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Abstract: This research focuses on the plant-mediated green synthesis process to produce gold
nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the
upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were
thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning
electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy
(AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray
diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed
with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results
showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ)
value of −36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered
cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative
Escherichia coli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent
antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were
evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol
to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated
using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The
synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics,
and biomedicine.

Keywords: green synthesis; nanoparticles; catalysis; cytotoxicity; upland cress

1. Introduction

Gold nanoparticles have potential applications in numerous fields including chemi-
cal/biochemical industries, textiles, energy, bioremediation, bioimaging, biosensorics, con-
trolled delivery of therapeutic agents, and agriculture due to their unique properties [1,2].
In particular, the characteristic chemical, biological, optical, and electrical properties of gold
nanoparticles have been utilized for nano-catalysis and nanotheranostics, to provide novel
routes for chemical reactions, and to offer a personalized approach for medical diagnosis
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and treatment [3–7]. Specifically, biocompatible gold nanoparticles exhibit unique surface
interactions and can be functionalized through the attachment of numerous components
(drugs, targeting moieties, radioisotopes, DNA, fluorescent dyes, linkers, polyethylene
glycol, and others) to offer multimodal approaches to modern biomedical processes [8,9].

Several traditional methods for the production of gold nanoparticles, including chemi-
cal and physiochemical methods, have been utilized for these purposes. However, many
of these pathways draw concern due to their adverse environmental impact, high cost
and energy consumption, as well as the potentially limited applications of the produced
nanoparticles. Alternatively, biological and green synthesis methods utilize microorgan-
isms as “biomachinery” or naturally occurring biomolecules from plant extract that serve as
reducing and capping agents in a bottom-up synthesis approach [10]. This is advantageous
over traditional methods as it provides versatile, biocompatible nanomaterials through
an environmentally-conscious and cost-effective approach. To date, various organisms
including plants, bacteria, algae, and fungi have been found to contain the phytochemicals
necessary for the green synthesis and stabilization of nanoparticles. Extracts used for green
synthesis of Au NPs include Coffea arabica (coffee), Solanum nigrum (black nightshade),
Nasturtium officinale (watercress), Brazilian red propolis (honeybee product), Litsea cubeba
(May Chang), Chlorella vulgaris (algae), Mimosa tenuiflora (Jurema), and Ziziphus zizyphus
(Jujube) [6,11–15].

Upland cress (Barbarea verna) is a widely available biennial leafy green in the Brassi-
caceae family which has been found to contain a high content of synthetically viable phyto-
chemicals including ascorbic acid, carotenoids, and tocopherols that are potentially useful
for the reduction and stabilization of gold nanoparticles [16]. Phenolics such as flavonols
mainly contribute to the reducing process [17]. Phenolics and other plant metabolites (such
as sugars and enzymes) are responsible for stabilization and capping [18]. Recently, upland
cress has been used to successfully synthesize silver nanoparticles [19]. In this work, a
novel green synthesis process to produce gold nanoparticles (Au NPs) using upland cress,
for different applications from silver nanoparticles, was developed and optimized. It was
hypothesized that the nanoparticles formed using this method would show favorable
stability due to the presence of phytochemical based capping agents present in the upland
cress extract. Furthermore, the synthesized Au NPs would show antimicrobial properties
and biocompatibility, as well as serve as a catalyst. This novel green synthesis method
offers a cost-effective and environmentally friendly counterpart to traditional methods for
biocompatible nanoparticle synthesis.

2. Materials and Methods
2.1. Materials

Upland cress (B&W Quality Growers, Fellsmere, FL, USA) was purchased from Whole
Foods, a local grocery store, and stored at 4 ◦C. Gold (III) chloride trihydrate (HAuCl4;
520918), 4-nitrophenol (C6H5NO3; 241326), Folin-Ciocalteu reagent (F9252), gallic acid
(G7384), and sodium borohydride (NaBH4; 80637300) were obtained from Millipore Sigma
(St. Louis, MO, USA) and were used as received.

