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OVERVIEW

Since the discovery of Toll-like receptors (TLR) in the late 1990s, an 
explosion of research describing the interaction of HIV with the innate 
immune system has emerged in the literature. Most of this work has fallen 
into two broad categories: (1) elucidating the cellular machinery and sig-
naling pathways responsible for recognition of HIV-derived pathogen-
associated molecular patterns (PAMPs) and (2) examining the fate of 
innate cells and their contribution to the control of virus in HIV-infected 
individuals. More recently, the concept has emerged that unmitigated 
stimulation of the innate immune system by HIV PAMPs may be a sig-
nificant contributor to the systemic immune activation associated with 
HIV disease progression. Finally, a number of studies have attempted to 
exploit the potency of TLR ligands by using them as adjuvants to enhance 
adaptive immunity in a number of preclinical vaccine candidates or as 
potential microbicides.

The simian immunodeficiency virus (SIV)/macaque model has been 
invaluable in addressing several of these questions. The primary focus 
of this chapter is on summarizing current concepts of the interplay of 
innate immunity and HIV infection that have been shaped by work 
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done in the SIV/macaque model. The chapter will be divided into five 
parts:
  

 1.  Non-human primate (NHP) models of SIV infection
 2.  Innate immune sensors of HIV and SIV
 3.  SIV infection and cellular innate immunity
 4.  Physical and mucosal immune barriers in SIV infection
 5.  Innate immunity as a driver of immunopathogenesis in HIV/SIV 

infection
 6.  In vivo administration of innate ligands to NHPs.
  

Several topics peripheral to innate immunity will not be covered in 
detail within this chapter, because they are beyond its scope or are directly 
addressed in an adjoining chapter, and we will not directly describe the 
considerable research on adaptive immune responses in SIV infection or 
major histocompatibility (MHC) alleles associated with viral control, or 
discuss in detail HIV/SIV restriction factors.

NHP MODELS OF SIV INFECTION

Characteristics of the SIV/Macaque Model

Experimental inoculation of Asian macaque species (Macaca mulatta—
rhesus macaque (RM), Macaca fasicularis—cynomolgus monkey, and 
Macaca nemestrina—pig-tailed macaques) with SIVmac or SIVsmm has 
resulted in the most relevant NHP models of in vivo HIV-1 infection [1]. 
The course of disease progression after SIV infection in macaques has 
proven to have a high degree of variability, and depends on the SIV iso-
lates and molecular clones. Disease severity can range from very low or 
none, as in the case of cloned SIVmac142, to rapid and pronounced, as 
observed for SIVmac239 or SIVmac251 infections, which causes death in 
25% of animals by 3 months postinfection [2,3].

The clinical disease associated with SIVmac infection of Asian macaques 
is strikingly similar to that observed in HIV-1-infected humans and can be 
classified into three stages: acute, post-acute asymptomatic and AIDS [2]. 
During the acute phase, occurring in the first 2–3 weeks after inoculation, 
a massive viremia develops, accompanied by large decreases in the fre-
quency and absolute numbers of CD4+ T lymphocytes, both in the periph-
eral circulation and in the gastrointestinal (GI) tissues [4]. Other clinical 
signs during the acute phase, such as fever, lymphadenopathy, rash, and 
malaise, are characteristic of simian AIDS [3]. SIV infection generally enters 
a clinically asymptomatic phase, during which the viremia is controlled 
and maintained at a stable set point and CD4+ T lymphocyte levels undergo 
a slow but continual decline [2]. During the later AIDS stage, there is severe 
depletion of CD4+ T cells and concomitant occurrence of opportunistic 
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infections. Protozoal infections such as Pneumocystis jiroveci are usually  
the first to develop; however, viral (typically cytomegalovirus, adenovi-
rus, and simian virus 40) and bacterial infections (Mycobacterium avium) 
are also prevalent [3]. Immunopathologies include hyperplasia within 
lymphoid follicles early in infection, switching to lymphoid depletion in 
advanced disease [3,5]. Thymic atrophy and inflammation of the lungs 
are also common [6–8]. Most pathogenic SIVmac viruses, such as SIV-
mac239, cause death from AIDS-like symptoms at approximately 1 year 
postinfection [9]. The similarities between human and simian AIDS sug-
gest that the macaque model is highly relevant. The high efficiency of 
infection after challenge also makes it a useful model for vaccine efficacy 
studies.

Nonpathogenic/Natural Hosts of SIV Infection

Unlike SIV infection of Asian macaque species, infection of most  African 
NHPs with their corresponding SIV does not induce an overtly  appreciable 
disease. The notable exception is chimpanzees, in which pathology 
 consistent with AIDS has been reported in experimental infection with 
HIV-1 [10] and in SIVcpz infections in the wild [11]. The best  characterized 
natural host species are sooty mangabeys (SMs) and African Green 
monkeys (AGMs) [12]. SIV infection of natural hosts shares  phenotypic 
similarities with pathogenic infection: a high level of plasma viremia  
(∼105 copies/ml), tropism for CD4+ T cells, and rapid but transient deple-
tion of mucosal CD4+ T cells during acute infection. Despite these simi-
larities, in addition to remaining AIDS-free, SMs and AGMs lack many of 
the classical clinical features of pathogenic HIV/SIV: They maintain stable 
numbers of peripheral blood CD4+ T cells and do not display bystander 
lymphocyte activation. The mechanisms by which SMs and AGMs remain 
AIDS-free have been extensively studied in recent years, and several 
hypotheses have emerged, as reviewed in Ref. [12]. One key difference 
appears to be tropism in key subsets of CD4+ T cells: The CD4+ T cells 
from SMs have a reduced expression of the SIV co-receptor CCR5 on cen-
tral memory cells (Tcm) and CD4+ Tcm cells harbor lower levels of SIV 
in vivo relative to their effector counterparts (Tem) [13]. A strong, inverse 
correlation between disease progression and preservation of the CD4+ 
Tcm pool has been demonstrated in SIV-infected macaques; the ability of 
SMs to shunt the bulk of SIV replication away from this subset likely is  
linked to their ability to maintain stable bulk CD4+ T-cell numbers. The 
precise immunological mechanisms by which natural host species remain 
AIDS-free are under intense investigation; however, they remain a crucial 
model system to dissect the immunological aspects of SIV infection and 
differentiate aspects of normal host response to a viral infection from a dys-
regulated, pathogenic immune activation driven by SIV. As we discuss in 
detail subsequently, in recent years, several studies have directly compared 
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the innate immune response to SIV among natural pathogenic hosts, and a 
clear picture of the differences among species has begun to emerge.

INNATE IMMUNE SENSORS OF HIV AND SIV

A number of innate receptors have been demonstrated to mediate rec-
ognition of HIV. The best characterized are the TLRs, which recognize 
viral-derived ssRNA and viral DNA. Most of the current knowledge of 
innate recognition has come from in vitro studies of HIV-1; however, in a 
few examples, these studies have been extended to primate studies, typi-
cally with the following aims: (1) to empirically test innate stimuli for its 
adjuvant activity with candidate anti-HIV/SIV vaccines, or (2) to under-
stand the contribution of innate stimuli to pathogenic immune activation. 
A thorough discussion of the innate immune receptors shown to recognize 
HIV can be found in Iwasaki [14].

