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A B S T R A C T

Background: After more than six months into the coronavirus disease (COVID-19) pandemic, as of August 10,
2020, over 734,664 people had died worldwide. The current study aims to evaluate how mitigating interventions
affected the epidemic process in the 30 largest metropolitan areas in the US and whether temperature played a
role in the epidemic process.
Methods: Publicly available data for the time series of COVID-19 cases and deaths and weather were analyzed at
the metropolitan level. The time-varying reproductive numbers (Rt) based on retrospective moving average were
used to explore the trends. Student t-tests were used to compare temperature and peak Rt cross-sectionally.
Results: We found that virus transmissibility, measured by instantaneous reproduction number (Rt), had declined
since the end of March for all areas and almost all of them reached a Rt of 1 or below after April 15, 2020. The
timing of the main decline was concurrent with the implementation of mitigating interventions. However, the
Rts remained around 1 for most areas since then and there were some small and short rebounds in some areas,
suggesting a persistent epidemic in those areas when interventions were relaxed. Cities with warm temperature
also tended to have a lower peak Rt than that of cities with cold temperature. However, they were not statis-
tically significant and large geographic variations existed.
Conclusions: Aggressive interventions might have mitigated the current pandemic of COVID-19, while tem-
perature might have weak effects on the virus transmission. We may need to prepare for a possible return of the
coronavirus outbreak.

1. Introduction

The coronavirus disease (COVID-19) pandemic caused by the novel
severe acute respiratory syndrome (SARS) associated coronavirus
(SARS-CoV-2) infection [1] has not only affected more than 20 million
people and caused over 734,644 deaths worldwide (https://
coronavirus.jhu.edu/map.html, accessed August 10, 2020), but also
induced significant anxiety among the public [2]. Many people raised
concerns about whether the stringent interventions were over-reacted,
and whether a second wave of outbreak was possible. In the 2003 SARS
epidemic, the virus went away after June 2003 and never came back
[3]. Will this happen to SARS-CoV-2?

There are several major differences between 2003 SARS coronavirus
and 2019 SARS-CoV-2 [3,4]. The 2003 coronavirus had much higher
virulence, resulting in higher hospitalizations and mortality rates than
the 2019 coronavirus. The transmission of the 2003 coronavirus almost
exclusively occurred among symptomatic cases [5], while the 2019

coronavirus can cause a large percent of asymptomatic cases who can
also transmit virus [6,7]. Furthermore, the 2019 coronavirus is also
circulating in the southern hemisphere where the current temperature
is warmer than that of northern hemisphere. By late 2020, it is possible
the coronavirus may circulate back to the northern hemisphere, leading
to a second wave of epidemic [8]. Therefore, it is important to em-
pirically evaluate the effects of mitigating interventions and examine
whether temperature may affect the virus transmissibility and viru-
lence.

One key measure of virus transmissibility during an epidemic is
effective reproduction number (R), the average number of secondary
cases infected by a primary case [9–11]. Based on the susceptible-in-
fectious-removed (SIR) model, the reproduction number can be con-
ceptualized as (number of contacts)*(infectivity per contact)*(genera-
tion interval), where generation interval refers to the average duration
between the time when a primary case becoming infectious and the
time when secondary cases being infected [10]. Clearly, interventions
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such as social distancing, stay-at-home rule, school or office closures,
and prohibiting large gatherings will reduce the number of contacts,
thus reducing R. On the other hand, a lower virus infectivity can also
reduce R, assuming the number of contacts remains unchanged.
Therefore, exploring the changes of R over time and across different
regions can shed new lights on the impact of interventions and en-
vironmental factors during the epidemic.

A few studies have used time varying Rt to explore the effects of
intervention on the epidemic process [12–16]. For example, one recent
study found significant effects of nonpharmaceutical interventions on
the transmissibility of SARS-CoV-2, measured by Rt, in Hongkong [16].
However, few studies examined the impact of environmental factors on
the COVID-19 epidemic. A few unpublished manuscripts have ex-
amined the association between temperature and COVID-19 case counts
and found no or a negative but weak association [17–19]. However,
their studies were based on case counts among different countries,
which subjected to myriads of confounding effects due to different di-
agnostic criteria, availability of detection kits and reporting biases.

