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Abstract

The purpose of the study was to weigh the community burden of chikungunya determinants
on Reunion island. Risk factors were investigated within a subset of 2101 adult persons from a
population-based cross-sectional serosurvey, using Poisson regression models for dichotom-
ous outcomes. Design-based risk ratios and population attributable fractions (PAF) were gen-
erated distinguishing individual and contextual (i.e. that affect individuals collectively)
determinants. The disease burden attributable to contextual determinants was twice that of
individual determinants (overall PAF value 89.5% vs. 44.1%). In a model regrouping both cat-
egories of determinants, the independent risk factors were by decreasing PAF values: an inter-
action term between the reporting of a chikungunya history in the neighbourhood and
individual house (PAF 45.9%), a maximal temperature of the month preceding the infection
higher than 28.5 °C (PAF 25.7%), a socio-economically disadvantaged neighbourhood (PAF
19.0%), altitude of dwelling (PAF 13.1%), cumulated rainfalls of the month preceding the
infection higher than 65 mm (PAF 12.6%), occupational inactivity (PAF 11.6%), poor knowl-
edge on chikungunya transmission (PAF 7.3%) and obesity/overweight (PAF 5.2%). Taken
together, these covariates and their underlying causative factors uncovered 80.8% of chikun-
gunya at population level. Our findings lend support to a major role of contextual risk factors
in chikungunya virus outbreaks.

Introduction

Chikungunya virus (CHIKV) is responsible for chikungunya fever (CHIKF), a dengue-like ill-
ness characterised by persistent incapacitating polyarthralgia [1,2]. Between its first description
in Tanzania in the early 50s [3], and its re-emergence in Lamu island (Kenya) in 2004 and
subsequent spread in the Indian ocean in 2005–2006 [4], CHIKF was regarded as a rather
harmless neglected tropical disease limited to developing countries. Since the occurrence of
atypical and severe forms of CHIKF [5–8], and its more recent spread to Europe [9] and to
the Americas [10], CHIKV has increasingly been recognised as a leading threat for public
health, through the global expansion of its mosquito vectors, Aedes (Ae) albopictus
and Ae aegypti.

Between March 2005 and August 2006, Reunion island experienced a major outbreak of
CHIKF [11] due to the circulation of a new genotype of the African variant of the virus,
renamed Indian ocean lineage, together with the permissive adaption of the local competent
vector, Ae albopictus [12]. At the end of the epidemic, a population-based serosurvey high-
lighted a huge penetration of the virus in the community with a burden of ∼266 000 clinical
cases (attack rate: ∼35%) and 300 000 infected persons (prevalence rate: 38.2%) [4,11]. So far,
the reasons why transmission was halted at a prevalence of ∼40% remain to be elicited, as
such a figure contradicts prediction of herd immunity that estimated the protective level at
above 70% [13].
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Indeed, the understanding of the community burden of
CHIKF is a puzzling problem and constitutes a challenge for epi-
demiologists and public health stakeholders aiming to implement
control measures in the event of future outbreaks.

So far, a few population-based cross-sectional serosurveys have
proposed the investigation of CHIKF determinants in distinguish-
ing individual and contextual risk factors [14–17]. None of these
has been able to guide decision-making based on appropriate
public health impact measures such as population attributable
fractions (PAF). With the exception of one study [18], all previous
studies have based identification of CHIKF determinants on logis-
tic regression approach taking prevalence odds ratio, best known
as the odds ratio (OR), as the ‘effect measure’ of interest [19].
These however represent only proxies of the log-binomial
model and prevalence proportion ratio (PPR), the gold standard
method and estimator in cross-sectional studies, because the
OR often tends to overstate the PPR when the outcome is com-
mon [19], and hence the OR is more difficult to interpret (i.e.
the former can be interpreted only in terms of strength of associ-
ation, while the latter is multiplicative and can be interpreted in
terms of multiplying/dividing the prevalence estimates) [20]. In
this context, given the propensity of the OR to overestimate the
PPR [21], we chose the Poisson regression model and the inci-
dence rate ratio (IRR), as two proxies of the log-binomial model
and PPR, respectively. We also used PAF, free of hypotheses on
causation, with the aim of uncovering risk patterns hosting the
determinants of increased CHIKV susceptibility to be investigated
in further study of causal pathways.

The objective of the present study was to weigh the community
burden of CHIKF risk factors using IRR and related PAF.
Determinants were identified to be from primarily individual or
contextual origin, and investigated separately before being pooled.
This purpose was chosen to guide further prioritisation of the
most effective public health interventions for mitigating future
outbreaks, based on amendable determinants.