Toll-like Receptors

Toll genes and their corresponding proteins, termed TLRs, were origi-
nally described for their antifungal properties in the Drosophila species [15]. 
Eleven mammalian homologs of TLRs that recognize different components 
of microbes, called PAMPs, have been identified to date [16,17]. Different 
leukocytes express specific profiles of TLRs; in humans, the plasmacytoid 
dendritic cells (pDCs) express only TLR7 and TLR9 [18], both of which, 
along with TLR3 and -8, belong to a TLR subfamily that detects PAMPS 
intracellularly [19–21]. Toll-like receptor-7 binds single-stranded viral RNA, 
whereas TLR9 binds hypo-methylated cytosine-phosphate- guanine (CpG) 
dinucleotides that are enriched in bacterial DNA but are less prevalent in 
eukaryotic DNA [20,22]. Signaling occurs when the ligands are endocy-
tosed and transported to lysosomal compartments, where they bind their 
cognate receptors, TLR7 or TLR9 [23,24]. The ligand–receptor complex 
recruits the global TLR adaptor molecule MyD88, which initiates a signal-
ing cascade of transcription factors including, nuclear factor-κB, activa-
tor protein-1, c-Jun N-terminal kinases, and extracellular signal-regulated 
kinases [19,24,25].

The best-studied TLR recognizing HIV and SIV is TLR7, which is 
expressed endosomally and recognizes ssRNA [26]. It is expressed at high 
levels in pDCs, and signaling via TLR7 induces high expression of inter-
feron-alpha (IFN-α) [27]. Whereas HIV and SIV induce high levels of IFN-α  
by pDCs, these cells are only productively infected at low levels [28]. 
However, nonproductive internalization of HIV by pDCs is sufficient to 
induce IFN-α secretion [29,30], as noted with aldothiothreitol-inactivated 
SIV, which is capable of inducing high levels of IFN-α induction in RMs 
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and SMs [31]. HIV-infected CD4+ T cells are more potent inducers of IFN 
production in pDCs than purified virion [32], and autophagy is required 
for efficient IFN production, which suggests that infected CD4+ T cells, 
rather than HIV itself, may be the primary stimuli in vivo. Upon stimula-
tion, TLR7 interacts with the MYD88 adaptor molecule and activates phos-
phorylation of IRF7, which translocates to the nucleus and trans-activates 
type I IFN transcription [33]. During viral infection, IRF7 associates with 
TLR7 in early endosomes and initiates primarily IFN production. However 
feedback mechanisms induce maturation of the endosomes, consequently 
the IFN produced leads to an up-regulation of surface co-stimulatory mol-
ecules. In contrast to other viruses and TLR7 ligands, activation of TLR7 
by HIV causes the TLR7/IRF7 signaling complexes to remain sequestered 
in early endosomes, with prolonged production of IFN-α [34].

Emerging Innate Receptors in the Recognition of HIV

Toll-like receptors that recognize HIV are expressed within endosomes, 
and require virion fusion and delivery to the endosome to become acti-
vated. However, until recently, it was unclear how cytosolic recognition of 
HIV occurs. HIV-1 virions harbor two positive-sense viral RNA genomes. 
The RIG-I family of helicases has been demonstrated to recognize viral 
RNA in the cytoplasm, and recently it has been reported that HIV genomic 
RNA activates RIG-I, the prototypical member of this family [35,36]. Acti-
vation of RIG-I in virally infected cells may be masked by HIV’s ability 
to target the IRF3 transcription factor for degradation [35,37,38] and sup-
press IFN-beta expression. The lattice of HIV capsid also interacts with 
the restriction factor TRIM5 and enhances innate signaling [39]. Finally, 
an endogenous receptor for HIV DNA intermediates that arise during 
reverse transcription of the HIV genome has been hypothesized [14]. Acti-
vation of this receptor is masked by the cellular expression of TREX1, a 
host exonuclease that digests ssDNA [40] and prevents HIV DNA from 
accumulating to high enough levels to stimulate the as-yet undescribed 
sensor [41]. With the exception of TRIM5, as described subsequently, the 
role of these factors in infection at the organism level in either humans or 
NHPs has not yet been described.

Restriction Factors in SIV Vaccine Studies

Restriction factors are intracellular proteins that act directly to block 
viral infection at the intracellular level. Although they have primarily been 
studied for their activity against HIV and SIV in vitro, recent genetic data 
demonstrated that they can affect viral load and transmission in SIV infec-
tion. The most well-studied restriction factors against HIV are TRIM5a 
[42], APOBEC3G [43,44], Tetherin/BST-2 [45,46], and SAMHD1 [47,48], 
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each of which has been able to demonstrate highly effective blockade 
against HIV infection in vitro. These restriction factors have been hypoth-
esized to be important in safeguarding against transmission of lentivi-
ruses between species [49]. TRIM5α is the best studied of the lentiviral 
restriction factors. Human TRIM5 has low activity against HIV; however, 
TRIM5 in RMs demonstrates much higher activity in vitro against SIV [42]. 
Furthermore, TRIM5 in macaques is highly polymorphic, and macaques 
inheriting restrictive alleles of TRIM5 have lower viral load [50,51] and are 
more resistant to low-dose challenge by the intrarectal [52] or penile [53] 
routes. Importantly, these studies have employed SIVsmm strains of SIV; 
other groups have shown that TRIM5 genotypes have no effect on viral 
replication or transmission of SIVmac strains [54]. Owing to their consid-
erable influence on viral load and transmission, the prevalence of restric-
tive or permissive TRIM5 genotypes is an important consideration in SIV 
vaccine studies.

SIV INFECTION AND CELLULAR INNATE IMMUNITY

Dendritic Cells

The primary function of dendritic cells (DCs) is to act as potent or 
professional antigen-presenting cells that activate the adaptive immune 
response. Resident DCs at sites of infection express a multitude of innate 
pathogen recognition receptors (PRRs) described previously at the plasma 
membrane, cytoplasm, and endosome, with which they recognize PAMP-
containing structures in foreign microorganisms such as viruses. Upon 
recognition, DCs become activated and traffic to secondary lymphoid 
organs, where they present foreign antigen via MHC class I and II surface 
molecules to CD4+ and CD8+ T cells. In this manner, DCs represent the 
interface between innate and adaptive immunity. Because of their primary 
importance in modulating T-cell responses, modulation of DC response 
by vaccination and adjuvants has been a subject of interest in the develop-
ment of HIV vaccines; we will describe methodologies targeting the innate 
machinery in the subsequent section. In addition, over the past decade, it 
has been demonstrated that HIV and SIV are also capable of hijacking sen-
tinel DCs and using them to disseminate from primary sites of infection to 
secondary lymphoid organs, which will be discussed later in more detail.

Dendritic Cell Subsets

Unlike lymphocytes, DCs are classified by both their cell-surface mark-
ers and anatomic location. In blood, the best-studied human myeloid DC 
subsets are typically defined as CD11c+ and CD1c/BDCA1+ Lin-cells, 
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sometimes referred to as conventional or classical DCs (cDCs). Pheno-
typically, these cells have been demonstrated to be similar in RMs and 
SMs [55]. However, in RMs, several lineage markers are present on cDCs 
that are absent on their human counterparts, including CD16, CD56, and 
CD11b [56,57]. More recently, novel blood DC subsets have been described 
in humans: CD141+/BDCA3+ DCs, capable of efficient cross-presentation 
and representing the functional analog of mouse CD8α DCs [58]. How-
ever, similar subsets of these cells have not been reported as yet in NHPs.  
A third subset of nonmyeloid blood DC, the pDC (discussed subsequently), 
differs significantly from myeloid DCs in that its primary function appears 
to be the secretion of high amounts of IFN-α, rather than antigen presenta-
tion. Within the skin and mucosa, Langerhans cells (expressing langerin)  
are prevalent in the epidermal layers as two dermal DC subsets: CD1a+ or 
CD14+. More recently, gut-resident CD103+ DCs have been described in RMs 
and humans [59] that promote tolerance by induction of T-regulatory cell 
response and maintain homeostasis of the gut epithelial barrier (described 
in detail later). Of interest, this subset is also notable for being depleted from 
the mucosa during SIV infection [60].

