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Identifying proteins that interact with drug compounds has
been recognized as an important part in the process of drug
discovery. Despite extensive efforts that have been invested in
predicting compound-protein interactions (CPIs), existing
traditional methods still face several challenges. The com-
puter-aided methods can identify high-quality CPI candidates
instantaneously. In this research, a novel model is named
GraphCPIs, proposed to improve the CPI prediction accuracy.
First, we establish the adjacent matrix of entities connected to
both drugs and proteins from the collected dataset. Then, the
feature representation of nodes could be obtained by using
the graph convolutional network and Grarep embedding
model. Finally, an extreme gradient boosting (XGBoost) classi-
fier is exploited to identify potential CPIs based on the stacked
two kinds of features. The results demonstrate that GraphCPIs
achieves the best performance, whose average predictive accu-
racy rate reaches 90.09%, average area under the receiver oper-
ating characteristic curve is 0.9572, and the average area under
the precision and recall curve is 0.9621. Moreover, comparative
experiments reveal that our method surpasses the state-of-the-
art approaches in the field of accuracy and other indicators with
the same experimental environment. We believe that the
GraphCPIs model will provide valuable insight to discover
novel candidate drug-related proteins.

INTRODUCTION
Drugs function usually by interacting with a vast range of compound
targets, in which proteins are a principal pattern of targets.1,2 From
in vivo experiments, the drug will interact with plasma protein to
work when it enters the body. Different drug compounds have
different binding rates with proteins. Recently, inferring the relation-
ship between drugs and proteins has become a significant research
issue in bioinformatics. The successful identification of compound-
protein interactions (CPIs) has been a particularly important step
in the incipient stage of drug discovery. However, the traditional bio-
logical experiment on CPIs is time consuming and laborious,3 where
it can only discover a single interaction once before the appearance of
high-throughput technology. Although these approaches have accu-
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mulated considerable data, they are far from complete. Therefore, it
is an urgent need to exploit computational techniques to report the
most potential drug-related candidates for further prediction of
CPIs, which can save time and cost of traditional wet-lab experiments
and accelerate the drug exploitation process.

Recently, the prediction of CPIs has been regarded as a binary classi-
fication problem,4 in which the construction of the dataset is an
important component. Over the past decade, there has been the
emergence of numerous drug-related databases along with the devel-
opment of high-throughput technology, such as DrugBank,5

PubChem,6 TTD,7 ChEMBL,8 and BindingDB.9 The abundant data
provide valuable insight into studying CPIs, contributing to the birth
of a state-of-the-art (SOTA) calculation model for inferring CPIs de-
pending on machine learning. Based on these reliable data sources, a
variety of biological information (e.g., protein homology, protein
function information, protein sequence, drug chemical structure,
molecular fingerprint, and so on) can be fused, and supervised and
semi-supervised learning methods can be applied to effectively pre-
dict potential CPIs. Lee et al.10 performed a convolutional neural
network (CNN) on amino acid sequences to acquire regional residue
features of proteins, so as to realize the CPIs’ prediction and binding
sites of proteins. Mahmud et al.11 used three descriptors and the mo-
lecular substructure fingerprint to describe the features from the
amino acid sequence and compound chemical structure, which was
input into an iDTi-CSsmoteB model for the identification of drug-
protein interactions. Bleakley et al.12 applied the bipartite local
herapy: Nucleic Acids Vol. 32 June 2023 ª 2023 The Authors. 721
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Table 1. The measurement results of GraphCPIs using 5-fold cross-

validation on benchmark dataset

Fold Acc. (%) TPR (%) TNR (%) PPV (%) MCC

1 90.44 87.41 93.46 93.04 0.8103

2 90.37 86.80 93.95 93.48 0.8095

3 89.93 85.70 94.17 93.63 0.8016

4 89.45 85.39 93.51 92.94 0.7916

5 90.26 85.48 95.04 94.52 0.8090

Average
90.09 ±

0.41
86.16 ±

0.90
94.03 ±

0.64
93.52 ±

0.63
0.8044 ±

0.0080
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models to predict unknown drug-protein interactions in humans.
This method only relies on the chemical structure of compounds
and amino acid sequence information, which can screen drug candi-
date molecules and candidate proteins on a large scale.