Methods

The SEROCHIK cross-sectional serosurvey was conducted
between 17 August and 20 October 2006, shortly after the end
of the chikungunya epidemic on Reunion island.

A brief description of the study setting is displayed in
Supplementary Appendix 1.

Survey design and procedures

The number of subjects needed to obtain a representative random
sample of the general population was estimated to be 2640,
assuming 35 ± 2% expected prevalence [4], an α risk of 5%,
20% proportion of refusal or absenteeism and a cluster effect.

The sample was built using a two-level probability sampling
procedure. At level 1, a random draw for households (primary
sampling unit) was carried out. Selection was conducted in six
putative strata defined by the crossed combinations of the dwell-
ing type (individual/collective 2–20 units/collective >20 units) and
size of municipality (⩽10 000/>10 000 inhabitants). Overall, five
strata were obtained after removing an empty stratum. At level
2, following a predefined Kish method [22], the field investigator
randomly assigned one ‘index person’ (the Kish individual) per
household to be interviewed within the selected dwellings. In
accordance, a sampling fraction ranging from 0.071 to 1 was
generated.

To ensure that the sample was representative of the underlying
population, we corrected the sample for age, gender, dwelling and
residence area based on socio-demographic information provided
by the 2006 census data. Thus, a set of weights was used to
increase or decrease the influence of under-/over-represented
groups selected from the source population.

Data collection
Structured questionnaires, administered by 25 field investigators,
aimed at collecting data on demographics, health, knowledge
on transmission and prevention of CHIKF, dwelling and close
environment of residence. These questionnaires are listed in
Supplementary Appendix 2.

Individual characteristics included gender, age, occupation,
chronic disease, body mass index (BMI), four items dedicated
to the knowledge of CHIKV transmission (scored 0–4) and 11
preventive behaviours against Ae albopictus (scored 0–11).

Contextual household variables included the type and altitude of
dwelling, household size, area of residence, recent history of CHIKF
in the neighbourhood and a social deprivation proxy-index charac-
terising the socio-economic status of the municipality at ecological
level.

The construction of this deprivation index is detailed in
Supplementary Appendix 3.

Outcome measure
Each participant consented to a fingertip prick and the outcome
measured was the result (positive or negative) of CHIKV-specific
IgG ELISA serology detected on filter paper-absorbed blood
(Whatman 903® Protein Saver™ Card, Schleicher & Schuell) [11].
The full procedure of blood testing is detailed in Supplementary
Appendix 4.

Additional climate variables
After the geo-referencing of each participant’s address at IRIS (‘Ilots
Regroupés pour l’Information Statistique’) level, the smallest geo-
graphical unit for acquiring aggregated socio-environmental infor-
mation in France, monthly meteorological data gathered from the
21 closest weather stations were obtained to complete the question-
naire data, using Margouill@ website (http://www.margouilla.net).

The climatic parameters considered were ‘cumulated rainfall’,
average, maximal and minimal temperatures, and average solar
radiation. The rationale for choosing these variables is explained
in Supplementary Appendix 5.

For CHIKV-infected (CHIK+) symptomatic subjects, we
inputted the average values of the closest station from the data
recorded in the 2 months preceding the first CHIKF case included
in the IRIS. For CHIKV-naïve (CHIK−) individuals, we used the
average values of the closest station between the first and the last
cases reported in the same IRIS.

Statistical analysis

Given the subjective nature and need for intelligibility of some
individual variables, comparison of outcome was restricted to
people aged 15 years or more to ensure reliable data input
based on personal information. First, we examined associations
between CHIKF (design-based seroprevalence weighted by sam-
pling fraction) and both individual and contextual characteristics.
Design-based crude IRR and 95% confidence intervals (CI) were
assessed using χ2 likelihood ratio tests weighted by sampling
fraction.
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Second, we investigated independent risk factors for CHIKF in
a four-step multivariate Poisson regression for dichotomous out-
come, modelling the fixed effects (no random intercept to allow
contextual effects). In the first step, we fitted two distinct full
models with respect to the intrinsic nature of the variables, indi-
vidual or contextual (grouping within households) with all the
relevant covariates found in bivariate analysis. In the ‘individual-
variable’ model, we forced gender and age, potentially associated
with unadjustable determinants to minimise residual confound-
ing. In the second step, we fitted one unique parsimonious,
‘explicative’ model with all the putative risk factors previously
identified using a manual stepwise backward elimination proce-
dure (P value < 0.05 to be retained in the model). All interaction
terms between the variables included in this model were tested
using the Mantel–Haënszel method [23]. In the third step, we
studied the contribution of climate variables. Finally, in the fourth
step, we added the significant climate variables to the precedent
‘explicative’ model. All the covariates within this final ‘decision-
making’ model were set as binary. At each step, we determined
the pseudo-likelihood of the Poisson regression model using a
survey-adjusted Wald test.