Highjacking of DCs for Viral Entry and Dissemination

Early studies in vaginal transmission models of SIV demonstrated that 
SIV enters the mucosa and nonproductively infects resident DCs [61] 
and LCs [62]. Within 24 h of infection, however, the HIV-infected DCs are 
detectable in the draining LNs [61]. HIV-1 binds to a C-type lectin receptor, 
DC-SIGN (CD209), on the surface of mucosal DCs, and potently enhances 
trans-infection of CD4+ T cells. Similar activities have been demonstrated 
for DC-SIGN + DCs in RMs, chimpanzees, and AGMs in vitro [63–65].

Plasmacytoid DCs

pDCs are a unique subset of DCs that are present at low frequencies in 
peripheral blood. Unlike most DCs, the primary function of pDCs does not 
seem to be antigen presentation, but production of massive levels of the 
antiviral cytokine IFN-α [66]. pDCs express high levels of the interleukin 
(IL)-3Rα chain, CD123 [67–70], as well as BDCA-2 and -4 [71]. Although 
the function of BDCA-2 is still being defined, BDCA-4 is identical to 
 neuropilin-1, a neuronal receptor for axon guidance factors and a recep-
tor on endothelial and tumor cells for vascular endothelial growth  factor 
(VEGF-A) [71–73]. Isolated pDCs are characteristically smooth round cells, 
whereas mDCs have prominent dendrites [74]. These morphological dif-
ferences suggest that pDCs in blood are generally more immature, a find-
ing supported by low cell surface expression of the T-cell co-s timulatory 
molecules CD40 and CD80/CD86 [75]. pDCs were first recognized  
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in human lymph nodes as cells with plasma cell morphology but devoid 
of B cell and plasma cell markers [76]. They were originally referred to 
as plasmacytoid T cells because of their close association with T cells in 
lymph nodes [77], but the nomenclature was later changed to plasma-
cytoid monocytes when they were found to share some common markers 
with myelomonocytic cells [74]. Several research groups recognized con-
currently that stimulating peripheral blood mononuclear cell (PBMC) cul-
tures with viruses or virus-infected cells resulted in high concentrations of 
IFN-α accumulation in the supernatants, but only a small number of cells 
appeared to be responsible for the bulk of IFN-α production [78–80]. These 
cells, dubbed natural interferon-producing cells (nIPCs), lacked T, B, NK, 
and monocytic markers, but expressed MHC-II molecules, and were 
clearly distinct from classical peripheral blood DCs [78,80,81]. After nearly 
a decade of independent study, both Siegal et al. [82] and Cella et al. [83] 
determined that plasmacytoid monocytes and nIPCs in peripheral blood 
and secondary lymphoid tissues were the same cell type, whereupon the 
designation pDCs was adopted.

In response to a wide range of viruses and bacteria, pDCs produce up 
to 10 pg of IFN-α/activated cell, which is 10-fold greater than the amount 
of IFN-α produced by activated monocytes [84]. Although IFN-α1 is pre-
dominant, human pDCs secrete most of the 13 IFN-α subtypes, as well as 
moderate levels of IFN-β [85,86]. Interferon regulatory factors (IRFs) con-
trol expression of both IFN-α and -β, with IRF-5 and -7 controlling IFN-α 
secretion in response to virus infections. pDCs express most of the IRF 
genes, and in particular constitutively express high levels of IRF-5 and 
IRF-7, which can be detected by the presence at both the mRNA and pro-
tein levels [86]. The high level of constitutive IRF-7 expression in pDCs 
is thought to contribute to rapid IFN-α synthesis in response to virus 
infections [87]. pDCs are adept at recognizing and becoming activated in 
response to a variety of viruses including hepatitis C virus (HCV), human 
T-lymphotropic virus (HTLV), and herpes simplex virus 2 (HSV-2). pDCs 
have been directly linked to resolution of disease in respiratory syncy-
tial virus, Dengue fever virus, and HSV-2 [88–90], but are also depleted 
in a number of diseases including HTLV, HCV, severe acute respiratory  
syndrome (SARS) coronavirus (SARS-CoV), and HIV [91–97].

pDCs have been well studied during HIV infection. Human pDCs 
stimulated in vitro with infectious or inactivated HIV, or even with 
recombinant gp120, secrete IFN-α, and up-regulate CD40, CD83, and 
CD86 [98–102]. Compared with uninfected controls, circulating pDCs 
in HIV-infected patients express higher levels of CD86 on the cell sur-
face [103]. Although both TLR7- and TLR9-dependent mechanisms of 
HIV-mediated pDC activation in vitro have been described, activation 
in vivo primarily depends on TLR7 pathways and contributes to the 
overall immune activation observed in advanced HIV disease [104–106]. 
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However, in chronically infected HIV patients, the frequencies and abso-
lute numbers of circulating pDCs are reduced, as is pDC-dependent IFN-α  
production ex vivo; these reductions generally correlate with increasing 
viral loads and decreasing numbers of CD4+ T cells [103,107–110]. Down-
regulated CCR7 expression on pDCs in HIV patients is also related to 
viral load [111]. After the administration of highly active antiretroviral 
activity, circulating CD4+ T-cell numbers usually increase and plasma 
viremia declines; however, pDC numbers are only partially restored and 
IFN-α secretion remains defective [112,113]. Furthermore, pDCs isolated 
from HIV patients were impaired in their ability to stimulate allogeneic T 
cells, and not only harbored proviral DNA, but also transferred virus to 
CD4+ T cells in co-culture [100,114,115]. HIV-1 isolates that used both R5 
and X4 infected human pDCs productively in vitro, although R5-tropic 
viruses tended to replicate more efficiently [116–118]. In whole PBMC cul-
tures infected with R5-using strains, pDCs had higher proviral loads than 
CD4+ T cells, which suggests that pDCs are preferentially infected [119].

Similar to what has been observed in HIV, pDC depletion has been 
demonstrated during acute and chronic SIV infection of RMs, pig-tailed, 
and cynomolgus macaques [56,120,121], but not nonpathogenic host spe-
cies of SIV such as SMs and AGMs [122–124]. Interestingly, studies of 
acute pathogenic SIV infection in macaques have demonstrated a tran-
sient increase of pDCs in peripheral blood after rapid egress from the 
bone marrow, followed by depletion of circulating pDCs and accumula-
tion of apoptotic pDCs in lymph nodes [57,120]. Furthermore, recent evi-
dence from multiple laboratories has shown that pDCs are not necessarily 
depleted during pathogenic SIV infection, but rather, accumulate in large 
numbers in the GI tract [124–126]. Of note, this phenomenon appears to be 
absent in nonpathogenic SIV infections.