In addition, graph- and network-based approaches are also being up-
graded. For instance, DINIES is an online system established by Ya-
manishi et al.13 that is based on a framework of supervised network
inference employed to predict unknown CPIs from many types of
biological data. According to the quasi-visual question-answering
mode, Zheng et al.14 developed an end-to-end deep learning model
to recognize CPIs based on the molecular liner notation of drugs
and a 2-dimensional distance map from the monomer structure of
proteins by taking advantage of dynamic attentive CNN. Wu
et al.15 constructed a learnable drug-protein interaction network by
using a graph neural network to dig up the network-level representa-
tion from compounds and amino acids. A unified framework was
established by Ye et al.16 based on a knowledge graph and recommen-
dation system. Zhao et al.17 inferred the interaction between drugs
and proteins by using large-scale graph representation learning to
obtain the different types of structural information from the orga-
nized interactions network. Chen et al.18 constructed a multi-associ-
ation graph by combining the relationships among five types of mol-
ecules; they took advantage of the representation learning method to
obtain behavior features that input into the various classifiers to pre-
dict drug CPIs.

Based on the above observations, we proposed a graph- and network-
based deep learning framework, termed GraphCPIs, to accomplish a
classification task on CPIs’ predictions. A core insight of our work is
that the various kinds of features are described from different
methods, in particular the graph-based features and learning-based
features. GraphCPIs mainly differs from other previous studies in
the following three factors: (1) the network embedding learning
method is borrowed to represent the features between drug molecules
and proteins; (2) by combining graph and network embedding
method to obtain the feature vectors of pairwise CPIs, GraphCPIs
takes graph representations as inputs to learn structural and sequen-
tial information for proteins and drugs; (3) XGBoost classifier is
introduced to achieve high performance with the prediction of
CPIs. Comprehensive experiments on different feature representa-
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tions and various kinds of classifiers indicate that GraphCPIs sur-
passes all other SOTA approaches in five evaluation criteria, average
area under the receiver operating characteristic (AU-ROC), and
average area under the precision and recall (AU-PR). The overall
model structure of our proposed GraphCPIs is shown in Figure S1.

RESULTS
Performance of GraphCPIs using 5-fold cross-validation

Here, we propose a graph recombination method, called GraphCPIs,
to predict drug CPIs. To verify and access the performance of the pro-
posed method, 5-fold cross-validation is utilized. More specifically,
we randomly split the benchmark dataset into five roughly equivalent
pieces, four of which are for training; the fifth part is employed for
testing. This step is repeated five times, and a different test set is
selected each time. The final average results from these runs can
explain the stability of the proposed model.

Focused on binary classification-based CPIs detection studies, the
true labels and predicted labels are calculated from positive and nega-
tive samples that make up a confusion matrix (CM, also called a table
of confusion). In this study, five information metrics calculated on
CM are introduced to summarize the predictive values on the bench-
mark dataset, i.e., Acc. (accuracy, a measure of observational error),
TPR (true positive rate, or sensitivity, or recall), TNR (true negative
rate, or specificity), PPV (positive predictive value, or precision),
and MCC (Matthews correlation coefficient).19 These predictive
values are shown in Table 1.

On the other hand, the AU-ROC and AU-PR are introduced to
further showcase the predictive capability of the proposed model
on binary classification. The AU-ROC is a chart indicating the mea-
surement of the machine learning method across all possible thresh-
olds. AU-ROC includes two parameters: sensitivity and 1-specificity.
The closer the AU-ROC value is to 1, the better effect of the classifi-
cation there will be. As shown in Figure S2, each fold value of
AU-ROC is very stable, and the average AUC value is 0.9572. The
AU-PR indicates the relation between precision and recall, which
profiles the description of data distribution. It is more informative
about accessing the overall performance of the classification model.20

AU-PR plots two parameters: precision and recall. The higher the
AU-PR value is, the higher is the correct rate. As shown in Figure S2,
each fold value of AU-PR is very stable, and its average value is 0.9621.

