.
Hellström et al. (2016) created a uterine patch from rat uterus

using perfusion method for scaffold decellularization and found
the scaffold was biocompatible after recellularization in vivo.
However, in their studies, the functional regeneration of the
uterus was failed due to low pregnancy rates.

Campo et al. (2017) employed decellularization and
recellularization technique in the fabrication of a scaffold
from porcine uterus and displayed the excellent vascular network
in the ECM after recellularization by human side population
stem cells. Similarly, Daryabari et al. (2019) reported a whole-
organ perfusion decellularization method for production of
scaffold from ovine uterus and implanted its segments into
rats. The scaffold successfully retained the vascular structure
after decellularization and started recellularization in the
endometrium and myometrium after implantation, potentially
due to homing of the circulating and local stem cells. In addition,
the excellent biomechanical properties guaranteed uterine
regeneration for a long term in vivo. Miki et al. (2019) found
orientation in the smooth muscle cells and ECM was a vital factor
of correct tissue topology and functional uterine regeneration
by a decellularized scaffold from rat uterus. These researches
indicate that decellularized biomaterials are helpful to functional
uterus regeneration, due to their biocompatibility, regulation of
cell survival and homing, and topological support (Table 1).

DISCUSSION

Currently, there are no ideal treatments for severe IUA. Surgical
release, hormone application or IUDs show their defects,
respectively, such as failure in complete lysis and dosage
control, and mismatch of IUD size (Salazar et al., 2017).
Thus, they cannot fully repair injured endometrium and uterus.
Regenerative medicine by tissue engineering offers plenty of
alternative choices that may heal the wound and repair the
injuries by structurally and biologically mimicking the native
organ and environment (Paim et al., 2018). Recent development
in various endometrium and uterus scaffolds shows promising
outcomes in regard to morphological and functional recovery
as well as pregnancy rates. Cell tissue engineering mainly
includes cell sheets engineering and cell-scaffold interfaces. CSE
is suitable for providing ECM-like elements and maintaining
activity of different cytokines and growth factors. Nevertheless,
it may not prolong cell proliferation and retention without
appropriate scaffold materials. Therefore, surface loading of
different cells on the scaffolds is widely under investigation based
on in vivo studies that have shown rapid re-epithelialization,
formation of endometrium stem cell niche and hormone-driven
basal layer regeneration. In addition to cell-related engineering,
structural functionalization is very important and is studied
extensively. Supporting scaffold materials are composed of
synthetic and natural scaffolds. In this review, we discussed
surface-functionalized scaffolds and decellularized scaffolds out
of biological tissues. Generally, they should exert positive
influences on cellular viability, including cell proliferation,
attachment and differentiation. Scaffold functionalization may
contribute to endometrium repair by facilitating bioactive
factor release, such as growth factors, extracellular vesicles,
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and other signaling molecules. Decellularization of biological
tissues provides ideal collagen matrix. At the same time, it
should not introduce external cellular components or cause
immune rejection. However, partial cell residuals remain a non-
negligible issue that prevents translational application of this
technique (Destefani et al., 2017). Therefore, these different
technological approaches to endometrium regeneration by tissue
engineering have their merits and shortcomings that wait
for further researches and investigation on possible solutions
and improvement.

CONCLUSION

In conclusion, there are still few efficient strategies for uterus
repair in spite of current clinical solutions. Bioengineering
techniques provide fresh alternatives for the traditional surgical
intervention, hormone therapy and IUD implantation. The
application of cell tissue constructs, cell-scaffold complex,
micro- or nano- scale material release and their combination
significantly enriches the therapeutic category and improves the
structural and functional regeneration of injured endometrium
and uterus. Future directions should be focused on the combined
studies concerning cell biology and scaffold topology. Neither

cells nor scaffolds alone display full recovery of endometrium
and uterus and sometimes lead to low pregnancy rates.
The dynamic integration of these two elements is vital for
biomimetic reconstruction of physiological uterus from both
structural and functional perspectives. The balanced immune
milieu and angiogenic environment significantly promote tissue
regeneration and organ repair. Overall, these translational
approaches have enormous potential in the treatment of female
infertility in the future clinical practice.
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