For all these analyses, our purpose was to weigh the ‘explicative’
part of each model using the combined adjusted PAF for cross-
sectional data, which were produced from each specific PAF value
(for overall PAF calculations, see Supplementary Appendix 6).
PAF indicates the percentage of cases that would not occur in a
population if the factor was eliminated. Subsequently, we gauged
each key determinant of the final ‘decision-making’ model accor-
ding to its amendable potential, and classified the risk factors into
amendable and non-amendable, if they appeared to be causal.

All the analyseswere performedusing Stata14® (StataCorp. 2015,
College Station, TX, USA) excluding observations with missing
data.

Ethics and funding

The SEROCHIK serosurvey was approved by the ethical commit-
tee for studies with human subjects of Bordeaux (No 2006/47)
and the National Commission for Informatics and Liberty, the

French Data Protection Authority. All participants provided
their informed consent to answer the questionnaire and for
blood collection. Parent or guardian of all child participants pro-
vided informed consent on their behalf.

The study was funded by the National Institute of Health and
Medical Research. The funding source had no role in study
design, data collection, analysis and interpretation. The study
respected the STROBE statement (Checklist in Supplementary
Appendix 7).

Results

Study population

The selection of the study population is presented in Figure 1. Of the
3032 subjects sampled at level 1, 2442 Kish individuals were sur-
veyed by field investigators and 2101 participants aged 15 years or
more were analysed. This sample was representative of the habitat
in terms of areas of residence and altitude of dwelling place.
Beyond these contextual features, it was also representative of indi-
vidual characteristics such as obesity, hypertension, diabetes and
asthma. Of note, our population was shifted towards the over-
representation of females (59.8% vs. 49.3%, P < 0.01), elder people
(⩾ 50 years, 40.1% vs 33.4%, P ⩽ 0.01) and residents of individual
house (78.5% vs 56.4%, P < 0.01) (Table 1).

Individual determinants of chikungunya

The subjects aged 60–69 or 70 years or more, overweight (25⩽
BMI < 30 kg/m2) or obese (BMI⩾ 30 kg/m2), reporting a chronic
disease or no occupation were more likely to be infected
(Supplementary Table S1). Among active people, farm workers
(<10% of the population) were more likely to be infected (P =
0.01). Self-use of repellent sprays or creams (used within more
than half of the population) was protective against CHIKF (P <
0.01). Indoor insecticide users (∼40% of the population) were
slightly protected compared with non-users (P = 0.04).
Paradoxically, infection was more common in subjects reporting
one or more of the following altruistic behaviours aimed at

Fig. 1. Study population. Flow chart of the study population.
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reducing the amount of breeding sites: covering tanks and water
supplies (P = 0.01), putting sand in containers (P = 0.02), pruning
shrubs and cleaning wastes (P < 0.01), removing clutter in the
courtyard (P < 0.01). Other protective behaviours against day-
biting Ae albopictus adult females were not associated with
CHIKF (data not shown). However, when adding 11 of the 16
preventive behaviours in a score, we observed a negative correl-
ation between the reported behaviours and exposure level, the
subjects cumulating 6–11 protective behaviours being the more
likely to be infected (Supplementary Table S1).

Importantly, scoring knowledge of CHIKV transmission by
summing good answers to four key questions revealed higher
risk for the subjects denying Ae albopictus as the main vector.
Interestingly, this score was driven by literacy (P < 0.01), place
of birth (P < 0.01) and marital status (P = 0.02) (Supplementary
Table S2). Knowledge features showed a protective effect
restricted to individuals aged <50 years (data not shown).

Finally, when adjusting eight individual covariates together
(forcing gender but excluding the behaviour score), only the
absence of occupation was associated with CHIKF (adjusted
IRR 1.42, 95% CI 1.20–1.66), even though obesity (adjusted IRR
1.29, 95% CI 1.05–1.58) and poor knowledge on CHIKV trans-
mission (score = 1: adjusted IRR 1.27; 95% CI 1.01–1.59; or score
= 0: adjusted IRR 1.33; 95% CI 1.05–1.69) remained linked to
CHIKF (Supplementary Table S3).