Natural Killer Cells

Natural killer (NK) cells are generally thought of as the primary effec-
tor cells of the innate immune system. Although NK cells are prototypi-
cally thought of as cytotoxic cells, in which they are among the first cells 
to intersect pathogens and eliminate neoplastic cells, they also have more 
recently been shown to have significant homeostatic and regulatory func-
tions [127–132]. In humans, two subsets of NK cells predominate [129]. 
The dominant subset in peripheral blood is CD16+CD56dim, which pri-
marily mediates cytotoxic activity and secretes relatively little IFN-γ. In 
contrast, a distinct subset of CD16−/lowCD56hi NK cells displays little cyto-
toxic activity but secretes relatively large amounts of IFN-γ. The CD56hi 
subset also expresses CCR7 and CD62L and is the dominant population 
found in lymph nodes and in tonsillar tissues [133]. Mucosal NK cells have 
also been identified throughout the digestive tract, from the labial and 
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oropharyngeal mucosae to the large and small intestines [132,134–136]. 
Mucosal NK cells are typically CD56+ and can be found both within the 
lamina propria and localized to intraepithelial tissues. Multiple mucosal 
NK cell subpopulations described in both humans and macaque models 
reveal significant diversity, but generally express low levels of cytotoxic 
enzymes such as granzyme and perforin and robust secretion of IFN-γ 
and tumor necrosis factor-α (TNF-α) [132,137–139]. NK cells have also 
been found throughout the female reproductive tract and have a major 
role in placental implantation and modulation of pregnancy [127–132].

Because of the significant interest in NK cell biology in the context 
of tumor biology and infectious diseases, including HIV/SIV, accurate 
definitions of NK cells in animal models, including NHPs, are of criti-
cal importance. Recent studies have accurately identified macaque NK 
cells in the peripheral blood as being CD3–CD8αα+NKG2A+ cells, and 
then further divided them into three distinct subpopulations: a major 
NK cell population that is CD16+CD56−/dim and two minor popula-
tions, CD16–/dimCD56hi and CD16–CD56–. A subsequent publication by 
another group validated this definition of macaque NK cells and demon-
strated that it applies to SMs [140]. The CD56/CD16 functional profiles 
found in human NK cells seem to be analogous in NHPs, but interest-
ingly, whereas CD16+ NK cells predominate in peripheral blood, most 
NK cells in tissues are CD56+ or DN.

NK cells have long been shown to inhibit HIV replication in in vitro 
cultures with β-chemokine-dependent inhibition and NKG2D ligand-
mediated killing as a dominant mechanism [141]. Interestingly, acute 
HIV disease is associated with expansion of the CD56dimCD16+ NK cell 
subsets in humans, which suggests a virus-driven increase in cytolytic 
activity [142], and long-term nonprogressors have increased NK cell 
cytotoxicity compared with viremic individuals [143]. With the advent 
of more precise molecular profiling, it has recently been shown that 
KIR3DS1 and its putative ligand HLA-B Bw4-80I are also associated with 
slower disease progression, and the interaction of the two molecules 
leads to inhibition of HIV-1 replication in vitro [144].

A number of studies suggest that NK cells can help mediate control of 
SIV infection. NK cells have been shown to readily lyse SIV-infected T cells 
or cells pulsed with SIV [145]. Acute infection with SIVmac251 induces 
activation of macaque NK cells, reflected by the up-regulation of CD69 
expression and increased lysis of susceptible K562 cells [146]. Longitudinal 
studies following SIV infection demonstrate that early NK cell responses 
can lead to long-term virus control in RMs, as well as in the natural host 
species, SMs and AGMs [140,147]. Mathematical models suggest that NK 
cells can modulate SIV replication and disease outcome in SMs, but not in 
RMs [148]. During SIV infection, NK cells in the mucosa up-regulate cyto-
toxic functions, and an overall increase in mucosal homing of NK cells is 
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evident [138,139,149]. In pig-tailed macaques infected with SIV, an inverse  
association between the magnitude of the NK cell response and the proba-
bility of development of neuro-AIDS was observed [145]. Macaque 
studies have thus far yielded conflicting results on the role of Killer cell  
immunoglobulin-like receptors (KIRs) in controlling SIV infection, with 
some studies suggesting positive control in the presence of cognate ligands 
[150,151]; others have suggested that KIRs are related to loss of control of 
SIV replication [152]. Although imperfect, macaque models have allowed 
for partial depletion of NK cells in vivo. Depletion of NK cells using a 
JAK3 inhibitor resulted in transient increases in viral loads, which sug-
gests that there may be some role for NK cells in regulating viral control 
[153]. However, anti-CD16 depletion [154,155] showed no effect on early 
infection, but these studies may have been limited by inadequate deple-
tion in tissues and a lack of effect on non-CD16 NK cell subpopulations.

Although NK cells generally exert their functions, either cytolytic or 
regulatory, directly on target cells, they can also cooperate with the adap-
tive immune system. Antibody-dependent cell-mediated cytotoxicity 
(ADCC) responses develop within the first few weeks postinfection [156] 
and are thought typically to be exerted by NK cells, but can also involve 
neutrophils. ADCC activity has been associated with delayed progres-
sion to AIDS in SIV-infected macaques [157], involved in the efficacy of 
live attenuated SIV vaccines [158], and with reducing viral loads in vari-
ous nonreplicating vaccine modalities [159–161], including the RV144 
HIV vaccine trial [162,163]. Anti-HIV ADCC antibodies have also been 
observed in highly exposed seronegative individuals [164], and are associ-
ated with the control of virus replication in HIV elite controllers and slow 
progressors [165,166].

Th17 Cells in HIV/SIV Infection

Another prominent CD4+ subset in the mucosa that is profoundly 
affected by HIV and SIV infection are Th17 cells [167,168]. The Th17 subset 
represents an independent lineage from other Th cell populations in both 
function (high production of IL17A, IL17F IL22, IL21, and IL26) and differ-
entiation (induced by the RORγτ transcription factor). Although they are 
rare in the periphery, Th17 cells are highly enriched in the lamina propria 
(LP) [168,169]. Th17 cells function to coordinate innate immunity against 
bacterial and fungal properties by regulating granulopoiesis, recruitment 
of neutrophils, and induction of antimicrobial peptides [170]. Th17 lym-
phocytes are also integral to maintenance of an intact epithelial barrier 
via secretion of IL22170. Interleukin-22 acts on epithelial and other non-
hematopoietic cells to promote differentiation and proliferation, and trig-
gers production of β-defensins, S100 family proteins, RegIIIγ, and other 
antimicrobial compounds [167,170,171]. During HIV and pathogenic SIV 
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infection [172,173], Th17 are depleted from the mucosa but are maintained 
in natural hosts such as SMs. HIV-infected long-term non-progressors 
also maintain higher Th17 levels than patients with progressive disease. 
The loss of Th17 cells and other IL17-producing cell types such as innate 
lymphoid cells (ILCs) [60], and CD8+ IL17 cells [174], also occurs during 
pathogenic infection. In 2006, a seminal work by Brenchley and Douek 
and colleagues showed that during pathogenic HIV and SIV infections, 
a significant amount of LPS and other microbial byproducts could be 
detected in the plasma [175]. This process, which they termed microbial 
translocation (MT) (described in greater detail subsequently), was argued 
to be a natural sequelae of the massive CD4+ T-cell depletion and dis-
ruption of lymphoid architecture observed in the mucosa, and could be a 
significant source of the systemic immune activation observed in HIV and 
SIV infection. Later, Raffatellu et al. [172] demonstrated that the loss of 
Th17 cells was associated with translocation of Salmonella in SIV-infected 
macaques, providing strong evidence linking Th17 loss with breakdown 
of the epithelial barrier, a role that seems logical considering their role in 
IL22 production [172]. Providing another link between the loss of Th17 
cells and SIV pathogenesis was the demonstration that whereas Th17 are 
depleted from SIV-infected macaques, they are maintained in infected, 
nonpathogenic species such as SMs [173].