2.2. Analysis of the Upland Cress Extract

The total phenolic content of the sample was determined by the Folin-Ciocalteu
method [20]. A 20 µL aliquot of upland cress extract was added to 1.58 mL water and
100 µL of the Folin-Ciocalteu reagent. After 5 min, 300 µL of 20% sodium carbonate
solution was added to the mixture and agitated for 10 min. After sitting in the dark for 2 h
at 22 ◦C, the absorbance was measured at 765 nm using UV spectrophotometer (GenesysTM

150; Thermo Fisher Scientific, Waltham, MA, USA). Different concentrations of gallic acid
were used to prepare the calibration curve (R2 = 0.9915). The total phenolic content was
expressed as µg gallic acid equivalent (GAE) per mL extract.

The concentration of ascorbic acid (vitamin C) in the upland cress was analyzed
through iodometric titration [21]. Briefly, 4 mL of upland cress extract, 0.2 mL 0.5% starch,
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1 mL 0.6 M potassium iodide, 1 mL of 1 M HCl, and 30 mL of DI water were mixed in a
flask. The mixture was titrated using 0.002 M potassium iodate with the first permanent
trace of blue-black color as an indicator of the endpoint.

2.3. Green Synthesis of Au NPs

The green synthesis and purification protocols(Scheme 1) were based on previous
work [19] with modifications, in the extraction process (blending instead of boiling was
used). Briefly, 10 g of upland cress were blended in 100 mL deionized (DI) water for 15 s.
The mixture was then vacuum filtered twice using Whatman filter paper and centrifuged
at 4000 rpm for 5 min to produce the extract (supernatant). Extract (5 mL), 10 mM gold (III)
chloride trihydrate (0.4 mL), and DI water (35 mL) were mixed and then placed in a shaker
(215 rpm) at 37 ◦C.
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For purification, sonication and two more solvents were utilized to achieve a more
thorough process in comparison to previous work [19]. The nanoparticles were collected
through centrifugation (4000 rpm, 20 min). The particles were suspended in DI water
(10 mL) and sonicated for 5 min. The suspension was then centrifuged (4000 rpm, 20 min).
Subsequently, the collected nanoparticles were subjected to a series of wash/vortex and
centrifugation cycles using Triton X-114 (0.75 µL/mL DI water), acetone, isopropyl alcohol,
and DI water respectively. Finally, the nanoparticles were oven dried at 45 ◦C, ground
using a mortar and pestle, and stored at −20 ◦C for future use.

2.4. Characterization of Au NPs

UV-Vis spectroscopy (GenesysTM 150; Thermo Fisher Scientific, Waltham, MA, USA)
was used to study the effects of incubation time on the green synthesis process. The peak
absorbance wavelength was determined using the scanning mode (450–650 nm). Zeta
(ζ) potential of the Au NPs (0.4 mM) was measured using a Zetasizer Nano ZS (Malvern,
Westborough, PA, USA). Scanning electron microscopy (FE-SEM, Hitachi S-4800 ultra-high
resolution cold cathode field emission scanning electron microscope, Kefeld, Germany)
was used to image Au NPs (40 mM) that were dried and mounted to aluminum stubs. At
the same time, energy dispersive X-ray spectroscopy (EDX, Noran (Si(Li))detector, Thermo
Fisher Scientific, Waltham, MA, USA) was used to verify the elemental composition of
the Au NPs. Atomic force microscopy (AFM) images, using 1.25 mM Au NP solution,
were taken using contact mode on a Bruker MultiMode atomic force microscope (Billerica,
MA, USA) with a Veeco Nanoscope IIIa controller (Santa Barbara, CA, USA). Au NPs
(oven-dried at 45 ◦C) were also analyzed using attenuated total reflection Fourier transform
infrared (ATR-FTIR; MIRacle 10, IR-Tracer 100; Shimadzu, Kyoto, Japan) spectroscopy.
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Lastly, powder X-ray diffraction analysis was performed using a Bruker D8 Discover X-ray
diffractometer (Billerica, MA, USA) to confirm the crystalline structure of the Au NPs.