Taken together, the ‘individual-covariate full model’ and its
underlying causative factors uncovered 44.1% of CHIKF (95%
CI 41.5–46.6%). In other words, if CHIKF had been fully prevent-
able, control measures aimed at protecting the specific groups of
individuals presenting the eight abovementioned risk factors
would have diminished the disease burden by more than 40%.

Contextual determinants of chikungunya

Individual house or dwelling located under 750 m height (peak of
prevalence observed in the 250–500 m stratum), or in the eastern,
southern orwesternmicroregions (peakof prevalence in the eastern
rainy microregion), were associated with infection (Supplementary
Table S4).

Higher risks were observed in people living alone or in house-
holds of at least five persons, or reporting a CHIKF history in the
neighbourhood. In addition, makeshift constructions (wooden
creole house under sheet) and absence of windows screen
increased exposure (P < 0.01 for both factors, respectively). At
least, risk was increased in municipalities of low-to-intermediate
socio-economic level (both at P < 0.001). When integrating cli-
mate variables in a model controlling altitude and area of resi-
dence (Supplementary Table S5 and Fig. S6), maximal
temperature in the month preceding introduction of CHIKV
(Tmax-1) in the IRIS was predictive of infection (adjusted IRR
1.14; 95% CI 1.10–1.19) while rainfall (Pluv-1) was very marginal
(adjusted IRR 1.1001; 95% CI 1.1000–1.002).

However, when controlling eight of the abovementioned cov-
ariates, while individual house (adjusted IRR 1.67; 95% CI
1.34–2.08), CHIKF history in the neighbourhood (adjusted IRR
1.92; 95% CI 1.41–2.60), low-to-intermediate socio-economic
level (intermediate: adjusted IRR 1.31; 95% CI 1.05–1.64;
deprived: IRR 1.33; 95% CI 1.12–1.56), Tmax-1 (>28.5 °C:
adjusted IRR 1.59; 95% CI 1.37–1.83) and Pluv-1 (>65 mm:
adjusted IRR 1.31; 95% CI 1.15–1.49) remained independently
associated with infection, altitude of dwelling, area of residence
and household size were no longer linked to CHIKF, except for
categories of people living alone (adjusted IRR 1.15; 95% CI
1.01–1.30) or below 250 m (adjusted IRR 1.94; 95% CI 1.10–
3.43) (Supplementary Table S7). Adjusting on climate variables
unravelled a weak negative interaction between Tmax-1 and alti-
tude (Mantel–Haënszel OR 0.99; P < 0.01) that we chose to ignore
in this intermediate analysis.

Taken together, the ‘contextual-covariate full model’ and its
underlying causative factors uncover 89.5% of CHIKF (95% CI
83.4–93.3%). In other words, control measures aimed at protect-
ing the specific groups of individuals living under the eight above-
mentioned contextual conditions would have diminished the
disease burden by ∼90%.

Herein, and given PAF values, contextual characteristics
uncovered a greater proportion of infections (about double)
than individual characteristics.

Influence on modelling on key determinants of chikungunya
For explicative purposes, we decided to weigh individual and con-
textual risk factors in a full model (data not shown). Overall,
adjustment for contextual variables altered marginally the
strength of individual characteristics (Table 2). Similarly, adjust-
ment for individual characteristics ruled out the ‘household effect’
while the strength of other contextual variables was slightly
modified, with the exception of altitude. Indeed, controlling
both individual and contextual characteristics, without

Table 1. Characteristics of the 2101 subjects (⩾15 years) analysed for
chikungunya risk factors related to population structure and missing data,
SEROCHIK study, August–October 2006, Reunion island

Characteristics, n (%) SEROCHIK INSEEa

2101 787 836

Gender

Women 1195 (56.9) 399 658 (49.3)b

Men 906 (43.1) 388 178 (50.7)

Age (years)

15–29 484 (23.0) 107 263 (20.9)

30–39 376 (17.9) 116 600 (22.7)

40–49 398 (18.9) 118 175 (23.0)

50–59 356 (16.9) 81 147 (15.8)

60–69 244 (11.6) 48 845 (9.5)

⩾70 243 (11.6) 41 755 (8.1)

Residential areac

North 499 (24.0) 185 926 (23.6)b

West 520 (26.6) 205 755 (26.1)

South 790 (36.9) 290 111 (36.8)

East 292 (12.5) 106 044 (13.5)

Dwelling

Collective 412 (21.5) 343 497 (43.6)

Individual 1503 (78.5) 444 339 (56.4)

aInstitut National de la Statistique et des Etudes Economiques.
b2006 census.
cLa Réunion island is divided into four administrative residential areas (microregions):
North, West, South and East.
Data are given as numbers and percentages in parentheses.
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considering climate variables, exhibited a negative dose–response
effect between altitude and CHIKF, with a maximal exposure
below 250 m. Of note, this was observed despite a strong

synergistic interaction between altitude and dwelling (Mantel–
Haënszel OR 2.58; P = 0.01). Thus, individual house increased
the risk substantially for those living in the 250–500 m stratum.

