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YONE who teaches knows there are two questions to 
steer clear of on exams: the one about evolution, 
to which there is no certifiable answer; and the one 

about gene control, to which every conceivable answer is 
correct. Or so it seems at times. 

The profusion of transcriptional and posttranscriptional 
controls that have emerged in recent years can be simplified 
by recognizing categories. One category involves the regula- 
tion of mRNA stability. Short sequence motifs that confer 
sensitivity or resistance to nucleases, thereby controlling 
mRNA turnover, have been identified in both prokaryotes 
and eukaryotes (reviewed by Brawerman, 1987). Here I 
would like to focus attention on three other categories of gene 
regulation: (a) programmed variations in mRNA structure, 
particularly in ways that affect translation; (b) translation- 
linked control of mRNA metabolism; and (c) regulation of 
translation by RNA-binding proteins. 

Regulated Transcriptional Events and Their 
Consequences for Translation in Eukaryotes 

The structure of mRNA determines both the form and yield 
of the encoded protein, mRNA structure in turn depends on 
where transcription initiates and how transcripts are edited 
during the splicing and polyadenylation steps. 

Promoter Switching 
The use of alternative start sites for transcription can affect 
the translatability of eukaryotic mRNAs in two ways. Pro- 
moter switching may produce from one gene two forms of 
mRNA, one of which begins slightly farther upstream than 
the other. In cases where the longer transcript includes an 
upstream in-frame AUG codon, initiation of translation from 
that site will add an "extra" NH2-terminal domain to the 
protein, as illustrated in Fig. 1; the biological consequences 
of the extra domain are significant, as indicated in Table 
I. An important point, predicted by theory (Kozak, 1980, 
1983) and verified experimentally (see references in Table I), 
is that the shorter version of the protein can be synthesized 
only from the 5'-truncated form of mRNA even though its 
initiation site is present, internally, in the longer transcript. 
Thus, to produce two versions of the protein, two versions 
of mRNA are required. (There is a way to generate two pro- 
teins by initiating at the first and second AUG codons in a 
single mRNA, but that "leaky scanning" process requires 
that the upstream AUG codon occur in an unfavorable con- 
text for initiation [Kozak, 1986]; the mRNAs in Table I do 
not meet that requirement.) 

In other cases, promoter switching does not affect the form 
of the encoded protein, but the 5'-noncoding sequence is 
changed in a way that makes translation more or less dif- 
ficult. The transcription of many proto-oncogenes (Bentley 
and Groudine, 1986; Propst et al., 1987; Seto et al., 1988; 
Stanton and Bishop, 1987; Voronova et al., 1987) and other 
critical genes (Perlino et al., 1987; Saga et al., 1987; Stanley 
et al., 1985; de Th6 et al., 1987) alternates between two 
promoters: one producing a long, GC-rich leader sequence 
that often has upstream out-of-frame AUG codons, while the 
second form of mRNA has a shorter, simpler leader sequence. 
The suspicion that the complicated leader sequence on the 
longer mRNA might impair translation has recently been 
confirmed for three proto-oncogenes: c-sis (Ratner et al., 
1987; Rao et al., 1988), c-mos (Propst et al., 1987), and 
p56 tck (Marth et al., 1988). c-myc is the only case in which 
truncating a long GC-rich leader sequence did not produce 
the expected improvement in translation in vivo (Butnick et 
al., 1985), but the notorious instability of c-myc mRNA 
might mitigate against detecting regulation at other levels. 

Regulated Splicing 
The phenomenon of alternative splicing is widespread and 
has important consequences for gene expression in eukary- 
otes (Breitbart et al., 1987). Whereas alternative splicing 
produces two or more functional forms of mRNA, recent ex- 
periments have revealed another type of control in which a 
transcript is either rendered functional by removing all in- 
trons or kept nonfunctional by temporarily retaining at least 
part of one intron. The best-characterized examples are some 
developmentally regulated genes in Drosophila (Boggs et 
al., 1987; Laski et al., 1986). Splicing of the su(w a) gene 
(suppressor-of-white-apricot) is developmentally autoregu- 
lated; only in the absence of the su(w ~) protein are introns 
1 and 2 removed to produce a translatable mRNA (Zachar 
et al., 1987). There is evidence of intron retention in other 
systems, too. The untranslated maternal "mRNAs" in sea ur- 
chin eggs, for example, appear to be incompletely spliced 
(Ruzdijic and Pederson, 1987). Human cells accumulate sur- 
prisingly high levels of intron-containing transcripts from 
the c-fgr proto-oncogene (Katamine et al., 1988) and the 
gene that encodes the U1-70K snRNP protein (Spritz et al., 
1987), suggesting that the splicing of those transcripts is ei- 
ther constitutively inefficient or regulated. 