In this study, we will compare the magnitude and changes of time-
varying (instantaneous) effective reproduction numbers (Rt) among 30
largest metropolitan areas in the US. We hypothesize that stringent
interventions are effective in curbing the epidemic, but higher tem-
perature may also facilitate the decline of the epidemic in some regions.

2. Methods

2.1. Data source

We obtained daily COVID-19 cases and deaths at the US county
level from the data repository provided by New York Times (https://
github.com/nytimes/covid-19-data, accessed on July 15,2020). We
further limited those counties to the 30 largest metropolitan areas
(Table 1). All cases and deaths were summarized at the metropolitan
level. The sizes of total population and people aged 65 or above for each
metropolitan area were obtained from census bureau website.

Information about stay-at-home rule for each state was scraped from
popular news media. The historical daily average temperature was
obtained from national climate data online (https://www7.ncdc.noaa.
gov/CDO), mostly based on temperature collected from stations at each
metropolitan's main airport.

2.2. Reproduction number and serial interval

The time varying reproduction number (Rt) was proposed by Cori
et al. [11,20]. This approach assumes the occurrence of secondary cases
follows a Poisson distribution, conditioning on the time position in the
whole infectious period of the primary case. The overall Rt at time t of
the epidemic is the average number of secondary cases for all prior
infected cases who are still infectious at a time window (t-s, t). The
estimate is based on current secondary cases, not the future infections.
Therefore, it can be viewed as instantaneous Rt. To smooth the esti-
mates, a weighted average of Rt over a sliding window is used (e.g., one
week window). Consequently, we used a 7-day moving average of prior
temperature when assessing the association between Rt and tempera-
ture.

The estimation of Rt also depends on the estimation of virus in-
fectivity profile that is approximated from the distribution of genera-
tion interval. Since it is difficult to accurately estimate the generation
interval, serial interval is often used in calculating Rt [11]. The serial
interval refers to the average duration between symptom onset of a
primary case and symptom onset of secondary cases. In this study, we
assumed the serial interval had a gamma distribution with
mean = 4.7 days and standard deviation = 2.9 days [21,22], similar to
that of recent studies [15]. This serial interval was applied to all regions
throughout the whole study period to ensure the compatibility of Rt
across regions. However, different regions at different time might have
different serial intervals due to interventions and other environmental
and social factors. We also performed sensitivity analysis with a shorter
serial interval (mean = 3.95, standard deviation = 4.75 [23] and a
longer interval (mean = 7.5, standard deviation = 3.4) [4]. The

Table 1
Characteristics and death rates of COVID-19 for 30 largest metropolitan areas in the US, as of July 15, 2020.

Metropolitan area Total population Age ≥65 Cumulative cases Cumulative deaths Deaths per 100 Cases Deaths per 100 old people

New York 16,669,277 2,789,981 204,805 15,535 7.59 0.56
Los Angeles 10,039,107 1,493,190 140,307 3894 2.78 0.26
Washington DC - Baltimore 9,360,001 1,370,637 101,046 3833 3.79 0.28
Houston 7,066,141 865,112 69,415 672 0.97 0.08
St. Francisco - St. Jose 6,463,637 991,147 29,299 581 1.98 0.06
Chicago 6,021,020 950,164 117,101 5691 4.86 0.60
St Louis 5,485,267 797,415 18,721 1138 6.08 0.14
Atlanta 5,261,067 741,175 58,372 1486 2.55 0.20
Dallas-Fort Worth 5,081,942 615,560 49,031 630 1.28 0.10
Philadelphia 3,815,431 691,016 56,129 3908 6.96 0.57
Minneapolis-St. Paul 3,654,908 580,638 28,927 1303 4.50 0.22
Cleveland - Akron 3,149,448 669,206 16,660 955 5.73 0.14
Seattle 3,074,865 444,891 16,895 825 4.88 0.19
Boston 2,979,288 529,944 52,094 3636 6.98 0.69
Denver 2,967,239 419,589 23,357 1209 5.18 0.29
Miami - Fort Lauderdale-West Palm Beach 2,716,940 467,586 69,802 1175 1.68 0.25
Charlotte 2,675,243 424,892 28,001 341 1.22 0.08
Orlando 2,608,147 430,027 31,270 173 0.55 0.04
Portland 2,492,412 424,694 7636 167 2.19 0.04
Sacramento - Oakland 2,363,730 419,255 8437 131 1.55 0.03
Pittsburg 2,317,600 542,666 8477 346 4.08 0.06
Las Vegas 2,266,715 358,821 24,824 498 2.01 0.14
Cincinnati 2,198,450 394,794 13,305 401 3.01 0.10
Kansas 2,157,990 368,576 10,759 273 2.54 0.07
Columbus 2,122,271 325,706 17,575 556 3.16 0.17
Detroit 2,116,944 387,897 26,748 2882 10.77 0.74
Indianapolis 2,074,537 337,623 20,007 1325 6.62 0.39
Durham-Raleigh 1,974,709 289,249 17,506 298 1.70 0.10
Salt Lake City 1,880,948 207,100 21,128 161 0.76 0.08
Milwaukee 1,575,179 288,873 17,184 478 2.78 0.17
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patterns of Rt were similar, except for different estimated Rt values
(average peak Rt 1–4 for shorter duration, and 2–9 for longer duration).