The mechanism by which Th17 cells are depleted is an area of active 
investigation. Although it has been reported that Th17 can be efficiently 
infected in vitro [176], they are not preferentially infected in vivo [173]. 
Furthermore, that other cells capable of secreting IL17 that do not bear 
CD4 are also depleted from the mucosa during SIV infection suggests a 
mechanism independent of direct infection of IL17-producing cells. One 
likely mechanism may be the loss of IL21-producing cells, because the 
depletion of IL21+CD4+ T cells correlates with the loss of Th17 cells [177], 
and exogenously given IL21 attenuates the loss of Th17 cells during SIV 
infection [178]. An alternative, overlapping mechanism, may be due to 
the dysregulated metabolism by activated DCs and APCs expressing the 
indoleamine 2,3-dioxygenase (IDO1) enzyme responsible for the catabo-
lism of tryptophan. IDO1 activity and its catabolites inversely correlate 
with Th17 levels in HIV-infected individuals [179].

Innate Lymphoid Cells

Recently, a subpopulation of mucosae-restricted cells that bear features 
similar to both NK cells, Th17 and Th22 cells, has been identified in mice, 
humans, and RMs [139,180–186]. These cells have been termed ILCs and 
are partially identifiable by the high expression of NKp44; they are pre-
dominately found in mucosa-associated lymphoid tissues, including all 
components of the GI tract, including gut-draining lymph nodes, tonsils, 
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and lungs. ILCs express high levels of the Th17 cell transcription factor 
RORγt and share a phylogenetic lineage with lymphoid tissue-inducing 
cells (LTis) [187], but are generally non-cytotoxic and secrete large quanti-
ties of IL17, IL22, IL26, and CCL6. Unfortunately, due to limited access 
to mucosal tissues in humans, ILCs have been problematic to study and 
their functional niche in primates is unclear. This caveat has been par-
tially alleviated by the more recent description of this cell type in non-
human primates by multiple groups [139,188,189]. Interestingly, during 
SIV infection ILCs are massively depleted in number and have a signifi-
cantly altered functional repertoire. Furthermore, loss of ILCs negatively 
correlates with breaches in the gut epithelia during chronic SIV infection, 
suggesting they may be necessary for the maintenance of gut homeosta-
sis [60]. The link is likely to be functionally related given the prominent 
roles IL-17 and IL-22 play in the regulation of gut integrity. Although the 
mechanism of ILC suppression during SIV infection is not entirely clear, it 
appears to be partially linked to increases in soluble inflammatory media-
tors in the GI tract and an accumulation of indoleamine 2,3-dioxygenase 1  
(IDO1) catabolites [139].

PHYSICAL AND MUCOSAL IMMUNE BARRIERS IN SIV 
INFECTION

Innate Physical Nonimmune Barriers in HIV/SIV Infection

In general, the rate of HIV/SIV transmission in the absence of vaccines 
is relatively low, partially because of low virus infectivity and sufficient 
innate immune responses. However, although most transmission events 
occur at vaginal or rectal mucosal surfaces, the role that physical barri-
ers have in these tissues in blocking transmission has been traditionally 
ignored. Empirical evidence suggests that physical barriers may limit 
many transmission events because intravenous infection (where such bar-
riers are obviously absent) has significantly higher rates of transmission 
compared with mucosal HIV infection [190]. Furthermore, intravenous 
(IV) infections characteristically have greater numbers of viral variants, 
with as many as 16 founder viruses that have been observed in samples 
from HIV-1–infected intravenous drug users. By comparison, vaginal 
transmission is typically characterized by one to three founder popula-
tions and rectal transmission, both experimentally and in cohorts of men 
who have sex with men (MSM), has a greater number of founder virus 
populations than vaginal transmission, but fewer than intravenous trans-
mission [191–194]. Finally, although founder virus populations have yet 
to be enumerated in cases of oral HIV transmission, this route of infec-
tion is generally thought to be inefficient. These data detailing the relative 
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success rates of virus transmission by various routes offer clues about the 
substantial role that physical barriers have in preventing HIV infection.

During mucosal transmission of HIV/SIV, infection likely involves one 
of four mechanisms: (1) direct infection of epithelial cells; (2) transcytosis 
through epithelial cells; (3) transmigration of infected cells; or (4) direct 
virus entry through breaches in the epithelial layer. All of these methods 
feature a role for the mucosal epithelia. Interestingly, HIV has evolved to 
disrupt mucosal epithelia even in the absence of infection [195], which 
further suggests that these physical barriers put selection pressures on 
the virus. Thus, we can ask which characteristics of the various epithe-
lia may be involved in delaying spread of virus or blocking infection 
entirely. Most HIV transmissions occur across the vaginal epithelia, but 
transmission rates are higher across the rectal mucosa. The mean thick-
ness of human epithelia in rectum is 24.6 mm, compared with vaginal 
epithelia, with a mean thickness of 215.5 mm, a 10-fold difference [196]; 
and the rectal mucosa is far more vulnerable to epithelial breaches dur-
ing intercourse. Furthermore, most of the vaginal epithelia are stratified 
squamous arranged in layers compared with single-layer columnar epi-
thelium in the rectal mucosa. However, the thick vaginal epithelial layer 
thins during the luteal phase of the menstrual cycle as a result of increased 
progesterone levels, and elevated infection rates are observed during this 
period. In fact, experimentally induced thinning of the vaginal epithelia 
in macaque models using Depo-Provera treatment is commonly used to 
increase infection efficacy [197].

Intestinal epithelia are generally thought of as simply providing a 
physical barrier; however, they have an active role in mucosal immunity 
by production of a broad array of mucins, inflammatory cytokines, and 
chemokines [198], including β-chemokines capable of blocking HIV/SIV 
infection directly. Increased elasticity of vaginal mucus and a low pH in 
the follicular phase are also thought to prevent transmission, and dur-
ing the luteal phase, mucus thinning and increase in the pH correlate 
with increased transmission rates [197]. Cervicovaginal mucus inhibits  
HIV diffusion and penetration, and provides another physical barrier to 
infection [199].

Finally, oral HIV/SIV infection occurs at low rates during mother-to-
child transmission [200], but it is debatable whether sexual oral trans-
mission occurs at a detectable frequency. Regardless, oral transmission 
is inefficient compared with other routes of transmission. This may be 
partly because of particularly strong physical barriers in the oral mucosa, 
including the thickest epithelial layer among mucosal surfaces, with a 
mean thickness of 263 mm [196]. The oral mucosa is also bathed in saliva, 
which contains multiple salivary proteases and amylases that are known 
to inhibit virus infectivity, as well as mucins that can physically trap virus 
particles [201].
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Mucosal Immunity

The epithelial lining that includes luminal mucus layers provides a con-
siderable physical and biochemical barrier to microbes. The chemical barri-
ers include secretory immunoglobulin A (IgA), defensins, RegIII proteins, 
and other soluble factors [202]. Underlying and within the epithelial lining 
is a complex mucosal immune system composed of its own specialized 
structures and diverse immunological subsets [203]. The mucosal immune 
system faces a unique challenge in the constant barrage of foreign antigens 
represented by the microbiota present in the intestinal lumen. The mucosal 
compartment is a vibrantly dynamic system in which each of the three 
major components (the epithelial barrier, the mucosal immune structure 
including the cells that form the structure, and commensal microbiota) all 
actively contribute to the development and homeostasis of the system as a 
whole. Perturbations to one part of the system, as occurs during HIV/SIV 
infection, can cause significant disruption of the others [171].

