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Abstract
The annual incidence of the inflammatory bowel diseases (IBDs) ulcerative
colitis and Crohn’s disease has increased at an alarming rate. Although the
specific pathophysiology underlying IBD continues to be elusive, it is
hypothesized that IBD results from an aberrant and persistent immune
response directed against microbes or their products in the gut, facilitated by
the genetic susceptibility of the host and intrinsic alterations in mucosal barrier
function. In this review, we will describe advances in the understanding of how
the interaction of host genetics and the intestinal microbiome contribute to the
pathogenesis of IBD, with a focus on bacterial metabolites such as short chain
fatty acids (SCFAs) as possible key signaling molecules.  In particular, we will
describe alterations of the intestinal microbiota in IBD, focusing on how genetic
loci affect the gut microbial phylogenetic distribution and the production of their
major microbial metabolic product, SCFAs. We then describe how
enteroendocrine cells and myenteric nerves express SCFA receptors that
integrate networks such as the cholinergic and serotonergic neural systems
and the glucagon-like peptide hormonal pathway, to modulate gut
inflammation, permeability, and growth as part of an integrated model of IBD
pathogenesis.  Through this integrative approach, we hope that novel
hypotheses will emerge that will be tested in reductionist, hypothesis-driven
studies in order to examine the interrelationship of these systems in the hope of
better understanding IBD pathogenesis and to inform novel therapies.
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Introduction
Inflammatory bowel disease (IBD) is a term encompassing two 
major types of disorders—ulcerative colitis and Crohn’s disease—
that are characterized by chronic relapsing intestinal inflammation1.
The incidence and prevalence of IBD has increased globally over 
the past few decades: in a systematic review of population-based 
IBD data, the average annual incidence rate was reported as 
1.2–23.3% for Crohn’s disease and 2.4–18.1% for ulcerative coli-
tis from 1920–20102. Recent estimates of the total annual finan-
cial burden (including direct and indirect costs) of IBD in the US 
are $14.6–$31.6 billion3–6. Although newer therapies that have 
improved quality-of-life for a subset of patients have emerged in 
recent years, the underlying causes of and preventative measures 
against IBD remain unknown.

Major scientific advances over the last decade in the fields of 
genetics, immunology, and microbiology have increased our under-
standing of the underlying pathways involved in IBD. Although the 
specific pathophysiology continues to be elusive, it is hypothesized 
that IBD results from an aberrant and persistent immune response 
directed against microbes or their products in the gut, facilitated 
by the genetic susceptibility of the host and intrinsic alterations in 
mucosal barrier function. Figure 1 depicts the historical trends of 
increasing IBD-related research articles that focus on genetics and 
gut microbiome since the year 20007.

We will describe advances in the understanding of how the inter-
action of host genetics and the intestinal microbiome contribute 
to the pathogenesis of IBD, with a focus on bacterial metabolites 
such as short chain fatty acids (SCFAs) as possible key signaling 
molecules.

Genetics
The argument for a genetic predisposition to IBD begins with the 
observation that family members of affected persons have a greatly 
increased risk for developing IBD, with a relative risk 8–10 times 
higher amongst first-degree relatives of IBD patients compared with 
the general population8,9. Subsequent epidemiological data, which 
include differences in prevalence amongst different ethnic groups, 
familial aggregation of IBD, concordance in twins, and association 
with genetic syndromes, further confirmed the influence of genet-
ics in IBD8–13. These instrumental early studies preceded the era of 
modern IBD genetic research with the discovery of the nucleotide-
binding oligomerization domain containing 2 (NOD2) gene in 2001, 
the first susceptibility gene discovered for Crohn’s disease14–16. In an 
analysis of 75,000 IBD cases and controls, including data from 15 
different genome-wide association scans (GWAS) for ulcerative coli-
tis and Crohn’s disease, the International IBD Genetics Consortium 
(IIBDGC) identified 71 new causative regions, increasing the total 
number of independent IBD risk loci to 163: 110 associated with 
both diseases, 30 classified as Crohn’s disease-specific, and 23 as 