2.3. Statistical analysis

Descriptive statistics and bivariate associations were reported. The
sizes of total population and people aged 65 or older, and the percent of
positive tests at each date were used for adjustment. R package
EpiEstim was used [11] to estimate the instantaneous reproduction
numbers over time. The association between temperature and Rt was
explored cross-sectionally at the peak of Rt and also at some arbitral
dates. After visually checking the histogram of the peak Rt, a roughly
symmetric distribution was observed. Thus, student t-tests were used
for comparisons.

We adopted two time scales in the analysis. The first was calendar
date to present the trends of reproduction numbers for all metropolitan
areas, starting from the date with at least 10 total reported cases.
Staggered entrances into the outbreak were preserved. The second scale
was the time since the beginning of the outbreak, regardless what ca-
lendar date the outbreak happened. This was to compare the declining
patterns of Rt across metropolitan areas. We also realigned the time
scale from the peak of the outbreak. The first two weeks of Rt estimates
were excluded, as the first week Rt were zeros, and the second week
estimates were too variable due to small number of cases.

P value less than 0.01 was considered statistically significant to take
account of many statistical comparisons involved. Although we did not
adjust for multiple comparisons, we were cautious about over inter-
pretations and conducted statistical tests only between prior selected
pairs (e.g., southern versus northern metropolitan areas).

3. Results

The basic characteristics of metropolitan areas were presented in
Table 1. All metropolitan areas had at least 1.5 million people in 2019
and over 1000 confirmed cases. As of July 15, 2020, the reported case-
fatality rates varied from 0.76 per 100 cases in Salt Lake City, UT to
10.77 per 100 cases in Detroit, MI. However, since there were large
variations in case ascertainment criteria and availability of detection
kits among different regions, comparing case-fatality rates was unreli-
able. Meanwhile, since about 80% of deaths occurred among elderly
people [24], we compared the ratios of deaths to the size of elderly
population among metropolitan areas. The ratios were generally lower
in areas with warm weather (mean 0.13, range 0.03- to 0.29 per 100
elderly), and higher in areas with cold temperature (mean: 0.33, range
0.06 to 0.74 per 100 elderly) (p for difference = 0.008).

The trends of Rt for 30 metropolitan areas were shown in Fig. 1a-d,
grouped by geographic locations and temperature conditions. Overall,
the instantaneous Rts in all areas reached peaks or some stable points
after two to three weeks, decreased significantly since the end of March,
and most areas reached a Rt of around 1 after April 15. However, some
small and short rebounds were presented in some areas. This might be
due to case reporting and detection issues, but could also indicate some
true rebounds. Throughout June and July, the Rts remained around 1
for most areas and reached 1.5 or higher in some areas, suggesting a
persistent epidemic in those areas. It is of note that around the week of
March 25, many schools were closed and many companies started of-
fering employees working from home. The US government has issued
COVID-19 coping guideline to all US citizens, and many states also is-
sued stay-at-home rules (see Appendix Table 1). On the other hand,
after June, the intervention mandates were relaxed in some areas,
leading to large rebounds of Rt.