2.5. Catalysis of the Reduction of 4-Nitrophenol

Sodium borohydride (200 mM; over ice) and 4-nitrophenol (2.0 mM) solutions were
freshly prepared. Then, 50 µL 4-nitrophenol, 5 µL Au NPs (80 mM), and 2 mL DI water
were gently mixed in a cuvette. After this, 25 µL NaBH4 was added into the cuvette
immediately before starting measurements. Scans were performed every minute for 30 min
using a UV-Vis spectrophotometer (250–550 nm) [22].

2.6. Antibacterial Activity Testing

The antibacterial effects of Au NPs on both Gram-negative Escherichia coli (Item #:
470176-528, Ward’s Science, Rochester, NY, USA) and Gram-positive Bacillus megaterium
(Item #: 15-4900, Carolina Biological Supply Company, Burlington, NC, USA) bacteria were
evaluated using the agar disc diffusion method [23,24]. E. coli and B. megaterium were
cultured in nutrient broth media (37 ◦C, 24 h) and inoculated onto agar plates (Mueller-
Hinton growth medium). Diffusion discs were dipped into varying concentrations of Au
NP solution (0.50, 0.25, 0.10, 0.05 mM) and placed on the inoculated plates. Ampicillin
discs (10 mcg, AMP10-1815; Carolina Biological Supply Company, Burlington, NC, USA)
and blank discs were added to the plates and served as positive and negative controls,
respectively. The plates were incubated (37 ◦C, 24 h) and the antibacterial inhibition zones
were analyzed.

2.7. Cytotoxicity and Cellular Uptake Studies

Bone marrow mesenchymal stem cells (BMSCs; MUBMX-01001, Cyagen, Santa Clara,
CA, USA) and HeLa cells (Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai,
China) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)/F-12 (Gibco, Grand
Island, NY, USA) and DMEM, separately. The medium was supplemented with 10% fetal
bovine serum, 100 U ml−1 penicillin, and 100 mg/L streptomycin (Gibco, Grand Island,
NY, USA). The cells were cultured in a humidified CO2 incubator (5%) at 37 ◦C. For the
cytotoxicity study, cells were seeded in 96-well plates at a density of 10,000 cells/well. After
24 h incubation, culture medium was replaced using fresh medium containing various
concentrations of Au NPs (0.10, 0.25, 0.50, 1.00, 1.50, 2.00, 2.50 mM). The cells were then
rinsed twice with PBS after 24 h and medium containing CCK8 (10 µL/100 µL medium;
Beyotime Institute of Biotechnology, Shanghai, China) was added. After 2 h, 100 µL
medium of each well was transferred to a new 96-well plate and the absorbance was
determined at 450 nm using a micro plate reader (Bio-Rad 680, Bio-Rad; Hercules, CA,
USA). Cell viability was determined using the absorbance ratio of an experiment well to
the average of the control wells (i.e., cell culture medium only).

To assess cellular uptake, at 70–80% confluency, cells were cultured in fresh medium
containing 1 mM Au NPs for 24 h. Then, cells were detached using 0.25% trypsin-
ethylenediaminetetraacetic acid (EDTA) (Gibco, Grand Island, NY, USA) digestion, rinsed
twice in cold PBS, and collected through centrifugation. Cells were then fixed using
2.5% glutaraldehyde for 2 h. Subsequently, the cells were washed and fixed with ca-
codylate buffer and osmium tetroxide (2%), respectively, dehydrated with 70–100% ace-
tone and embedded and cut in a film (70 nm) using an ultra-microtome. After a uranyl
acetate-lead citrate double staining, the samples were observed under TEM (H-600, Hitachi;
Tokyo, Japan).