Figure 1. Historical trends of IBD research since the year 2000. The graph depicts increasing IBD-related research articles that focus on 
genetics and gut microbiome. Adapted from 7.
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ulcerative colitis-specific. The notable overlap of genetic loci sug-
gests that Crohn’s disease and ulcerative colitis share many biologi-
cal mechanisms: 43 of the 53 disease specific loci have the same 
direction of effect in both diseases, suggesting concordance for 
many of the biological mechanisms implicated in both diseases. 
Insight into biological differences is supported by the observation 
that two risk loci for Crohn’s disease, NOD2 and PTPN22, are pro-
tective for ulcerative colitis17–19. These strategies have identified 
several important signaling pathways that have consistently been 
associated with susceptibility to IBD. Figure 2 depicts genetic loci 
associated with IBD, grouped by disease specificity and involved 
pathways19.

Some of these pathways highlight the interaction between the 
host, the microbiome, and their products. Genetic analysis has 
highlighted the importance of autophagy in immune responses in 
IBD. Autophagy, involved in intracellular homeostasis, facilitates 
the degradation and recycling of cytosolic contents and organelles, 
and also helps resist microbial infection by removing intracellular 
microbes20. In Crohn’s disease, several genes (ATG16L1, IRGM, 
and LRRK) regulate the autophagy pathway, including NOD2, 
further supporting the theory of defective microbial degradation in 
some patients with Crohn’s disease21–26.

Genetic loci also affect innate and adaptive immunity and epithe-
lial function. Specifically, NOD2 modulates innate and adaptive 
immune responses14,15. Further, adaptive immune genes that regulate 

the interleukin (IL)-17 and IL-23 receptor pathways are implicated 
in IBD risk, including genes associated with risk for ulcerative 
colitis and Crohn’s disease (e.g., IL23R, IL12B, STAT3, JAK2, and 
TYK2) and those implicated in Crohn’s disease only (e.g., IL-27, 
TNFSF15). A number of genes associated with epithelial bar-
rier function are also specifically associated with only ulcera-
tive colitis and not with Crohn’s disease (e.g., OCTN2, ECM1, 
CDH1, HNF4A, LAMB1, and GNA12)13,27,28,30,31. Genes that control 
Paneth cell biology and the endoplasmic reticulum (ER) stress/
unfolded protein response are also associated with Crohn’s disease 
(e.g., Xbp-1; Nod2)32.

Different compositions of gut microbiota affect epigenetic regu-
lation of genes through microbial products such as SCFAs33. 
Butyrate, one type of SCFA, influences epigenetic methylation of 
SCFA receptors, especially the promoter region of the free fatty 
acid receptor 3 (FFAR3) with consequent effects on gene expres-
sion and function34. We will further discuss SCFAs and their 
specific pathways later in this review.

Despite the above-mentioned advances, no genetic associations 
can be confirmed in 77% of Crohn’s disease patients and in up to 
84% of ulcerative colitis patients30. Alterations in 163 distinct sin-
gle genes confer only a modest effect in and of themselves, sug-
gesting that an aggregate effect at several loci may be responsible 
for the IBD phenotype35. For instance, as many as 20 to 30% of 
patients with Crohn’s disease may have a variant NOD2, though the 

Figure 2. Genetic loci associated with IBD. IBD loci are represented by lead gene name and grouped by disease specificity and involved 
pathways. Loci associated with inflammatory bowel disease are shown in black, Crohn’s disease (CD) in blue, ulcerative colitis (UC) in green 
and both UC and CD in black. Adapted from 19.
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penetrance is not more than 5% of homozygous and roughly 0.5% 
in heterozygous persons31. This indicates that disease-related allelic 
variants of the gene may be present in a large number of persons 
who do not have Crohn’s disease.

While the increasing number of susceptibility gene loci described 
in IBD reflects their importance, the loci discovered so far account 
for only 20–25% of IBD heritability30. Further, the remarkable 
rise of the incidence of IBD over the past few decades cannot be 
sufficiently explained by only genetic risk or increased diagnosis 
and accessibility of care2, which has opened the doors for immu-
nological, environmental and particularly microbial-based research 
in this field.