Table 2. Multivariate explicative model of individual and contextual risk factors for chikungunya among 2101 subjects (⩾15 years), SEROCHIK survey, August–
October 2006, Reunion island

Multivariate model
Poissona

Individual variablesb Pei (%) aIRR (95% CI) PAF (%) (95% CI)

Occupationc 15.4 (11.4–19.2)

Yes 57.65 1

No 42.35 1.37 (1.19–1.57)

Body mass index (kg/m2) 6.2 (3.7–8.6)

<25 57.84 1

25–29.9 30.20 1.13 (0.98–1.30)

⩾30 11.95 1.29 (1.06–1.58)

Knowledge scored 12.0 (8.6–15.1)

Four good answers 17.86 1

Three good answers 30.84 1.08 (0.89–1.31)

Two good answers 21.75 1.12 (0.90–1.37)

One good answer 16.26 1.39 (1.12–1.73)

Zero good answer 13.29 1.27 (1.00–1.60)

Contextual variablese

Dwelling 38.6 (33.0–43.7)

Collective 11.12 1

Individual 88.88 1.77 (1.41–2.21)

Chikungunya history in the neighbourhoodf 43.7 (36.8–49.8)

No 6.49 1

Yes 73.53 1.97 (1.43–2.70)

Unspecified 20.00 1.61 (1.14–2.27)

Altitude of dwelling (m) 61.2 (53.1–67.8)

<250 72.68 2.84 (1.52–5.28)

250–499 15.46 2.47 (1.29–4.75)

500–749 7.79 2.34 (1.20–4.54)

750–999 2.40 1.24 (0.55–2.74)

⩾1000 1.67 1

Socio-economic level of the municipalityg 16.7 (13.5–19.7)

Advantaged 37.80 1

Intermediate 24.98 1.37 (1.10–1.70)

Deprived 37.22 1.36 (1.16–1.59)

Overall PAF value 100 – 92.2 (85.7–95.7)

Bold characters highlight significant risk factors.
aPoisson regression model. Pei: proportion of exposed individuals in the infected population are given as percentages. aIRR: adjusted incidence rate ratios and 95% CI: 95% confidence
intervals. Population attributable fractions (PAF) and 95% CI are given as percentages.
bIndividual variables are defined for personal (individual) exposures.
cRegular working or studying occupation.
dScore based on four questions (agree/disagree/1 point): Is chikungunya a mosquito-borne virus? Can chikungunya be transmitted by all species of mosquito? Can the mosquito transmit
chikungunya to human? Can the human transmit the virus to the mosquito?
eCollective (grouping) variables are defined for contextual (household or area-level) exposures.
fPrevious history of chikungunya fever in the neighbourhood indicative of clustering.
gDerived from a homemade socio-economic index categorising the 24 municipalities of the island into tree levels based on three indices: socio-economic composition (three variables),
spatial segregation of ethnic minorities (one variable), existence of measures promoting social cohesion (one variable).
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As expected, combining all relevant risk factors in the ‘explicative’
model allowed the more comprehensive overview of CHIKF at
community level. This was evidenced by increasing overall PAF
values (Table 2), the seven covariates uncovering 92.2% (95%
CI 85.7–95.7%) of infections. Importantly, this model allowed
prioritisation of risk factors using PAF values, the main contribu-
tors being altitude of dwelling, then by decreasing order, history
of CHIKF in the neighbourhood (hereafter designated as cluster-
ing), dwelling, socio-economic level of municipality (indicative of
social deprivation), occupation, knowledge of transmission and
the BMI.