3. Results and Discussion
3.1. Total Phenolic and Ascorbic Acid Content

When plants contain higher total phenolic content, they possess stronger antioxi-
dant activity [25]. Ascorbic acid also contributes to high levels of antioxidant capacity
of upland cress [19]. Hence, it is critical to determine the total phenolic and ascorbic
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acid content. The total phenolic and ascorbic acid concentrations were determined to be
163.3 ± 1.5 µg GAE/mL extract and 24.5 ± 1.1 µg/mL extract, respectively. The high
phenolic and ascorbic acid content potentially contributed to reduction and capping during
nanoparticle synthesis.

3.2. Effects of Incubation Time on the Green Synthesis Process

To improve the extraction efficiency and consistency of the synthesis process, the
previous procedure [19] was modified. Specifically, blending was used to prepare the ex-
tract rather than boiling, as boiling showed inconsistencies. The unique optical properties
of Au NPs are primary indicators for confirming the successful synthesis of nanoparticles.
The apparent color transition from pale green to wine red color (Figure 1) is indicative of the
formation of gold nanoparticles due to the surface plasmon resonance phenomenon [26].
As the nanoparticles grow, the absorption wavelengths become longer and redder. The
color and intensity changes reflect the formation and growth of Au NPs, respectively [26].
There was no significant color change observed after 4 h. To further investigate the effects
of incubation time on the green synthesis process, 2-, 4-, and 6-h-long periods were selected
based on a previous study [19]. As shown in Figure 2A, a characteristic absorption peak is
visible for each nanoparticle sample prepared with different incubation times. A right shift
and intensity increase of the characteristic absorbance peak between the 2- and 4-h samples
indicate the growth of Au NPs and potential formation of agglomerates. After 4 h, there was
no significant peak shift. Comparing with the control (0 h incubation, insert of Figure 2A),
the absorbance remains in the low (450–650 nm) wavelength range. No absorbance peak is
visible ~530 nm. After 4 h, there was no significant peak shift. Based on the results, a 6-h
incubation time was chosen for the nanoparticle synthesis. UV-Vis spectroscopy results
(Figure 2B) indicated a characteristic absorption peak of about 529 nm, which is within the
characteristic range for gold nanoparticles (~500–550 nm). The concentration-dependence
of particle formation was also observed when various concentrations of Au NPs (0.5,
1.0, 2.5 mM) were used (Figure 2B). The observed time-dependence and concentration-
dependence of Au NP formation is consistent with literature [27,28].
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3.3. Morphology, Chemical Composition, and Surface Charge

Both SEM and AFM were used to examine the morphology and size/size distribution
of the Au NPs. SEM and AFM offer straightforward visualization of metallic nanoparticles
due to their high resolution. Au NPs are indicated by the AFM and SEM as the bright
spots in either image. SEM imaging (Figure 3A) revealed the production of spherical Au
NPs with uniform size (10.7 ± 2.2 nm) and without aggregation. AFM imaging (Figure 3B)
further confirmed the production of well dispersed spherical nanoparticles with a narrow
size distribution. EDX results (Figure 3C) indicate an 11.13% gold composition by mass.
Carbon and oxygen peaks within the spectrum indicate the presence of phytoconstituents,
organic capping agents associated with the upland cress extract. Other inorganic elemental
species such as calcium, potassium, chlorine, and magnesium were observed and their
presence can be attributed to their high content in upland cress [12,29]. The presence
of copper in the EDX spectrum was observed due to the conductive adhesive used for
SEM imaging. Zeta potential measurements were performed to assess the surface charge
and stability of the synthesized Au NPs. Zetasizer readings provided an average zeta (ζ)
potential of −36.8 mV, implying favorable colloidal stability [30]. The apparent stability is
most likely due to the phytochemical capping of the Au NPs.