Structurally, the mucosal immune system has several features analo-
gous to the classical immune system. Activation of adaptive responses is 
initiated in inductive sites such as mesenteric LNs, Peyer patches (PP), 
and isolated lymphoid follicles (ILFs) [203]. A cardinal feature of the PP 
and ILF that distinguishes them from nonmucosal LNs is the encapsula-
tion by specialized follicle-associated epithelium that contains pinocytotic 
M cells, which are responsible for sampling the antigenic content of the 
intestinal lumen. After presentation to T and B cells, they migrate to muco-
sal effector sites such as the LP and the basal layer underlying the gut epi-
thelium, and within the intra-epithelium lymphocyte compartment (IEL).

The mucosal immune system is also enriched in several unique cellular 
subsets that are found only minimally in the periphery. Immunoglobu-
lin A–producing B cells and plasma cells reside in the LP and produce 
polymeric IgA, which are transported to the intestinal lumen and con-
tribute to the soluble immunity provided by the extra-epithelial mucus 
layer. Within the IEL, most T cells are CD8+ as either CD8αβ heterodi-
mers or CD8αα homodimers [169,203,204]. The IEL CD8+ compartment 
is split into a TCRαβ subset that resembles conventional CD8+ T cells, but 
is enriched for cells expressing TCRγδ chains [203]. The frequency of γδ T  
cells is about 4% of the T-cell population in the peripheral blood, but can 
comprise up to 40–50% of the mucosal T cells [171]. Gamma-delta T cells 
express TLR1 and TLR2 and produce chemokines that recruit other effec-
tor cells during bacterial infections and can make IL17 [205]. In humans 
and NHPs, these cells express the TCR Vδ1 or Vδ2, and the Vδ1 population 
expands, but their ability to produce IL17 is impaired [205,206].

In contrast to the IEL, most T cells in the lamina propria express  
CD4 [169]. Lamina propria–resident CD4+ T cells are predominantly 
activated and express CCR5, which makes them efficient targets for 
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HIV/SIV infection [167,207]. Whereas the CD4+ compartment is het-
erogeneous, there are three predominant populations: Th1, Th17, and 
CD25+ Treg cells [169]. The fate of mucosal T cells during HIV and 
SIV infection has been well studied (reviewed in Ref. [208]) and they 
undergo a rapid and massive depletion [209–211] that is largely refrac-
tory to reconstitution during antiretroviral (ART) administration.

INNATE IMMUNITY AS A DRIVER OF 
IMMUNOPATHOGENESIS IN HIV/SIV INFECTION

Persistent Activation of Bacterial PRRs Induced by Microbial 
Translocation

As described earlier, disease progression in HIV infection has been dem-
onstrated to be intimately linked to persistent activation of the immune 
system manifested as elevated rates of T-cell turnover [212], expression of 
activation markers on T and B lymphocytes [213], and elevated plasma 
levels of proinflammatory cytokines [214], among others. The cause of 
immune activation is likely multifactorial, and one of the widely accepted 
hypotheses is that the persistence of virus provides unabated stimuli for 
activation of both the innate and adaptive immune systems [122]. How-
ever, immune activation is not completely eradicated in HIV-infected 
patients who have effectively suppressed virus after the institution of 
ART [215]. The residual immune activation in virologic responders has 
been argued to result from low levels of viral replication, but it could also 
be caused by alternative mechanisms of immune activation that are inde-
pendent of viral replication [216]. In the late 1990s and early 2000s, sev-
eral groups demonstrated that HIV and SIV infection caused a rapid and 
near total depletion of CD4+ T cells in the GI tract [209–211,217,218]. These 
findings led Brenchley and Douek to propose a model in which the initial 
insult to the mucosal lymphocyte compartment during primary infection 
established a permanent perturbation to the host immune system [208]. 
Shortly thereafter, the same group demonstrated that elevated levels of 
bacterial structural components such as lipopolysaccharide (LPS) could 
be detected in the plasma of HIV-infected patients and SIV-infected RMs 
in the absence of overt bacteremia, and correlated with lymphocyte mark-
ers of immune activation [175]. These findings provided a mechanism 
by which immunological damage inflicted during early infection could 
translate into chronic immune activation. These views led to coining of the 
term “microbial translocation,” and the model postulates that depletion 
of gut CD4+ T cells results in disruption of the epithelial barrier structures 
of the GI tract that allows for penetrance of microbial byproducts to enter 
the systemic circulation, where they provide continual stimuli for innate 
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pattern recognition receptors [167,219]. Evidence of elevated microbial  
components in plasma in HIV infection has since been replicated by  
several groups [220–223] Data from the NHP model provided direct  
visualization of LPS in breaches of the mucosal barrier in SIV-infected 
RMs [224], and the absence of MT in natural host species has helped link 
MT to pathogenesis [175].

Studies of MT in HIV infection have involved the detection and quanti-
tation of plasma levels of LPS or sCD14 using appropriate assay systems; 
however, other models have demonstrated that translocation of several 
microbial byproducts capable of activating multiple PRRs also occurs, 
including peptidoglycan, lipoteichoic acid, flagellin, and CpG motifs in 
bacterial DNA. Recently, expansion of several viral species has been dem-
onstrated to occur in the mucosa of SIV-infected macaques, but it is not 
yet known whether these viruses can be detected systemically [225]. The 
translocation of these products correlates with elevated levels of the pro-
inflammatory cytokines IL6, IL8, and IFN-α. Moreover, IFN-α expression 
co-localizes with bacterial proteins in the GI tract of SIV-infected RMs. In 
this manner, microbial translocation may be an alternate mechanism of 
pathogenic stimulation of viral and bacterial innate pathways during HIV 
infection.

Plasmacytoid Dendritic Cell Activation and Chronic Production 
of Type I Interferon

Most chronic viral infections are efficiently controlled by the immune 
system and remain largely latent except for minor bursts of viral replica-
tion [226]. HIV and SIV differ from most chronic viral infections in that in 
the absence of ART therapy, HIV and SIV replicate at high levels (∼105 RNA 
copies/ml plasma) in most subjects for life. The persistent presence of viral 
particles provides perpetual stimuli for both innate pattern recognition 
receptors and antigen-specific cells, and is considered one of the primary 
sources for the chronic immune activation observed in pathogenic HIV/SIV 
infection. Unabated antigen stimulation as a cause of immune activation 
and CD4+ T-cell depletion have been extensively described [227]. In recent 
years, more attention has been directed toward the effects that chronic virus 
replication has on the innate system. In particular, the role of activated 
pDCs and subsequent IFN-α production as a factor in driving pathogen-
esis has garnered significant interest [228]. As described earlier, exposure of 
HIV particles to pDCs initiates high levels of IFN-α and inflammatory cyto-
kine production via the TLR7 and TLR9 receptors and the activation of the 
transcription factor IRF7. Several lines of in vitro evidence have implicated 
pDCs and/or IFN-α production in HIV pathogenesis: (1) pDCs activated 
by viral particles induce apoptosis of CD4+ T-cell through the up-regulation 
of TNF-related apoptosis inducing ligand (TRAIL/TNFSF10) [229,230], and 
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(2) HIV-derived RNA treatment of pDCs stimulates the production of 
IDO, which skews T-cell maturation toward Treg development, which 
typically suppresses antiviral immunity. An overview of models of the 
contribution of pDCs to chronic immune activation is summarized in 
Figure 8.1. In pathogenically infected rhesus, cynomolgus, or pig-tailed 
macaques, SIV infection initiates and sustains the chronic induction of 
interferon-stimulated gene (ISG) expression, which lasts indefinitely 
[231–235]. Similarly, persistent ISG expression is detected in HIV-infected 
humans [236,237]. In contrast, natural hosts of SIV that avoid AIDS, such 
as SMs and AGMs, demonstrate a transient ISG induction that disap-
pears during chronic infection [232–235]. pDCs have been reported to be 
depleted from the blood of SIV-infected RMs [238]; subsequent studies 
demonstrated that they relocate to the mucosa in large numbers rapidly 
after infection [124,125,239] and co-localize with strong ISG expression. 