Microbiome
A microbial etiology for IBD has long been hypothesized, start-
ing with descriptions of potential infectious agents associated with 
ulcerative colitis in the 19th century and Crohn’s disease in the early 
20th century36,37. In the 1920s, Rettger et al. studied the effects of 
Bacillus acidophilus on IBD, while in the 1940s Kirsner evalu-
ated the possible correlation between streptococci and ulcerative 
colitis38–40. In the late 1990s, the association between fecal microbi-
ota and Crohn’s disease was apparent when recurrent inflammation 
was observed after the fecal stream was reestablished in post- 
operative Crohn’s disease patients41,42. Despite these associations, 
no specific microbe(s) were identified to be the cause of IBD.

With recent advances in bioinformatics and culture-independent 
methods used for bacterial identification, there has been a resur-
gence of interest in the 21st century in studying the phylogeny and 
function of the gut microbiome in IBD. One popular proposed 
mechanism is the development of dysbiosis, which is defined as 
an imbalance between protective and harmful intestinal bacteria 
causing disease. Figure 3 depicts proposed microbial composi-
tion changes underlying dysbiosis and associated pathways modu-
lating gut inflammation, including regulation by T cells, SCFAs, 
sphingolipids and antimicrobial factors as reviewed recently by 
Huttenhower et al.43.

The diversity of the intestinal microbiome is 30–50% lower in IBD 
subjects than in controls. In the past year, a study investigating twin 
pairs discordant for IBD revealed a reduction in microbial diversity 
in the healthy sibling, mirroring the changes in the ulcerative colitis-
affected twin44. Furthermore, individuals who are steroid-responsive 
have a more diverse microbiota when compared to non-responders 
(Shannon index 338 ± 62 versus 142 ± 49; P = 0.013)45.

There is also evidence that upregulation and downregulation of 
the abundance of certain bacterial species correlates with disease 
activity. Recent studies have demonstrated a significant reduction 
of Faecalibacterium prausnitzii and Roseburia hominis in active 
ulcerative colitis patients versus control subjects. Moreover, a 
significant inverse correlation between disease activity and the 

Figure 3. Dysbiosis and gut inflammation. The schematic depicts consistent observations of changes in microbial composition underlying 
dysbiosis and associated pathways modulating gut inflammation. The lumen (yellow), mucus layer (brown), epithelium (purple brush- 
border-containing cells), and lamina propria (bottom purple section) are indicated. Multiple mechanisms depicted include regulation by 
T cells, short chain fatty acids (SCFAs), sphingolipids and antimicrobial factors. Adapted from 85.
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abundance of R. hominis and F. prausnitzii is present even in qui-
escent ulcerative colitis46,47. F. prausnitzii is widely regarded as one 
of the main fecal bacterial groups involved in colonic saccharolytic 
fermentation which produces SCFAs, in particular, butyrate48.

Further validation of the protective function of some microbial 
genera of the microbiome in acute and chronic colitis was con-
firmed by the improvement of inflammatory markers after intragas-
tric administration of F. prausnitzii. In their mouse studies, Sokol 
et al. reported the protective effect of F. prausnitzii in a trinitroben-
zene sulfonic acid (TNBS)-induced acute colitis model and, more 
recently, in a model of dinitrobenzene sulfonic acid (DNBS)-
induced chronic colitis, in which a reduction of inflammatory 
markers, such as myeloperoxidase (MPO) and pro-inflammatory 
colonic cytokines (IL-6, IL-9, TNF-α, IFN-α), was reported, indi-
cating a decreased severity of inflammation associated with an alter-
ation of the microbiome49,50. The findings were particularly notable 
in that further analysis indicated that butyrate was not implicated 
in this protective effect, presumably due to the limitations of the 
TNBS colitis model employed, but nonetheless suggesting other 
protective mechanisms are present. Figure 4 briefly summarizes the 
numerous proposed anti-inflammatory mechanisms mediated by 
F. prausnitzii, either by its metabolites or by direct contact with 

the mucosa47. These pathways, ranging from production of anti- 
inflammatory matrix components to SCFAs to regulation of the 
immune system, to activation of the inflammatory cascade and the 
enteric nervous system, represent the complexities inherent in elu-
cidating the biological mechanisms relating the microbiome to IBD 
pathogenesis47,51–53.