Given the possibility that altitude be confounded by tempera-
ture, we tested the robustness of our model by adding Tmax-1
and Pluv-1 in a final ‘decision-making’ model. Prior to this
model, by pooling the participants reporting a CHIKF history in
their neighbours with those for whom this information was miss-
ing, we identified the dwelling as an effect modifier of clustering
(Mantel–Haënszel OR 2.33; P < 0.01), this latter being relevant in
individual house. Overall, this model retained nine significant
covariates plus the interaction term (Table 3). Interestingly, the
hierarchy of each specific PAF value was drastically modified, and
the final ‘decision-making’ model highlighted the prominence of
contextual variables, while the overall PAF of themodel was slightly
diminished, its covariates and underlying causative factors uncover-
ing 80.8% of CHIKF (95% CI 77.7–83.4%). Importantly, only one
individual key determinant, the knowledge score, was found to be
amendable, whereas three of the six contextual variables seemed
relevant to guide the prioritisation of real-time control measures.
Thus, we deemed that the community-based interventions around
CHIKF clusters, focused on people living in individual houses
within intermediate or deprived areas should be the most appropri-
ate control measures for public health action in our context.

Discussion

Here, we report the findings of a large serosurvey conducted on
Reunion island, aimed to guide public health interventions for
CHIKF control. By combining survey data and timely acquired
climate variables, and using a multi-step multivariate analysis
with Poisson regression models for dichotomous outcomes, our
analysis has identified and weighed the community burden of
individual and contextual determinants of CHIKF.

Interestingly, our results, which fulfil the standards of adequate
public health impact measures for decision-making purposes,
suggest a high disease burden of risk factors of primarily context-
ual origin, in comparison with that of individual determinants. In
addition, we identified the most susceptible contextual variables
to public health interventions.

Thus, in a nine-covariate Poisson model with an additional
interaction term, the contributors for CHIKF, ranked by decreas-
ing PAF values, were a CHIKF history in the neighbourhood and
individual house, high maximal temperature the month preceding
the infection, a socio-economically disadvantaged neighbour-
hood, low altitude of dwelling, high precipitations the month pre-
ceding the infection, occupational inactivity, poor knowledge on
CHIKV transmission and obesity/overweight. Together, these
covariates and their underlying causative factors uncovered over
80% of infections in the community.

Consistently, the addition of the maximal temperature and
cumulated rainfall the month before the introduction of
CHIKV in the area provided supportive information showing
both an interaction and confounding between altitude and

temperature. In accordance, the adjustment for climate variables
decreased drastically the risk associated with altitude.

Of utmost importance, the overall PAF value of eight relevant
contextual covariates and their underlying causative factors
uncovered at least 89.5% of the CHIKF observed on the island,
while the overall PAF value of eight relevant individual covariates
and their underlying causative factors uncovered up to 44.1%.

This substantial role of contextual variables found in Reunion
contrasts the results of the serosurvey conducted in Mayotte [14].
Herein, the overall PAF value of three independent household fea-
tures (construction type, household size and Asset Index) was
estimated to be 42% and combining the four independent individ-
ual characteristics (gender, birthplace, length of schooling, occu-
pation) was estimated to be 89% in the same age population
[14]. This discrepancy may underscore both the influence of dif-
ferent methods and distinctive contextual and individual charac-
teristics of the disease burden. Even though epidemiologists have
long recognised the ‘neighbourhood effects’ of social deprivation
and climate as risk factors for vector-borne diseases such as den-
gue [24], health sociologists do emphasise the relevance of both
categories of determinants, environmental changes and land-
scapes being primarily shaped by the habitat characteristics.
Dwellings, in turn, harbour distinct populations with different
mental (cognitive) representations and different behaviours
against vector-borne diseases owed to different cultural or educa-
tional backgrounds [15].

The major burden of the altitude may underlie several explica-
tive factors closely related, including climate variables, vegetation,
host and dwelling densities. Herein, we show that the maximum
risk was observed in the 250–500 m range, which coincides
with the traditional Reunionese dwelling, the individual house
with garden, an ideal niche for Aedes vectors breeding under
tropical climate conditions [15], given a synergistic interaction
between altitude and dwelling [25]. As expected, the effect of
mid altitudes (250–750 m) was confounded by Tmax-1 and
Pluv-1 in the nine-covariate final model, which unravels the crit-
ical roles of maximum temperature under 250 m and that of rain-
fall [25]. Importantly, ∼80% of the Reunionese population lives
under the height of 250 m along the coastal area of the island.
Aedes albopictus was found as high as 1200 m in Reunion [26]
and even as 2100 m in central Nepal [27]. Temperature and pre-
cipitations play a key role in CHIKV transmission [28]. Higher
temperatures shorten the extrinsic incubation of CHIKV, lead
to an increase in Ae albopictus vectors biting frequency and
to an extension in their lifespan [29]. The effect of precipita-
tions is dual [30]. Rainfalls create ideal conditions for mosqui-
toes to spawn [31], but may decrease host-seeking female
abundance [32]. Drought periods often lead to inadequate
water storage practices [33], whereas wet climates hasten the
hatching of Ae albopictus eggs [27]. We believe these pathways
likely underlie the effects of temperature and rainfall also in
our context.