FIGURE 8.1 Current hypotheses of pDC-driven immune activation in HIV/SIV infection. 
Activation of pDCs by HIV/SIV leads to their activation and secretion of high levels of IFNα 
and -β and other inflammatory cytokines. Plasmacytoid dendritic cell activation by HIV or 
TLR7/8 ligands up-regulates surface expression of the TRAIL molecule, and TRAIL + pDCs 
are capable of driving apoptosis in CD4+ T-cell lines by TRAIL-dependent pathways. Acti-
vated pDCs produce high levels of IDO that influence CD4+ T-cell maturation toward a Treg 
phenotype and inhibit classical CD4+ T-cell responses. Finally, in early SIV infection, pDCs 
migrate to the vaginal and rectal mucosa, where they are associated with expression of ISGs 
and recruitment of CD4+ T cells by chemokines such as MIP3α. (See color plate at the back 
of the book.)
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Plasmacytoid dendritic cells do not accumulate in the gut of SIV-infected 
SMs [124]. The absence of long-term ISG expression and pDC re-local-
ization in species that resist SIV-disease suggests that aberrant activa-
tion of pDC contributes to pathogenesis in HIV/SIV-infected humans 
and macaques, respectively. The molecular mechanisms underlying the 
divergence between natural hosts and pathogenic species are currently 
unknown: A previous study reported that IFN-α production by SM pDCs 
was defective because of species-specific mutations in IRF7 [55]; however,  
those observations were later demonstrated to be largely the result of 
technical errors and sequencing artifact [232]. Further elucidation of dif-
ferences in the innate signaling pathways between pathogenic and dis-
ease-resistant model species will likely provide valuable insight into the 
molecular basis of pathogenesis.

IN VIVO MANIPULATION OF THE INNATE IMMUNE 
SYSTEM IN NHPs

Over recent years, a number of studies have attempted to manipulate 
the innate system in NHPs, to affect SIV transmission rates during exper-
imental vaccine studies or alter disease progression. The goals of these 
studies have largely fallen into two categories: (1) to understand the role 
of innate signaling as a cause of chronic pathogenic immune activation 
in SIV infection, and (2) to test the efficacy of TLR ligands in enhancing 
protection from SIV challenge.

In vivo Pathogenesis Studies

In what are now considered classic studies, immune activation has 
been demonstrated to be a stronger predictor of mortality and disease pro-
gression in HIV infection than CD4 counts and/or other markers [240]. 
These have been complemented by comparative studies of SIV infection 
in pathogenic or nonpathogenic infection [241]. Rhesus and pig-tailed 
macaques, which both ultimately develop disease during SIV infection, 
show widespread innate signaling and interferon responses well into 
chronic infection; in contrast, nonpathogenic species such as AGMs and 
SMs rapidly control this response to pre-infection levels.

Two primary pathways have been implicated as the most likely can-
didates for pathogenic innate signaling: (1) bacterial ligands and associ-
ated TLR receptors (TLR2 and TLR4), and (2) unabated stimulation of 
innate receptors for viral PAMPs (TLR3, TLR7, TLR9, and TLR9) provided 
by persistent replication of HIV/SIV. The rationale for bacterial signal-
ing stems from a seminal study in which HIV-infected patients and SIV-
infected macaques were demonstrated to have elevated plasma levels of 
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LPS owing to increased infiltration of micro-particles from gut-resident 
bacteria [175]. This phenomena, referred to as microbial translocation,  
is thought to be the natural sequelae of the massive depletion of muco-
sal CD4+ T cells [218], Th17 cells [173], and CD103+ mucosal dendritic  
cells [60], and subsequent disruption to mucosal structural integrity 
[224]. In a logical progression from the microbial translocation model, 
two studies administered LPS to nonpathogenic SIV+ AGMs to deter-
mine the potential for inducing immune activation in a manner similar 
to that seen in macaques. A single bolus injection of LPS resulted in 
elevation of activation markers on CD4+ T cells that lasted several days 
[242]. A follow-up study using multiple doses showed that exogenous 
LPS could also induce elevated levels of coagulation markers similar to 
those observed in pathogenic SIV and HIV infections [243].

Other facets of the innate system that have been considered a likely 
candidate for driving host immune activation are viral PRRs engaged by 
the persistent stimuli provided by HIV/SIV replication. The persistent 
interferon signaling that is observed in humans and pathogenic hosts, but 
not nonpathogenic hosts, provided some of the rationale for this hypoth-
esis [232–235,244]. Prolonged administration of viral TLRs in mice results 
in lymphopenia and degradation of lymphoid architecture [245]. To test 
the role of innate signaling and resultant chronic interferon in pathogen-
esis, Vanderford and colleagues [246] administered recombinant IFN-α2 
to SIV-infected SMs that were otherwise clinically benign. Although the 
IFN-α elicited transient increases in activated CD8+ T cells, this activation 
was not sustained, and no CD4+ T-cell depletion was observed in blood,  
lymph node, or mucosa. Recently, Kader and colleagues performed the 
reciprocal experiment, attempting to block TLR7 and TLR9 signaling 
using a synthetic antagonist in SIV-infected RMs [247]. No decrease 
was observed in CD4+ or CD8+ T-cell activation in animals receiving 
blockade compared with saline controls. However, blockade was also 
unable to inhibit the expression of interferon-stimulated genes in vivo, 
which made it difficult to interpret the link between ISGs and T-cell 
activation.

As yet, modulation of the innate system in vivo has been unable to 
unequivocally reverse SIV-related immune activation in macaques. 
Attempts to break the nonpathogenic phenotype maintained by natural 
hosts using in vivo manipulation of the innate system have resulted in 
relatively modest increases in activation but have not induced widespread 
dysregulation of the immune system observed in pathogenic hosts. This 
likely reflects the considerable technical difficulty in performing in vivo 
interventions in NHPs, and that the mechanisms of immunopathology (or 
nonpathogenesis) are multifactorial and difficult to target with a single 
modality. Nevertheless, these studies provide a technical framework for 
future studies.
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Harnessing of the Innate System as Adjuvants in HIV Vaccines

Rationale of NHPs in SIV Challenge Studies
Many of the most effective vaccines are live attenuated strains of the 

pathogen. To date, live attenuated SIV strains have demonstrated by far 
the highest efficacy of experimental vaccines against SIV in their ability 
to protect from acquisition in challenge studies. Although safety issues 
preclude the use of live attenuated HIV as a human vaccine, the supe-
rior protection afforded by whole virus has fueled inquiry aimed at defin-
ing the underlying immunological mechanisms responsible. In contrast, 
subunit vaccines targeting individual viral particles or combinations of 
them are typically much poorer immunogens on their own. Improvement 
in vaccination efficacy has been shown to be enhanced through the use 
of adjuvants, which for the better part of the century have chiefly been 
accomplished with the use of formulations of aluminum salts or oil–water 
emulsions [248]. However, over the past decade, the study of vaccinol-
ogy as a science has largely shifted from an empiric science to that of 
reductionist immunology and continues to evolve, now employing high-
throughput “omics” approaches [249]. Whereas the concept has long been 
observed that nonself signals provided by live attenuated organisms pro-
vide a robust activation signal, the demonstration that individual TLR 
ligands could polarize T-cell responses toward Th1 or Th2 activity [250] 
or target specific DC subtypes [251,252] suggests that manipulation of 
the innate immune system could result in fine-tuning vaccine responses. 
Since the early 2000s, much progress has been made in understanding 
the effect of adjuvants composed of bacterial and viral TLR ligands and 
how they affect vaccine responses; the section that follows reviews data 
derived from TLR adjuvants used in NHP/SIV vaccine studies.