A multicenter cohort study that enrolled treatment-naïve and newly 
diagnosed patients with Crohn’s disease reported increased abun-
dance of Enterobacteriaceae, Pasteurellacaea, Veillonellaceae, and 
Fusobacteriaceae and decreased abundance of Erysipelotrichales, 
Bacteroidales, and Clostridiales in ileal and rectal biopsies54. The 
complexities underlying the interpretation of such simple micro-
bial associations through their production of SCFA are evident 
in conflicting observations of increased Enterobacteriaceae and 
Fusobacteriacea in Crohn’s disease, both of which are implicated as 
the main SCFA-producing bacterial groups48.

The importance of the luminal contents and the microbiome in the 
foregut is also illustrated in a recent study by Said et al. report-
ing that dysbiosis in the oral cavity is associated with inflamma-
tory responses in IBD patients. The salivary microbiome of patients 
with IBD had higher proportions of Prevotella, Bacteroidetes, and 

Figure 4. Proposed anti-inflammatory mechanisms of F. prausnitzii. 1. The supernatant of F. prausnitzii blocks NF-κB activation induced 
by inflammation. 2. Butyrate produced by F. prausnitzii inhibits NF-κB activation in the mucosa. 3. F. prausnitzii may interact with CD103+ 
dendritic cells (DCs) in the lamina propria and stimulate their migration to mesenteric lymph nodes (MLN) and the induction of Tregs. 4. M cell 
transcytosis of F. prausnitzii in organized lymphoid structures may induce Tregs. 5. F. prausnitzii may induce IL-10 in antigen-presenting cells 
to enhance the suppressive activity of Foxp3+ Tregs and block Th17 cells. Adapted from 93.
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Veillonella and lower proportions of Streptococcus, Neisseria, 
Haemophilus, Proteobacteria, and Gemella55. Although the study 
reported changes in several bacterial groups that may have obscured 
the effect of a single group, Bacteroidetes is one of the major 
groups producing SCFAs48, which are thought to protect against 
inflammation.

Dysbiosis is also suggested by the observations of increased 
prevalence of bacteria that may be implicated in the pathogenesis 
of IBD. For instance, in ulcerative colitis patients, the population 
of sulfite-reducing bacteria such as Desulfovibrio is increased, 
whereas low amounts of thiosulfate sulfur transferase (TST), an 
enzyme responsible for hydrogen sulfide (H

2
S) detoxification, are 

present56–58. The consequent increased intestinal H
2
S content can 

impair DNA repair and inhibit SCFA oxidation and its protec-
tive properties59,60, further implicating microbial products such as 
SCFAs as key mediators.

Some aspects of the specific changes of microbial composition 
triggering IBD, however, continue to be elusive: for instance, it is 
yet to be established whether the gut microbiome is stable or con-
tinuously changing during the course of the disease. Furthermore, 
the impact of diet, standard medical therapy, and other environ-
mental factors on the gut microbiome is not well understood. Most 
importantly, it is as yet undetermined if microbial imbalance is a 
cause or a consequence of IBD development.

Although contemporary research has focused mostly on descrip-
tive study of the compositional changes in gut microbiota in IBD, 
studies of the functional impact of microbial communities in IBD 
will be necessary to gain further insight into disease pathogenesis. 
On the basis of metagenomic and metaproteomic studies, only 2% 
of genera changes in stool and intestinal biopsy specimens may 
have a much larger functional impact, affecting up to 12% of total 
metabolic pathways in active IBD patients compared to controls61.