Comparing the performance of various features on the same

classifier

In order to verify that the GraphCPIs method can obtain more useful
feature information, we compared various features with our method
by taking advantage of different feature extraction methods. In this
work, we combined the graph convolutional network and network
embedding method for improving the prediction performance. To
appraise the impact of the GraphCPIs model, we tested the outcome
of three kinds of feature construction strategies: (1) sequence-based
features analysis, incorporating drug molecular fingerprint feature
and amino acids sequence feature of protein; (2) graph convolutional



Table 2. The performance results of sequence-based features using 5-fold

cross-validation on benchmark dataset

Fold Acc. (%) TPR (%) TNR (%) PPV (%) MCC

1 85.68 85.35 86.01 85.92 0.7136

2 85.26 85.75 84.78 84.93 0.7053

3 86.69 85.61 87.76 87.49 0.7339

4 85.81 84.82 86.80 86.53 0.7164

5 86.03 84.12 87.94 87.46 0.7211

Average
85.89 ±

0.53
85.13 ±

0.67
86.66 ±

1.31
86.47 ±

1.08
0.7181 ±

0.0011

Table 3. The performance results of GCN-based features using 5-fold

cross-validation on benchmark dataset

Fold Acc. (%) TPR (%) TNR (%) PPV (%) MCC

1 86.32 85.00 87.63 87.30 0.7266

2 86.18 84.43 87.94 87.50 0.7241

3 85.35 82.41 88.29 87.56 0.7082

4 85.42 82.32 88.51 87.75 0.7097

5 85.55 82.76 88.33 87.65 0.7121

Average
85.76 ±

0.45
83.38 ±

1.24
88.14 ±

0.35
87.55 ±

0.17
0.7161 ±

0.0086
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network (GCN)-based features; (3) network embedding (NE)-based
features. The experiments are carried out by adopting 5-fold cross-
validation, and the performances are listed in Tables 2, 3, and 4. These
data prove that the hybrid feature we consider is useful and effective.

In each fold from Tables 2, 3, and 4, we obtained TPRs and 1-TNRs.
Then, we plotted the corresponding ROC curves based on these data
and calculated the AU-ROC values as a comprehensive evaluation
reference of different features. For the same reason, PPV and recall
can be applied to compute the AU-PR values. As shown in Figure 1,
we additionally explored the combination of two kinds of features
with three other single features tested on the standard dataset, whose
results indicate that their performances are outstanding. We show
that GraphCPIs achieved a mean AU-ROC of 0.9572 under 5-fold
cross-validation and a mean AU-PR of 0.9621 upon 5-fold cross-vali-
dation. Meanwhile, the mean AU-ROC values of the other three types
of features (GCN-based, sequence-based, Grarep-based) are 0.9266,
0.9250, and 0.9566, respectively. The mean AU-PR values of the other
three types of features (GCN-based, sequence-based, Grarep-based)
are 0.9295, 0.9268, and 0.9619, respectively.
Table 4. The performance results of NE-based features using 5-fold cross-

validation on benchmark dataset

Fold Acc. (%) TPR (%) TNR (%) PPV (%) MCC

1 90.26 86.58 93.95 93.47 0.8075

2 90.18 86.49 93.86 93.37 0.8057

3 89.91 85.31 94.52 93.96 0.8017

4 89.17 84.74 93.60 92.97 0.7864

5 89.89 84.78 95.00 94.43 0.8020

Average
89.88 ±

0.43
85.58 ±

0.90
94.19 ±

0.57
93.64 ±

0.57
0.8007 ±

0.0083
Comparing the performance of different classifiers

To further support the results listed above, 5-fold cross-validation was
utilized to test various more advanced classifiers. Simultaneously, we
compared the XGBoost classifier with the other three commonly used
classifiers, including classification and regression tree (CART classi-
fier),21,22 Gaussian naive Bayes (GNB classifier),23 and support vector
machine (SVM). All these classifiers are realized on the standard data-
set and the same features by using 5-fold cross-validation.

In these comparison results from Tables S1–S3 and Figure 2, we carry
out five times the experiments for each classifier using the same
feature representation method on the standard dataset. The XGBoost
classifier obtained the most optimal result, reaching an average Acc.
of 90.09, which is better than the CART, GNB, and SVM classifiers
by 7.58%, 20.89%, and 0.22%, respectively. XGBoost received the
highest average MCC with 0.8044, which is 0.1540 more than
CART, 0.4082 more than GNB, and 0.0062 slightly more than
SVM. In short, the results of XGBoost are the best on five evaluation
criteria, and the prediction performance is quite sensitive to the
different classifier choices. Meanwhile, as listed in Table 5, our
work is also compared with the previous related work proposed by
Zhao et al.,17 and the overall performance of our proposed algorithm
is slightly better.