Non-human Primates and Adjuvant Development for HIV 
Vaccines

RMs have been the workhorse animal model for testing and evaluating 
candidate HIV vaccines, primarily owing to their ability to be infected 
by SIV and experience disease in a manner highly parallel to HIV infec-
tion of humans [1,253]. However, the use of NHPs in vaccine preclinical 
development is due to more than just their ability to be infected by SIV. 
Most adjuvants involve stimulation of TLRs or other PRRs in DCs, yet 
there are significant differences in the biology of DC populations between 
rodents and primates, as well the cellular distribution of TLRs [248]. Com-
pared with mice, NHPs share a much higher degree of similarity with 
humans in both their DC populations, and are much more concordant in 
their cellular expression of PRRs and response to ligands [254]. In addi-
tion, the typical administration of vaccines in mice is via intraperitoneal 
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or intravenous routes, rather than subcutaneous or intramuscular routes 
as in humans and primates, which leads to adjuvants/vaccines that are 
being presented to differing subsets of DCs [248]. For these reasons, adju-
vant immunogenicity data derived in RMs offer a more direct translation 
to human studies, and subsequently increased use of NHPs in studies of 
non-SIV vaccines in recent years.

Early work in mice demonstrated that injection of either the TLR7/8 
agonist R848 or TLR9 ligand CpG oligodeoxynucleotides were capable 
of eliciting high levels of cytokine production and phenotypic matura-
tion of conventional DCs, but that R848 was a poor adjuvant for raising 
antigen-specific CD4+ Th1 and CD8+ T-cell activity toward an HIV-Gag 
protein; however, these responses could be improved by direct conju-
gation of the Gag antigen to a TLR7/8 analogue [255,256]. A parallel 
study was performed in RMs and demonstrated that a TLR7/8 ligand-
Gag protein conjugate significantly enhanced Gag-specific CD4+ and 
CD8+ T cells cytokine production (IL2, TNF-α, and IFN-γ) and included 
enhancement of antibody avidity [257]. Combination of TLR7/8 or TLR9 
ligand-Gag conjugates with additional oil-based adjuvant, Montanide 
ISA 51, also led to enhanced cytokine release and a higher degree of 
polyfunctional cytokine responses in Gag-specific CD4 and CD8 com-
pared with Gag + Montanide alone, and these enhancements were also 
observed after boost with adenoviral vectors expressing Gag. Direct 
comparison of TLR ligand adjuvants using the Gag-protein prime/Ad-
Gag boost system demonstrated that Gag + TLR3 ligand followed by 
Gag + TLR7/8 and Gag + TLR9 ligands were most effective at inducing 
Gag-specific CD4+ and CD8+ T cells [258]. Although none of the ligands 
was able to augment resistance to SIV challenge, animals receiving TLR 
adjuvants had reduced viremia after infection [258]. Kwissa and col-
leagues observed a similar effect for TLR9 and TLR7/8 adjuvants for 
improving responses to a vaccine regimen composed of DNA prime and 
modified vaccinia virus Ankara boost [259].

The ability of innate adjuvants to enhance the immunogenicity of vac-
cines is becoming well established. However, basic experiments in mice 
demonstrate that the combinations of TLR ligands together in a single 
adjuvant formulation could have synergistic effects and improve immu-
nogenicity even further [248]. This principle was driven home dramati-
cally by studies of the yellow fever vaccine, one of the most efficacious 
vaccines developed, which was demonstrated to activate TLR2, TLR7, 
TLR8, and TLR9 [260]. Following up on these insights, Kasturi and col-
leagues developed a candidate composite TLR adjuvant of nanoparticles 
that approximate viruses in terms of size and carry both a TLR4 ligand 
(MPL) and TLR7 ligand (R837 in mice and R848 in monkeys) that enabled 
long-lived antibodies against influenza in both mice and RMs [261]. This 
adjuvant regimen is currently in preclinical studies to test its efficacy 
against SIV challenge.
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Innate immune system activating ligands have demonstrated a robust 
ability to enhance the immunogenicity of vaccines, and their application 
will continue to be intensely studied. However, there have been instances 
in which innate stimuli have been demonstrated to be detrimental to host 
immune responses against SIV challenge, owing to their ability to recruit 
potential target cells to the site of infection. Intravaginal application of 
either CpG oligodeoxynucleotides (TLR9 ligand) or imiquimod (TLR7/8 
ligand) induced a proinflammatory milieu and cellular infiltrate of CD4+ 
T cells and other immune cells in the cervicovaginal mucosa. Subsequent 
high-dose challenge with SIV did not lead to protection; in fact, animals 
receiving TLR9 or TLR7 ligands developed higher set-point viremia com-
pared with control animals [262]. Conversely, intravaginal treatment of 
monkeys with glycerol monolaurate, an antimicrobial that suppresses 
production of inflammatory cytokines and chemokines, suppressed pro-
duction of CCL20/MIP3A and recruitment of CD4+ T cells; and most 
remarkably, GML treatment led to protection from SIV transmission when 
exposed to an intravaginal high-dose challenge [263]. These studies dem-
onstrate that although innate immune system activating ligands have a 
robust capacity to enhance the immunogenicity, immune functionality, 
and persistence of responses induced by a vaccine, they also have the 
potential to increase target cell recruitment and aid infection. Although 
the innate immune responses induced by adjuvants are expected to wane 
shortly after vaccination and not affect target cell recruitment, there is a 
paucity of data on the long-term effects of adjuvants.

CONCLUSIONS

The early 2000s saw an explosion in our understanding of the innate 
immune system at the cellular and molecular levels. The description of the 
innate system provided a theoretical framework for understanding how 
HIV and SIV cause chronic immune activation. In more recent years, sev-
eral groups have translated murine studies using innate immune system 
activating ligands as adjuvants to empirically demonstrate that modula-
tion of the innate immune system can enhance vaccine immunogenicity 
in primates and, in some cases, improved protective efficacy against SIV 
challenge. Future research efforts aimed at optimizing TLR combinations 
and defining the effect on target cells will be needed to maximize the pro-
tective potential of vaccines and move toward clinical trials. Comparative 
studies of SIV infection between species that develop AIDS and natural 
hosts have been informative in highlighting differences in the innate 
immune system that are important for pathogenesis. Finally, a handful 
of studies have begun to modulate the innate system in vivo in monkey 
models, and these will become increasingly important for the develop-
ment of therapeutics capable of ameliorating disease.
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