Fig. 1a compared Rt trends between typical northeastern cities and
southern cities. Boston, Chicago, New York and Philadelphia started the
epidemic earlier, had higher peak Rts than that of Miami, Orlando,
Houston, and Los Angeles. After some initial increases (though peaked
at different dates), all northern cities declined sharply after the mid-

March. In addition, the trajectories of Houston and Los Angeles were
similar with initial peaks at around March 18, somewhat decreased and
then were stable around March 25. For Miami and Orland, the Rts were
quite stable during the week of March 25, and declined sharply after
about March 28, but had several rebounds in June and July. However,
the slopes of decline, when aligned by the time since the peak Rt, were
similar except a few spikes in Miami, Houston and Los Angeles
(Appendix Fig. 1a).

On the other hand, the Rt curves were indistinguishable between
upper midwestern cities and other southern cities (Fig. 1b). Upper
midwestern cities except Pittsburg all had earlier interventions in the
mid-March (Appendix Table 1 for dates stay-at-home rules issued),
while Minneapolis-St. Paul area had some rebounds over the course of
epidemic. In addition, the west coastal cities had an early start of the
epidemic, and Rt curves were less volatile than that of other cities
during the study period (Fig. 1c). The unusually high Rt in Salt Lake
City in the early epidemic may be due to a small number of cases during
that period (Fig. 1d).

Furthermore, after realigning the starting time from their respective
outbreak peaks for all metropolitan areas, the overall declining patterns
were similar across all regions (Appendix Fig. 1a-d).

To evaluate the association between Rt and temperature across re-
gions, we compared the highest Rt (occurred after the first two weeks)
among them (Fig. 2), most cities had a peak Rt between 1 and 5. At the
low temperature, peak Rts varied significantly. Cities with cold average
temperature generally had higher Rts than those with warm tempera-
ture. However, upper midwestern cities such as Minneapolis-St. Paul,
Milwaukee, and Columbus had much lower peak Rts than the rest of
cities. The average peak of Rts in Boston, Chicago, New York, and
Philadelphia were marginally (but not statistically significant) higher
than that of Houston, Los Angeles, Orlando and Miami (average peak Rt
4.01 vs. 3.15, p = 0.07). In addition, we also arbitrarily examined the
Rt patterns on the 15th day after the outbreak and on March 24, 2020
when most interventions had not fully executed (Appendix Fig. 2a and
b). These cross-sectional analyses demonstrated similar patterns to that
of peak Rt.

4. Discussion

Overall, since the end of March, the instantaneous reproduction
number (Rt) declined over time similarly in 30 largest metropolitan
areas, and after April 15, Rts in almost all areas reached 1 or below.
Since then, the Rts remained around 1 in most areas and there were also
a few small and short rebounds in some regions, suggesting the epi-
demic was persistent in those areas. The main decline was concurrent
with the implementation of aggressive interventions in the US, while
the occurrence of rebounds in some southern areas was coincident with
the relaxation of interventions. These suggested stringent interventions
were effective in halting the epidemic. However, there were large
geographic variations in the Rt patterns, partly due to different levels of
interventions, geographic altitudes, and partly might be due to tem-
perature variations.

Without effective interventions, the peak of epidemic will reach
higher and the epidemic process will last longer [25]. Thus, the re-
production numbers will not decline until a large proportion of sus-
ceptible people are infected. For example, during the week of March 25,
Rts in Houston, Miami, and Orlando were relatively stable (Fig. 1a).
After the end of March, due to national efforts in mitigating the epi-
demic, all Rt curves started declining. The state of Florida, however, did
not officially issue the stay-at-home rule until April 3, 2020, where the
curves already declined significantly. This posed some difficulties in
assessing the intervention effects precisely. On the other hand, a few
cities demonstrated some significant impact of interventions on miti-
gating the epidemic. For example, some upper midwestern cities (e.g.,
Minneapolis-St. Paul and Milwaukee) implemented interventions ear-
lier, had lower peak Rts, and their Rts started declining early, while
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cities like Pittsburg and Detroit had much higher Rt at the beginning,
and Rt declined later. Even for cities like Chicago and New York, the
intervention effects were evident based on the sharp decline of Rt since
the mid-March, despite they had much higher Rts in the beginning of
epidemic.