Moreover, we further evaluate the performance of different classifiers,
the AU-ROC, and the AU-PR as in Figure 3. It is obvious that XGB
received themost competitive results, which is related to the following
factors: (1) for the CART classifier, it is easy to ignore the correlation
between features when only using one field for classification; (2) for
the GNB classifier, the classification effect mainly relies on the corre-
lation between features, where the smaller the attribute correlation is,
the better is the performance of GNB; (3) the XGB classifier supports
column sampling, which can reduce over-fitting and calculation and
increase the generalization performance of the model.
Case study

In the case study, all known drug-target interactions in the bench-
mark dataset are first taken as positive samples to compose the
training dataset, and they are collected from DrugBank V5.0 database
(Release 2019). In this regard, unknown CTIs refers to novel CTIs
that are not found in DrugBank V5.1.10 database (Release 2023)
but are predicted by GraphCPIs model. We then verify these un-
known CTIs in the latest version of DrugBank, i.e., V5.1.10. which
is the latest release of DrugBank Online (version 5.1.10, released
01-04-2023, https://go.drugbank.com/). In other words, these verified
CTIs do not exist in DrugBank V5.0 but were later added into
DrugBank V5.1.10 due to the update of this database.
Molecular Therapy: Nucleic Acids Vol. 32 June 2023 723
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Figure 1. Performances comparison on the prediction of XGBoost that applies different features in 5-fold cross-validation

(A) The AU-ROC values based on different features. (B) The AU-PR values based on different features.
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In order to bring stronger evidence for our model, all confirmed CPIs
from the collected dataset are trained by GraphCPIs, and then the
prediction results of ten drugs and corresponding related proteins
are as shown in Table S4. Among them, it is shown that there were
seven proteins of corresponding drugs recognized by GraphCPIs
that can be confirmed from the DrugBank. The rest of the uncon-
firmed proteins could be potential ones, expected to be checked by
medical experts. Moreover, we hope this work and its application
will provide broad prospects for the discovery of new candidate
drug-related targets.
DISCUSSION
Identifying interactions between drug compounds and target proteins
is still a fundamental challenge, and the relevant prediction model is
also not well explored. In this study, a computational model termed
GraphCPIs is developed based on GCN and Grarep method to detect
a potential relationship between drug molecules and proteins. Specif-
Figure 2. Performances comparison of various classifiers based on

GraphCPIs features
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ically, the network graph is constructed by the known relationships
between drugs and proteins in the collected dataset. We then trained
GCN and Grarep models to learn efficient vector representation for
these nodes in the above graph. Finally, two combined features are
fed into the XGBoost classifier to complete the task of CPIs classifica-
tion. GraphCPIs can obtain an AUC value of 0.9572 and an AU-PR of
0.9621 that surpasses all other SOTA models.

In addition, a series of comparison experiments are conducted on the
benchmark dataset we gathered, and a comprehensive analysis is also
made of the predicted results. At first, the various features are
introduced for comparative experiments based on the same classifier
(XGBoost), e.g., sequence-based feature, GCN-based feature,
Grarep-based feature, and GraphCPIs-based feature. Then, the
XGBoost classifier is compared with the SOTA classifiers based on
the same feature (GraphCPIs-based feature), e.g., CART classifier,
GNB classifier, and SVM classifier. Finally, the proposed GraphCPIs
model is also compared with the previous related work. All the com-
parison performance results indicate the practicability and effective-
ness of the GraphCPIs model in the task of detecting CPIs.