Integrating the microbiome and the genome
Isolated research on the genetic and microbial factors affecting IBD 
manifestations and pathogenesis over the past decades has provided 
valuable insights and strong associative relationships between IBD, 
genetics, and dysbiosis, but has been unable to provide mechanistic 
explanations for these associations. There have been limited studies 
of the co-association of complex host genetic factors with micro-
bial composition and metabolism in IBD patients or other popula-
tions. IBD-associated genetic variants associated with alterations 
in the intestinal microbiome, particularly in individuals carrying 
polymorphisms in NOD2 and FUT2, have been reported62,63. The 
mechanisms of host genome-microbiome disease pathways are 
largely unknown.

There is mounting evidence that genetic loci across the human 
genome are instrumental in shaping the gut microbiome64,65. Knights 
et al., in a systematic analysis of the effect of 154 IBD-associated 
polymorphisms on microbial composition in three cohorts of 
patients with IBD (152 to 162 patients in each cohort) using 
multivariate linear models, reported that 49/154 IBD-associated 
genes significantly and concordantly affected microbial taxa in at 

least two of the cohorts, implicating the innate immune response, 
the inflammatory response, and the JAK-STAT cascade64. In a 
separate analysis, the NOD2 risk allele count also influenced the 
overall microbial composition and abundance of Enterobacte-
riaceae. These data not only support an intricate link between host 
genetics and microbial dysbiosis in IBD, but also illustrate the abil-
ity to uncover novel associations from paired genome-microbiome 
data, opening the possibility that an unexpected number of genetic 
factors act directly on microbial composition, modulating immune 
pathways and metabolic phenotypes in host physiology and disease. 
Further studies are necessary to understand if these variants con-
tribute to disease phenotype through their direct influence on 
microbiome selection, which in turn can affect disease pathophysi-
ology either through elaboration of metabolic products or through 
direct mucosal interaction. These studies may involve investigat-
ing whether genetic polymorphisms concordantly affect microbial 
composition in healthy individuals in addition to those with IBD.

Biological reductionism
The systems-based studies of genome and microbiome in the patho-
genesis of IBD have only yielded associations without a causal 
mechanism. Traditional reductionist experimentation is necessary to 
validate associations in system-based approaches. With the advent 
of new statistical methods, computing and technological advances 
termed “systems biology”, this approach has become dominant. 
Since complex models with emergent properties are arguably dif-
ficult to explain with a reductionist approach, the systems approach 
looks broadly for correlations in comprehensive data sets, building 
models based on these correlations. The statistical approaches used 
to “mine” systems-based data sets are tools from which hypoth-
eses can be developed. These hypotheses should then be tested in 
specific (and often reductionist) experiments. Thus, experimental 
verification of the systems-based approaches will be important to 
establish if the statistical approaches employed in data analysis are 
robust. It is therefore the marriage of systems-based approaches 
with traditional reductionist experimentation that will be needed to 
advance the field.

SCFAs: pathway to IBD
Few studies have addressed the gap between intestinal microbes 
and inflammatory biological pathways in the understanding of IBD 
pathogenesis in a human host. Dysbioses in IBD are not simply 
structural changes in the gut microbiota, but are instead associated 
with major impairments of many fundamental microbial metabolic 
functions with potential impact on the host. Profound disturbances 
have been reported in the metabolic pathways associated with 
gut microbiota in IBD, including major shifts in oxidative stress 
pathways, decreased amino acid biosynthesis, increased mucin deg-
radation, and decreased SCFA production61.

A promising route to further understanding the pathogenesis of IBD 
involves the investigation of the interactions of gut microbiota with 
the host, particularly through the bacterial fermentation products 
N-butyrate and other SCFAs. Not only do SCFAs provide essential 
nutrition for colonocytes, but they are also sensed by enteroendo-
crine and enterochromaffin cells in addition to possessing anti-
inflammatory activity in vitro and in vivo48,66.