It has been suggested that like many other respiratory virus infec-
tions, a seasonal pattern may exist for SARS like coronavirus [26,27].
However, as demonstrated in this study, the association between re-
production number and temperature was deeply confounded by inter-
ventions and other external factors (including altitudes and humidity).
In this study, we found the peak Rts in warm cities were moderately
lower on average than those in cold cities, suggesting that the virus
transmissibility might be lower in warm temperature than cold tem-
perature.

However, our analysis warned readers about interpreting selective
findings. For emerging pandemic like COVID-19, many things were
happening simultaneously. Effective interventions such as travelling
restriction, social distancing and stay-at-home rules will change the
epidemic process [25,28,29]. The availability of testing, diverse case
ascertainment criteria, the delay of diagnosis and case isolation, in-
complete contact tracing, the percent of asymptomatic cases, and the
infectivity of pre-symptomatic and asymptomatic cases will profoundly
affect our ability to understand the epidemic. In this study, we observed

Fig. 1. a-d: Time trends of instantaneous reproduction number for 30 US largest metropolitan areas.

Fig. 2. Association between maximal reproduction number and 7-day average
temperature among US 30 metropolitan areas.
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some small but possible negative association between temperature and
virus transmissibility (Fig. 1a and 2). However, there were large var-
iations in the peak Rts among regions with lower temperature, partly
due to different intervention effects and also might be due to cultural
and social differences. It is also likely that other environmental factors
such as living conditions may affect virus transmission. For example,
under cold weather, most people will stay indoors and have close and
more frequent contacts with other people. The indoor environment
such as air conditioning may be conducive for virus transmission.

Furthermore, the concurrent decline of Rt and increase of tem-
perature over time are also confounded by the epidemic process itself.
As suggested before, a significant reduction of susceptible people will
lead to a decline of Rt. Longitudinally comparing the trend of Rt and
temperature is difficult if the epidemic evolves rapidly, as in the current
COVID-19 pandemic. For instance, from March to April, all the epi-
demic in the 30 metropolitan areas had a sharp decline, while the
temperature in the whole US was still amenable for virus transmission.

There were some limitations in our study. The most important
limitation was the inability to account for the diverse detection capa-
cities across regions (Appendix Table 1). In regions with lower detec-
tion capacity, not only were there fewer cases detected (especially
missing those with no or mild symptoms), but also the eligibilities for
detection were more stringent. Only those with symptoms might be
offered for virus detection. Thus, a sudden increase in case counts might
not be due to an actual increase of infected people, rather it reflected
the increased availability of detection kits. This was the main reason we
had highly variable estimates of Rt in the beginning of epidemic, and
also some small rebounds in some areas after April 15. Additionally,
with more detection kits available, we will observe more asymptomatic
or mild symptomatic cases. Our methods assumed the same virus in-
fectivity between symptomatic and asymptomatic cases, which was
likely not true.

Methodologically, our estimation of Rt relied on many assumptions.
Rt is determined by both the growth rate of new cases and the dis-
tribution of generation interval or serial interval [10]. We assumed a
universal distribution of serial interval for all regions and over the
whole time period. Serial interval may change due to interventions,
regional characteristics, and the stage of epidemic. More stringent in-
terventions and stay-at-home rules may result in shorter serial interval
because the transmission will likely occur inside the households.

We were not able to rigorously evaluate the virulence of SARS -CoV-
2. Although we briefly compared death rates across regions, due to
large and unknown delays between virus infection and deaths in the US,
most deaths would be diagnosed several weeks before. There was also a
delay in death certifications. Additionally, most died cases were elderly
people or those with existing chronic conditions. Therefore, assessing
the virulence should untangle the confounding effects by health care
resource capacities, evolving treatments, and patient's characteristics. A
possible measure of virulence is the pattern of hospitalizations, as they
are less likely affected by the availability of detection. After more
hospitalization data are available and more asymptomatic and mild
symptomatic cases are diagnosed, future research should focus on the
impact of epidemic on the severity of disease and health care resource
uses instead of the magnitude of epidemic.

In addition, as mentioned before, secondary data analysis based on
existing aggregated data suffer many types of unmeasured confounding.