MATERIALS AND METHODS
Benchmark data collection

In this study, the benchmark dataset mainly stems from Drug-
Bank5.0,5 which is a free-to-access, comprehensive, online database.
This database integrates a great deal of information on drug com-
pounds, drug-related proteins, and drug-protein interaction pairs,
concentrating primarily on the associations of proteins regarded as
targeted with drug-like molecules. We simply withdrew 11,396
known CPIs from the DrugBank, including 635 protein targets and
984 drug molecules. These known CPIs are regarded as positive sam-
ples, which are a significant part of the benchmark dataset. The 11,396
negative samples were randomly extracted from the remaining uncer-
tain interaction data (635 � 984 – 11,396 = 613,444). Finally, the



Table 5. Compared GraphCPIs with the previous related work

Model Acc. (%) TPR (%) TNR (%) PPV (%) MCC AUC

Zhao et al.17 88.64 83.67 93.61 92.90 0.7766 0.9455

GraphCPIs 90.09 86.16 94.03 93.52 0.8044 0.9572
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generation of eventual benchmark dataset integrity was from positive
and negative samples, whose size is 22,792.
Feature representation methods

Drug Morgan fingerprint

Molecular fingerprint is the abstract expression of compounds, which
can encode drugs into lots of vectors. Morgan fingerprint is one of the
most popular molecular fingerprints, also known as extended-con-
nectivity fingerprints (ECFPs).24 It is a novel class of circular finger-
print with plenty of helpful qualities, which also belongs to the
topological fingerprint for molecular characterization. This method
is derived using a variant of the standard Morgan algorithm,25 which
is developed for addressing the molecular isomorphism problem and
aims to identify the substructures in molecules without the way of
atom-relating order. Here, the Morgan fingerprints of drugs are
calculated by the RDKit tool in python.26

Take amoxicillin (used to treat certain infections caused by bacteria)
as a brief example; all the substructures in amoxicillin can be obtained
with a radius of 2. Hence, each bit on the molecular fingerprint cor-
responds to an atom substructure, and then the structural features of
the molecule will be extracted to generate a bit vector. As shown in
Figure S3, we only give partial atom substructures here.

Protein feature representation

Protein sequences are mainly selected from the STRING database.27

We all know that all proteins are composed of 20 amino acids, which
can be divided into four groups, namely Asp and Glu; Arg, Lys, and
His; Gly, Ser, Thr, Cys, Asn, Gln, and Tyr; and Ala, Val, Leu, Ile, Met,
Phe, Trp, and Pro. Here, k-mer (k = 3) is introduced to transform
every protein to a 64-dimensional eigenvector by counting the num-
ber of occurrences with every k amino acids from the entire sequence.
Graph representation learning model

The graph representation learning model (Grarep)28,29 is concerned
with learning the potential vector expression of nodes in the graph,
which can capture the global structural information. In representa-
tion learning, Grarep is employed to better distinguish the neighbors
with different orders of nodes, and it can also be extended to the
neighbors with any orders.

Grarep is an algorithm that maps the k-order information of nodes to
diverse sub-spaces. One can capture the k-step relational information
(k can take different values) of nodes by manipulating different global
probability transition matrices Ak. Then, the global expression is ob-
tained by integrating this k-order local information. The description
of k-step information is as shown in Figure S4.
The k-step probability transition matrix is defined as follows:

Ak = A//A|fflfflfflffl{zfflfflfflffl}
k

;A = D� 1H; (Equation 1)

whereAk
ij indicates the probability that i skips to j in k steps.D denotes

the degree matrix of a node, andH is an adjacencymatrix, which is the
edge from i to j. Thus, the k-step transition probability from current
vertex m to context vertex n will be described as follows:

pkðnjmÞ = Ak
m;n (Equation 2)

Here, the objective function is defined from noise contrastive estima-
tion.30 Following a similar discussion presented in the work of Levy
et al.,31 the k-step loss function is defined as follows:

Lk =
X
m˛V

LkðmÞ; (Equation 3)

where

LkðmÞ=
 X

c˛V

pkðnjmÞlog sðm!$ n!Þ
!