Page 7 of 13

F1000Research 2015, 4(F1000 Faculty Rev):1146 Last updated: 04 FEB 2016



SCFAs have been studied for decades for their effects on IBD. 
Although early clinical trials reported beneficial effects of SCFA 
enemas in ulcerative colitis patient subpopulations (e.g., distal 
ulcerative colitis, mild-to-moderate distal ulcerative colitis67,68), 
several large randomized studies reported no significant effects of 
exogenous SCFA treatment of ulcerative colitis patients69,70. These 
early trials were confounded by the now known epigenetic regula-
tion of multiple host factors by SCFAs. Other limitations include 
the unknown utility of a transient rise of SCFA concentration in the 
distal gut achievable through enemas compared to sustained foregut 
elevations made possible by specific microbiome compositions of 
specific gut segments.

SCFAs, fermented from dietary fiber resistant to mammalian diges-
tion, are actively produced by anaerobic microbiota in the intestine 
and colon. The concentration of SCFA in hindgut lumen can reach 
100 mM, which provides sufficient driving force for absorption by 
or transport into colonocytes71. SCFAs activate specific G-protein-
coupled receptors (GPCRs), in particular GPR43 (FFA2), expressed 
by leukocytes, adipocytes and enterochromaffin (EC) cells, myenteric 
nerves, and GPR41 (FFA3), expressed by adipose tissue, spleen, 
bone marrow, lymph nodes, enteroendocrine cells, and peripheral 
blood mononuclear cells. GPR signaling can regulate cell activa-
tion, proliferation, and differentiation through the release of hor-
mones or other bioactive molecules, or possibly through direct 
effects on enteric nerves48.

Another mechanism of SCFA action is inhibition of histone deacety-
lase (HDAC) activity, with subsequent modification of gene expres-
sion in human cells48,50,72. Because HDAC inhibition increases the 
acetylation of histone and other proteins, it can impact multiple 
genes and proteins. SCFAs also regulate cell metabolism through 
the Krebs cycle intermediates and mechanistic target of rapamycin 
(mTOR) activation regulating T cells72.

Our laboratory has pursued experimental studies aimed at decoding 
how chemosensing of luminal microbial products, including SCFAs, 
can generate host responses. We have shown that the duodenum pos-
sesses specialized chemosensing functions that alert the distal gut 
to proximal conditions. The presence of SCFA in the proximal gut 
lumen activates mucosal defense mechanisms, including increased 
mucosal blood flow and mucus, bicarbonate secretion, and release 
of gut hormones73–77. One notable mechanism implicates the expres-
sion of SCFA receptors in luminal-facing projections of rat duode-
nal EC cells and enteroendocrine L-cells. FFA3 colocalises with 
glucagon-like peptide (GLP)-1 in enteroendocrine cells, whereas 
FFA2 colocalises with 5-hydroxytryptamine (serotonin; 5-HT) in 
EC cells. Activation of FFA2 receptor expressed on EC cells releases 
5-HT and acetylcholine (ACh). These activate 5-HT

4
 and muscarinic 

receptors respectively, which are expressed on enteric nerves, affer-
ent nerves, and epithelial cells. Activation of duodenal epithelial 
cells by these signals increases the rate of HCO

3
− secretion.

The contribution of 5-HT and ACh was confirmed subsequently 
when a synthetic selective FFA2 agonist dose-dependently 
increased HCO

3
− secretion, but was inhibited by atropine and a 

5-HT
4
 antagonist. Similarly, SCFAs are thought to activate FFA2 

receptors expressed on L cells, releasing GLP-2, which activates 

GLP-2 receptors expressed in myenteric neurons, enhancing HCO
3
− 

secretion, inhibited by GLP-2 receptor antagonists but enhanced by 
dipeptidyl peptidase (DPP) IV inhibition. These novel pathways 
have an inherent ability to locally regulate hormone release, imply-
ing that they are important in mucosal homeostasis74. Dysregula-
tion of these pathways may contribute to intestinal inflammation 
through possible mechanisms detailed below, highlighting 5-HT 
and GLP-2 mediated effector pathways.