The ATR-FTIR spectrum of Au NPs is shown in Figure 4. Functional groups were
assigned to the corresponding spectral bands based on literature [15,31]. The bands in-
clude 3286 cm−1 (–OH stretching of phenolics and other phytochemicals); 2928 cm−1 and
2875 cm−1 (–CH stretching of alkanes); 1636 cm−1 (including –NH bending and –C=O);
1512 cm−1 (–CH of alkanes and –NO of nitro-compounds); 1454 cm−1 (including –OH
bending –C=O of phenolics and other phytochemicals); and 1387 cm−1 (–CN stretch-
ing of aromatic amine group). Based on the results, the presence of stabilizing/capping
agents (phenolics and other phytochemicals of upland cress extract) on the Au NPs was
confirmed [15].
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3.4. Crystal Structure of Au NPs

Powder XRD analysis (Figure 5) provided diffraction peaks at 2θ angles 38.20◦, 43.73◦,
64.77◦, 77.72◦, and 82.09◦ corresponding to the crystalline gold atomic planes (111), (200),
(220), (311), and (222) confirming the expected face-centered cubic structure (JCPDS Card
No. 96-901-1613). Unassigned diffraction peaks are presumed to be related to the produc-
tion of bio-organic crystallite phases on the surface of the Au NPs [32,33]. Peak broadening
observable in the XRD pattern can be attributed to the scale of the measured crystallites as
explained by the Scherrer equation (Equation (1)) [19,34].

D =
kλ

β cos(θ)
(1)

where k = 1, λ = 0.1542, β is the full width at half maximum, and θ is the diffraction
angle. Using 2θ values of 38.20◦ and 64.77◦, the nanoparticle size was determined to be
approximately 13 nm, which is similar to the SEM and AFM results.
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3.5. Catalysis of the Reduction of 4-Nitrophenol

The catalysis of the reduction of 4-nitrophenol is a commonly used reaction when
testing the catalytic ability of nanoparticles [12,35–37]. Verification of nanoparticle catalysis
is centered on the analysis of the extinction of the absorbance peak of 4-nitrophenol (400 nm)
which indicates the catalyzed reduction of 4-nitrophenol to 4-aminophenol. Results show
that over a 30-min measurement interval, the characteristic peak of 4-nitrophenol decreased
substantially, verifying successful catalytic ability (Figure 6A). The catalysis was also
verified through the reaction system color change from bright yellow to pale pink (color of
Au NPs). The kinetics of the catalyzed reaction were analyzed according to the Langmuir-
Hinshelwood mechanism for bimolecular surface reactions [6,38]. According to this general
model, the reduction reaction occurs on the surface of the Au NPs. Here, borohydride ions
(BH4

−) adsorb to the surface and hydrogen species are formed via electron transfer. At the
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same time, 4-nitrophenol adsorbs to the surface. The 4-nitrophenol is then reduced to 4-
aminophenol on the surface before detachment from the catalyst site [12]. The pseudo-first
order equation used to analyze this process is shown as Equation (2).

ln(
At
A0

)
= −kappt (2)
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Application of this relationship reveals an initial period of no reaction (4 min), followed
by first-order reaction kinetics (linear region). The rate constant was derived from the linear
region and was found to be 0.0267 min−1 (Figure 6B) with an R2 of 0.995. The initial period
of no reaction is most likely attributed to the blockage of potential catalysis sites by capping
molecules. This size of Au NPs is preferred for catalysis according to reference [39,40].

3.6. Antibacterial Activity

The analysis of inhibitory zones shows a dose-dependent and species dependent
antibacterial effect on Gram-negative E. coli and Gram-positive B. megaterium (Figure 7).
Measurements of bacterial growth inhibition indicate the largest zones of inhibition occur-
ring at Au NP doses of 0.25 mM (9 mm) and 0.5 mM (7.25 mm) for E. coli and B. megaterium,
respectively. Analysis of the average inhibition zones across all trials indicate a higher
antibacterial activity in the B. megaterium with an average of 7.3 mm versus an average
of 6.6 mm seen with E. coli. The Au NPs appear to have lower antibacterial activity than
Ag NPs using the same synthesis method [19]. It is reported that nanoparticles have been
demonstrated to show a size and surface ligand dependent cytotoxic effect [24,41]. The
small size of the synthesized Au NPs and the presence of bioorganic surface ligands related
to the upland cress extract may contribute to the observed antibacterial activity. This
antibacterial activity of Au NPs may be attributed to one or multiple mechanisms of Au
NPs including the direct disruption of major internal cell function (ATP production, DNA
replication, enzyme inhibition), the formation of toxic reactive oxygen species (ROS), as
well as direct damage to the cellular membrane [41,42]. The antibacterial activity of Au NPs
show promise for their biomedical applications with added infection prevention benefits.
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3.7. Cytotoxicity and Cellular Uptake