Our data were collected by journalists which might lack scientific rigor.
However, as stated in the New York Times data website, data were
scraped from data portal such as those John Hopkins University COVID-
19 data portal, state COVID-19 portal and various press conferences,
and verified against each State Health Department. Nonetheless, al-
though the quality of New York Times data was considered acceptable,
the data were hastily collected and little validation was done. Biased
data might lead to biased conclusions and wrong governmental deci-
sions. We should call for replicated analysis based on more rigorously
collected and validated data. Thus, our analyses were mostly de-
scriptive and deliberately avoided over-interpretations through nu-
merous comparisons between regions. A careful exploration of vali-
dated individual level data may shed some lights on these issues.

Finally, our study has some unique strengths. First, we focus on
large metropolitan areas to ensure enough cases and to have compar-
able societal structure, individual behaviors and health care resources.
Certainly, epidemic in non-metropolitan areas should also be studied
and may have unique patterns different from that of metropolitan areas.
Epidemic in rural areas was of particular concern recently as rural areas
often had limited health care resources to cope with the epidemic.
Second, we explored the changes of effective reproduction number (Rt)
over time and across regions to understand the impact of interventions
and temperature on virus transmissibility. We presented and compared
all regions to avoid selective reporting bias. To study the association
between temperature and the epidemic process, we focus on the com-
parisons of Rt at the peak of outbreak and before interventions, pre-
sumably less confounded by interventions and other factors.

In summary, we observed a large decline of instantaneous re-
production numbers over time during the COVID-19 pandemic in 30 US
metropolitan areas, the timing of which was concurrent with the im-
plementation of mitigating interventions. Given that the whole popu-
lation were naïve in immunity against this virus, it was likely the epi-
demic might last longer and more severe without interventions [25]. In
addition, there was a possible weak negative association between in-
stantaneous reproduction number and temperature. However, as shown
in the Fig. 1, the virus infection was rampant in some southern areas
where the interventions were relaxed during the summer, suggesting
that interventions were critical in halting the pandemic. Given that the
Rts remained around 1 for most areas since later April and the virus is
circulating in both northern and southern hemisphere, we need to be
vigilant about a possible second wave of outbreak later of the year.
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Positive detection rates at various time by state.

State Metro areas %positive as of March 25,
2020

%positive as of April 15,
2020

Date of stay at home
rule

% positive at rule man-
dating

CA Los Angeles, St. Francisco-St. Jose, Sacramento-
Oakland

12.9% 10.6% 19-Mar-20 9.5%

CO Denver 11.8% 20.4% 11-Apr-20 19.9%
DC Washington DC - Baltimore 11.4% 19.3% 1-Apr-20 15.2%
FL Miami-Fort Lauderdale, Orlando 9.9% 10.4% 3-Apr-20 10.5%
GA Atlanta 20.2% 23.1% 2-Apr-20 23.3%
IL Chicago 13.1% 21.0% 21-Mar-20 12.1%
IN Indianapolis 14.2% 18.7% 24-Mar-20 12.5%
KS Kansas 5.1% 9.9% 30-Mar-20 7.5%
MA Boston 9.3% 22.9% 24-Mar-20 8.4%
MI Detroit 48.4% 31.0% 24-Mar-20 52.6%
MN Minneapolis-St. Paul 2.5% 4.6% 27-Mar-20 2.8%
MO St. Louis 49.1% 10.1% 3-Apr-20 9.8%
NC Durham-Raleigh, Charlotte 4.8% 7.7% 30-Mar-20 6.3%
NV Las Vegas 7.0% 11.7% 1-Apr-20 10.0%
NY New York 29.8% 40.4% 22-Mar-20 24.7%
OH Cleveland, Columbus, Cincinnati 4.8% 11.2% 22-Mar-20 71.5%
OR Portland 4.6% 5.0% 23-Mar-20 5.0%
PA Philadelphia, Pittsburg 9.1% 19.6% 1-Apr-20 12.0%
TX Houston, Dallas-Fort Worth 7.2% 10.4% 2-Apr-20 9.2%
UT Salt Lake City 5.1% 5.4% 27-Mar-20 5.2%
WA Seattle 9.4% 8.7% 23-Mar-20 7.8%
WI Milwaukee 5.5% 8.6% 25-Mar-20 5.5%

Appendix Fig. 1. a – d, Declining trend of instantaneous reproduction number over time after the peak of epidemic, US 30 metropolitan areas.
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Appendix Fig. 2. a-b: Variations of instantaneous reproduction numbers across 30 US metropolitan areas.
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