Serotonin (5-HT) mediates many GI functions, including secre-
tion and peristalsis, presumably through its activation of the five 
known gut-expressed 5-HT receptors out of the seven 5-HT recep-
tors so far described78. Agonists and antagonists to 5-HT

3
 and 5-HT

4
 

receptors are particularly well studied, with many drugs in clini-
cal use, with utility in the management of diarrhea, constipation, 
and gut associated pain syndromes78. The contribution of 5-HT and 
its most recently discovered 5-HT

7
 receptors to intestinal home-

ostasis and inflammation is less well understood. Initial studies 
reported alterations in 5-HT signaling in IBD; differences in EC 
cell and 5-HT content have been reported with ulcerative colitis 
and Crohn’s disease79–85. 5-HT released from EC cells can act on 
proximal gut 5-HT

7
 receptors expressed by smooth muscle cells, 

enteric neurons, enterocytes, and immune cells. Activation of 5-HT
7
 

receptors can influence muscle tone and enteric neuron excitation, 
inhibit serotonin transporter (SERT) activity, and modulate inflam-
mation through dendritic cells (DCs) in the lamina propria, which 
are highly involved in host immune pathways.

Guseva et al. investigated the enhanced expression and distribu-
tion of 5-HT

7
R in the intestinal tissue of IBD patients, based on 

an experimental model of dextran sulfate sodium (DSS)-induced 
colitis in which 5-HT

7
R expression was upregulated on CD11c/

CD86 double-positive dendritic cells obtained from cecal and rectal 
tissue samples. The authors reported a similarly high expression 
of 5-HT

7
R in analogous dendritic cells obtained from large intes-

tinal tissue samples of patients diagnosed with Crohn’s disease. 
Pharmacological blockade or genetic ablation of 5-HT

7
R increased 

the severity of acute and chronic DSS-induced colitis, whereas 
receptor stimulation was anti-inflammatory. These experiments 
supported the hypothesis that 5-HT

7
R expressed on CD11c/CD86-

positive myeloid cells is an important component of intestinal 
inflammatory pathways86. Contrary to these results, Kim et al. in 
2013 reported that pharmacologic blockade or genetic ablation of 
5-HT

7
R actually alleviated intestinal inflammation in two separate 

chemical models of colitis (DSS and DNBS), which was confirmed 
histopathologically and also associated with decreased concentra-
tions of pro-inflammatory markers, including myeloperoxidase 
(MPO) and cytokines IL-1β, IL-6, and TNF-α. Mice that received 
hematopoietic stem cells from 5-HT

7
 receptor-deficient donors 

exhibited decreased histopathological damage and disease activity87. 
These apparently discordant effects may be due to differences in 
dosing of the 5-HT

7
R antagonist despite substantial differences in 

experimental design and housing condition of the animals. In sepa-
rate experiments by Kim et al. in which a lower dose (20mg/kg) of 
the antagonist was used, no significant differences were detected 
compared to control, though a higher dose (80mg/kg) significantly 
decreased colitis severity and inflammatory markers. Kim further 
acknowledged that the antagonist dosages were higher and dosing 
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periods longer in his studies than those used by Guseva et al.85. 
Thus, 5-HT

7
R expressed on CD11c/CD86-positive myeloid cells, 

which modulate the severity of intestinal inflammation in experi-
mental models of acute and chronic colitis, may serve as a potential 
therapeutic target for the treatment of inflammatory disorders such 
as Crohn’s disease.