Considering the potential biomedical applications, both stem (BMSCs) and cancer
(HeLa) cells were used to study the cellular uptake and cytotoxicity of Au NPs (Figure 8).
BMSCs were studied for potential stem-cell based medicines, while HeLa cells were ex-
amined for prospective cancer treatment applications. A broad range (0.1–2.5 mM) of
nanoparticle concentrations were tested and LC50 (50% lethal concentration—the con-
centration that kills 50% of the cells) were determined. The results showed that BMSCs
(LC50 = 2 mM) are more sensitive to the Au NPs than HeLa cells (LC50 > 2.5 mM). The cell
viability of the BMSCs dropped lower than 70% when the Au NP concentration reaches
0.1 mM while the HeLa viability remains higher than 70% until the concentration surpasses
1.0 mM. A recent study showed about 80% cell viability of PC3 cancer cells using Au NPs
of similar size, which is close to our results (84%) [43]. A cell viability of ~79% for BMSCs
was reported with spherical Au NPs (18 nm; 0.09 mM) [44] which is comparable to our
results as well (77%; 0.1 mM). A recent study indicated that 15 nm Au NPs could affect
the characteristic MSC marker expression (e.g., CD 105) and cell differentiation, especially
when the concentration is higher than 9 µg/mL [45]. Cell damage and apoptosis may be
explained by the generation of reactive oxidative stresses (ROS) [46]. Based on the cytotoxi-
city results a concentration of 1.0 mM was used for cellular uptake studies. TEM images of
the cellular studies (Figure 9) indicate that nanoparticles are visible within the cells. The
nanoparticles are mostly within membrane-bound vesicles such as endosomes (formed due
to endocytosis). These results are consistent with previous publications which state that
endocytosis (most likely receptor-mediated) is the primary route for cellular uptake [43,47].
For potential applications, the size of the Au NPs can be fine-tuned to adjust toxicity and
cellular uptake, as it has been well studied that the size greatly affects the nanoparticle-cell
interactions (e.g., cellular uptake efficiency and mechanism) (size-dependent cellular up-
take and localization profiles of silver nanoparticles; size- and cell type-dependent cellular
uptake, cytotoxicity and in vivo distribution of gold nanoparticles).
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4. Conclusions

The study focused on the novel use of upland cress as a green synthesis agent for the
production of gold nanoparticles. A blending method was used to extract the necessary
phytochemicals (e.g., phenolics and ascorbic acid) within the upland cress to serve as a
reducing agent for the reduction of gold (III) chloride trihydrate and a capping agent.
The resultant purified particles were characterized using UV-Visible spectroscopy, SEM-
EDX, AFM, Zetasizer, ATR-FTIR, and XRD. The results indicated the successful synthesis
of Au NPs which were found to be spherical, well dispersed with an average diameter
~11 nm, and a characteristic absorbance peak at ~529 nm. A negative ζ-value of −36.8 mV
indicated stability of the Au NPs while XRD analysis verified the production of crystalline
face-centered cubic gold. Furthermore, the antimicrobial testing results demonstrated
concentration-dependent antimicrobial properties of the Au NPs. The catalytic ability of
Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol
(first-order kinetics). Cellular uptake and cytotoxicity studies using both BMSCs and HeLa
cells indicated the uptake of Au NPs into cells and cell type dependent cytotoxicity. This
green synthesis method provides a simple, cost effective, green solution to produce gold
nanoparticles and provides a promising source of functionalized nanoparticles for use in
various applications.
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