We found that a history of CHIKF in the neighbourhood, a
proxy of disease clustering, uncovered a significant proportion
of infections at population level. This is especially obvious, as
spatiotemporal clustering is a feature of mosquito-borne diseases
amenable to vector control interventions [27,30,31,34]. It has been
well documented, both in urban and rural environments. This
neighbourhood effect on CHIKV transmission dynamic was
reported in three clusters investigated during the first epidemic
wave in Reunion island [35], and is supported by mapping of
participant’s residencies revealing spatial heterogeneity of risk
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(data not shown). This influence of neighbourhood was later
confirmed in Singapore [36]. It is also in agreement with more
recent findings from a CHIKF outbreak in a small rural area of

Bangladesh [37]. In this study, using Bayesian modelling of trans-
mission, the authors reported that 58% of infections occurred at
neighbourhood level.

Table 3. Multivariate decision-making model of individual and contextual binary risk factors for chikungunya among 2101 subjects (⩾15 years), SEROCHIK survey,
August–October 2006, Reunion island

Multivariate model
Poissona

Individual variablesb Pei (%) aIRR (95% CI) PAF (%) (95% CI)

Occupationc 11.6 (8.4–14.6)

Yes 57.65 1

No 42.35 1.38 (1.20–1.57)

Body mass index (kg/m2) 5.2 (3.2–7.2)

<25 57.84 1

⩾25 42.16 1.14 (1.00–1.30)

Knowledge scored 7.3 (5.6–8.9)

Two to four good answers 70.45 1

Zero to one good answer 27.28 1.23 (1.07–1.40)

Contextual variablese

Dwelling NA

Collective 11.12 1

Individual 88.88 1.00 (0.43–1.69)

Chikungunya history in the neighbourhoodf NA

No 6.49 1

Yes or unspecified 93.53 1.00 (0.55–1.53)

Chikungunya in the neighbours ^ dwelling 45.9 (40.5–50.9)

No 18.09 1

Yes or unspecified and individual house 81.91 2.28 (1.11–4.64)

Altitude of dwelling (m) 13.1 (7.6–18.2)

<250 72.72 1.22 (1.05–1.41)

⩾250 27.28 1

Socio-economic level of the municipalityg 19.0 (15.2–22.5)

Advantaged 37.80 1

Intermediate or deprived 62.20 1.44 (1.25–1.65)

Maximal temperature at m-1 (°C) 25.7 (21.4–29.8)

Q1–Q2⩽ 28.522 36.44 1

Q3–Q4 > 28.522 63.56 1.68 (1.46–1.93)

Cumulated rainfall at m-1 (mm) 12.6 (9.3–15.7)

Q1–Q2⩽ 65 42.81 1

Q3–Q4 > 65 57.19 1.28 (1.12–1.46)

Overall PAF value 100 – 80.8 (77.7–83.4)
aPoisson regression model. Pei: proportion of exposed individuals in the infected population are given as percentages. aIRR: adjusted incidence rate ratios and 95% CI: 95% confidence
intervals. Population attributable fractions (PAF) and 95% CI are given as percentages.
bIndividual variables are defined for personal (individual) exposures.
cRegular working or studying occupation.
dScore based on four questions (agree/disagree/1 point): Is chikungunya a mosquito-borne virus? Can chikungunya be transmitted by all species of mosquito? Can the mosquito transmit
chikungunya to human? Can the human transmit the virus to the mosquito?
eCollective (grouping) variables are defined for contextual (household or area-level) exposures.
fPrevious history of chikungunya fever in the neighbourhood indicative of clustering. Chikungunya in the neighbours ^ dwelling is an interaction term between the two abovementioned
covariates.
gDerived from a homemade socio-economic index categorising the 24 municipalities of the island into tree levels based on three indices: socio-economic composition (three variables),
spatial segregation of ethnic minorities (one variable) and existence of measures promoting social cohesion (one variable).
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The impact of individual house was found consistent with the
findings of two other studies conducted on Reunion island
[35,38]. Thus, in the three abovementioned clusters involved in
the emergence, age, density and surface of the dwelling increased
risk [35]. Moreover, makeshift constructions and the absence of
window screens were associated with infection, consistent with
other observations [14–16].