The other hormone released through the action of SCFA, GLP-2, 
promotes mucosal growth, decreases barrier permeability and 
reduces inflammation in the intestine88. After recently being 
approved for treatment of short bowel syndrome, there has been a 
surge in interest in the non-metabolizable GLP-2R agonist tedug-
lutide due to its multiple beneficial effects, including effects on 
glucose homeostasis88, and on intestinal inflammation in Crohn’s 
disease. Pediatric patients with acute ileal Crohn’s disease have 
lower postprandial GLP-2 release and higher intestinal permeabil-
ity, which both reverse as the disease improves, suggesting a crucial 
link between the inflammatory state and GLP-2 meal-stimulated 
release89. In another study, GLP-2 treatment was associated with a 
significantly reduced neutrophil infiltration and microscopic colitis 
scores in the TNBS model of colitis in mice. They also reported that 
GLP-2 contributed to protecting the enteric nervous system under 
basal conditions or inflamed states90. GLP-2 is not only trophic for 
the intestine but also has other salutatory effects. The GLP-2R, 
expressed by pericryptal myofibroblasts, releases growth factors 
in response to GLP-2R activation91. GLP-2 decreases gut inflam-
mation by downregulation of Th1 cytokines cells via an IL10-
independent pathway, altering the mucosal response of inflamed 
intestinal epithelial cells and macrophages92. GLP-2 also may 
activate enteric nerves, since the GLP-2R is localized to mye-
nteric neurons in addition to the myofibroblasts, but not to the 
intestinal epithelium93.

The contribution of specific gut microbiota is evident in studies 
that demonstrate their influence on 5-HT biosynthesis and on the 
increase in endogenous GLP-2 production—both of which are 
implicated in modulation of gut inflammation—although the sig-
naling pathways are yet to be fully understood94–96. SCFAs may 
represent the biological mediators of these findings as well. SCFAs 
that promoted Tph1 (tryptophan hydroxylase 1) transcription in 
BON cells (human EC cell model) were the key link between gut 
microbiota regulating enteric 5-HT production and homeostasis in a 
recent study94. Figure 5 outlines the proposed mechanisms through 
which SCFAs regulate gut inflammation.

Other pathways
There are many other pathways being investigated using the reduc-
tionist approach to help integrate genetic, microbial, and biochemi-
cal pathways. In a breakthrough study of IBD- protective single 
nucleotide polymorphisms (SNPs) in the MAP3K8 gene, Roulis 
et al. reported that MAP3K8 encodes tumor progression locus-2 
(Tpl2) kinase in intestinal myofibroblasts, in addition to promoting 
arachidonic acid metabolism and COX-2/PGE-2 activation, which 
are important in the compensatory proliferative response of the 
intestinal epithelium to injury97.

Mice with complete knockout of Tpl2, and conditional knockout of 
Tpl2 targeted to intestinal myofibroblasts, were highly susceptible 

to DSS-induced colitis, with greater tissue damage when compared 
to wild-type mice despite similar DSS-induced levels of inflamma-
tion. Tpl2 expression was downregulated in intestinal myofibrob-
lasts isolated from the inflamed ileum of nine patients with IBD.

Conclusions
Currently, the data acquisition rate in traditional IBD research has 
been far outpaced by the massive data generated by bioinformat-
ics. Despite the considerable ongoing efforts of investigators across 
the globe, reductionist studies are still needed to help explain the 
basic causal mechanisms that underlie the exponentially increasing 
number of correlations detected through systems-based approaches 
in IBD. Further integration of the study of host genetics and the 
gut microbiome in the setting of clinical metadata has already 
reduced the number of confounding variables and has elicited new 
associations. Efforts to integrate complicated genetics and the gut 
microbiome in further reductionist experiments to determine causal 
associations may be best served by an emphasis on bacterial meta-
bolic products, such as SCFAs, as the logical mediators of the 
interactions between genetic variables and the microbiota as well 
as key molecules of the biological etiopathogenic pathway to gut 

Figure 5. Short chain fatty acids (SCFAs) regulate gut 
inflammation. SCFAs are present in the diet and actively produced 
by gut microbiota as fermentation products of dietary materials. 
SCFAs exert their effects directly on epithelial cells, antigen-
presenting cells, and T cells. Multiple mechanisms depicted above 
include metabolic regulation, HDAC inhibition, and GPR activation by 
SCFAs releasing mediators including 5-HT and GLP-2 hypothesized 
to modulate gut inflammation.
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inflammation. Further reductionist studies exploring the interac-
tions between diet, microbiome, SCFAs and serotonin can help 
guide our understanding of the pathogenesis of colitis.
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