+ lEnʹ�pkðVÞ½log sð� m!$ n!Þ�
(Equation 4)

Here, V = {v1,v2,..,vn} is the set of vertices with every V
indicating one object (Nv is the number of vertices in the graph),
s(x) = (1 + e–x)�1 represents a sigmoid function, l denotes the hy-
per-parameter representing the count of negative entities, and pk(V)
indicates a distribution of context vertex n˛V in the path of k-step.
The expectation E could be briefly defined as follows:

Enʹ�pkðVÞ½log sð� m!$ n!Þ�
= pkðnÞ $ log sð� m!$ n!Þ
+

X
nʹ˛V\fng

pkðnʹÞ $ log sð� m!$ n!ʹÞ;
(Equation 5)

where

pkðnÞ=
X
mʹ

qðmʹÞpkðnjmʹÞ

=
1
NV

X
mʹ

Ak
mʹ;n

(Equation 6)

Note that here q(m’) = 1/Nv is the probability of choosing m’ as the
first node, which corresponds to a uniform distribution. Then,

Lkðm; nÞ=
�
Ak

m;n$log sðm!$ n!Þ
�

+
l

NV

X
mʹ

Ak
mʹ;n$log sð� m!$ n!Þ

(Equation 7)
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Figure 3. The AU-ROC (A) and AU-PR (B) values are based on different classifiers
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Therefore, we find a matrix Y that encodes the relationship between
all nodes in the graph.

Y = m!$ n! = log

 
Ak

m;nX
mʹ

Ak
mʹ;n

!

� logðbÞ; b =
1
NV

(Equation 8)

To lessen the effect of error and form a new matrix X, all the negative
values in Y are replaced with 0. Thereby, the above-mentioned loss
essentially belongs to thematrix factorization problem (singular value
decomposition factorization32,33).

Xk
i;j = max

�
Yk
i;j; 0
�

(Equation 9)

XkzXk
d = Uk

dS
k
d

�
Vk

d

�T
= MkNk

(Equation 10)

Where, U and V are orthonormal matrices,
P

denotes the diagonal
matrix, and d is the dimension of the final eigenvector. The network
representation of current nodeM and context nodeN in the graph are
obtained as follows:

Mk = Uk
d

�
Sk

d

�1
2 (Equation 11)

Nk =
�
Sk

d

�1
2Vk

d

T
(Equation 12)

Subsequently, the feature vectors of all the drug molecules and pro-
teins in the benchmark dataset can be obtained by the Grarep NE
method, which includes the global structure information in the
graph.
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Construction of GraphCPIs model

We construct a GraphCPIs model for predicting drug CPIs by
combining two kinds of graph-related methods. GraphCPIs contains
two main components: (1) GCN34 and (2) Grarep NE method. In the
first step, all the related heterogeneous information from the collected
dataset is exploited to build a graph network, where each type of drug
and protein is regarded as a node, and the interactions between them
are considered an edge. In the second step, we constructed a GCN
network to capture the local similarity between pairs of drugs and
proteins in the graph. In the third step, the Grarep embedding
method is applied to learn in-depth embedding vectors for known en-
tities and their relations. Finally, two combined features are fed into
the XGBoost classifier to predict the potential CPIs.

Extreme gradient boosting ensemble methods

The goal behind ensemble methods is to combine a sequence of weak
classifiers into a meta-classifier that has a better generalization perfor-
mance than every single classifier.35 Extreme gradient boosting
(XGBoost) ensemble classifier was first proposed by Friedman in
2001,36 and it is a widely used model in the field of machine
learning.37 XGBoost is an open source framework for gradient boost-
ing created by Chen et al.,38 and it is available in popular languages
such as Julia, R, Python, and so on.

The learning objective is to find the difference value (D-value) of the
second-order Taylor expansion of the loss function, which is equiva-
lent to employing the Newton method to optimize and approximate
the minimum value of the loss function.

LðqÞ =
Xn
i = 1

l
�
pi; ti

�
+
XJ
j

U
�
fj
�
; (Equation 13)

where the former part is the training loss of gradient boosting algo-
rithm, n denotes the quantity of training instances, l represents a
differentiable convex loss function, pi is the predictive value of
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training entities, and ti is the true value of training entities. The latter
part annotates the regularization term that represents the complexity
of a model, where each fj corresponds to an independent tree structure
and leaf weights.

Uðf Þ= gD +
1
2
lkVk2

= gD +
1
2
l
XD
j = 1

V2
j

; (Equation 14)

where g and l are manually set parameters to avoid an over-fitting
problem,D is the number of leaf nodes, and V denotes a vector gener-
ated by all leaf nodes from the decision tree.
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