In our study, people living in socio-economically deprived
areas were more likely to be infected, as previously shown for sev-
eral infectious pathogens including CHIKV [38,39]. Indeed,
neighbourhood environments (here assessed at municipality
level) may contribute to CHIKV exposure due to residential
segregation (i.e. disparities in dwelling places by race/ethnicity
or socio-economic position) [40], or due to differences in
mosquito control effectiveness, this latter being modified by
household expenditures for chemically based protective measures,
spatial coverage of interventions or community mobilisation (i.e.
acceptability or reluctance behaviours) [41–43]. This theoretical
framework was confirmed in Mayotte where social disparities in
infection rate were primarily structured by housing conditions
as well as cognitive representations of the disease, ‘legitimate
images’ being found in rich urban settings, ‘folk theories’ being
found in poor suburban settings [15]. Interestingly, the neigh-
bourhood environment was found different between dengue (or
Zika) and CHIKF-affected populations in French Guiana and
Rio Janeiro, Brazil, where CHIKF tended to impact the most
impoverished communities living in overcrowded areas, which
may explain the higher basic reproductive number (R0) for
CHIKV than for flaviviruses [44,45].

With respect to individual variables, occupational inactivity was
a key determinant of infection, which is likely coherent with
increasing exposure to mosquito bites in the home outdoor envi-
ronment. In agreement, outdoor activities (e.g. being employed as
farm worker) have been increasingly reported as a risk factor for
CHIKF [17]. In our study, farm workers were the most at-risk pro-
fession. We believe that the effect of occupational inactivity may
thus reflect the seasonal and undeclared character of farm work
on Reunion island, or the importance of other on-off outdoor
jobs in a community largely affected by unemployment.

We found knowledge of the disease having an impact on infec-
tion. Knowledge of a disease is believed to drive attitudes, beliefs
and practices towards better protection [46]. Interestingly, appro-
priate behaviours were not shown to be protective when knowl-
edge was adjusted. Poor knowledge on CHIKV transmission
was relevant among elder individuals (⩾80 years), indigenous,
illiterate or living alone, which sheds light on the vulnerability
of Creole populations. These data are coherent with the irrational
ideas of catastrophe thinking reported as ‘folk theories’ among
Indian ocean communities along CHIKF epidemics, where the
absence of perceived controllability was the most common belief
[15,38]. They are also in line with the findings of the KAP study in
French Guiana, which revealed that adoption of protective beha-
viours against vector-borne diseases is a multi-factorial process
that depends on both socio-economic and cognitive factors [46].

Last, obesity and to a lesser extent being overweight were
slightly associated with infection, which may likely be the con-
junction of several possible factors: lack of education and illiter-
acy, lesser physical activity, larger body surface, higher Aedes
mosquito response to CO2, lactic acid or sweat compounds [47].

Our study has some strengths and limitations. First, it was
population-based, and our estimates were weighted on the sam-
pling fraction to ensure the best possible representativeness.

Notwithstanding, our sample was a little shifted towards women
and elderly people and we had to correct the weighting of the
sample upon analysis to minimise the selection bias. Second, we
used a Poisson regression model for dichotomous outcomes to
overcome convergence problems. In the framework of cross-
sectional studies, this user-friendly model has gained credit over
the last decade to be increasingly used as a good proxy of the
log binomial model, including in seroepidemiologic studies
[18,21]. In our study, the necessity to compensate the selection
bias using survey-readjusted estimates (reweighted on the sam-
pling plan) precluded us to use with Stata the robust variance
option, conditional to this model [21]. However, the estimates
of our final model did not differ from unweighted estimates
with robust variance (data not shown), so that it is unlikely that
this statistical constraint might have changed the overall sense
of our results. Third, the use of a Kish sampling method did
not allow assessing intra-household random effects, which likely
biased the neighbourhood effect estimates. Given the clustering
of CHIKF cases [38], we strongly recommend cluster sampling
for investigating future outbreaks [14]. Fourth, the KAP compo-
nent of the survey was likely sensitive to social desirability bias
[48], which may have limited the interpretation of the role of pro-
tective behaviours. This was suggested in our study by the absence
of positive correlation between the knowledge score and the
behaviour score. Alternatively, identification of clusters may
have also promoted protective behaviours within the infested
areas, which may have skewed the relationship between protective
behaviours and infections towards a negative correlation.

In conclusion, our findings lend support to a major role of con-
textual risk factors in CHIKF outbreaks, which in turn highlights
the appropriateness of community-based interventions in socio-
economically disadvantaged and vector-friendly neighbourhoods
[49]. Investigating pathways linked to socio-environmental deter-
minants might thus be useful to unravel CHIKF causative factors
and to understanding the drivers of future arboviral emergences.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818000341.
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