The stage-specific expression of the Krappel gene in Dro- 
sophila is especially interesting because the intron that is 
subject to regulation occurs near the 5'-end of the transcript; 
transcripts that retain the intron have seven AUG codons up- 
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Figure 1. A scheme whereby one gene 
uses two promoters to produce two tran- 
scripts and thus two forms of the en- 
coded protein, initiated respectively at 
the 5' proximal AUG codon in each tran- 
script. See Table I for examples. 

stream from the major open reading frame, which probably 
explains their inability to synthesize the Krappel protein in 
vivo (Gaul et al., 1987). In contrast with that in vivo result, 
Gaul et al. (1987) were unable to show that translation of the 
intron-containing mRNA was impaired in vitro, but such ex- 
periments rarely succeed when a reticulocyte translation sys- 
tem is used. Part of the problem is infidelity at the level of 
initiation, a problem that may be exacerbated when the 
mRNA derives from an SP6- or T7-vector; thus reticulocyte 
ribosomes sometimes initiate inappropriately at five or more 
AUG codons, only the first of which serves as an initiator 
codon in vivo (Gronemeyer et al., 1987; Parker et al., 1986; 
Ramsay et al., 1986; Rao et al., 1987; Zerial et al., 1987). 
In wheat germ extracts, on the other hand, translation is 
limited to the authentic start sites in viral and cellular 
mRNAs (Kozak and Shatkin, 1977; Zerial et al., 1987) and 
translation is inhibited in the expected way by upstream AUG 
codons (Khalili et al., 1987; Pachnis et al., 1988). Thus 
there is hope for reproducing some aspects of translational 
regulation in appropriate cell-free systems. 

Translation-linked Control of 
mRNA Metabolism 

In bacteria, changes in mRNA conformation during ribo- 
some transit and the consequences for transcription are well 
documented (Yanofsky, 1988). In eukaryotes this is a rare 
phenomenon, but three systems show evidence of linkage be- 
tween translation and mRNA synthesis or decay. 

Case 1 

The first example concerns 13-tubulin autoregulation in ani- 
mal cells; i.e., the ability of unpolymerized tubulins to re- 
press new tubulin synthesis. Experiments with enucleated, 
ceils (Caron et al.~ 1985) revealed that autoregulation takes 
place in the cytoplasm and involves modulation of tubulin 
mRNA stability. The novelty is that only polysome-bound 
tubulin mRNAs are rapidly degraded in the presence of free 
tubulin (Pachter et al., 1987). Thus cycloheximide, which 
stalls ribosomes on mRNA, enhances the degradation of tu- 
bulin mRNAs in response to elevated tubulin levels; while 
puromycin, which releases ribosomes from mRNA, stabi- 
lizes tubulin transcripts. The sequence in 13-tubulin mRNA 
that makes it susceptible to autoregulation is (surprisingly) 
not located in the 5' or 3' untranslated regions. Rather, the 
sequence that encodes the four NH2-terminal amino acids 
of 13-tubulin is necessary and sufficient for regulated degra- 
dation of mRNA (Yen et al., 1988). Putting those facts to- 
gether, Pachter et al. (1987) suggest that ribosomes function 
as "cofactors" for degradation either because the nuclease is 
ribosome associated or because ribosome transit across the 
message eliminates secondary structure, thus facilitating 
nuclease attack. The critical requirement for free tubulin 
might involve binding of the protein to mRNA (in which case 
the location of the target site at the start of the coding region 
is something of a coincidence) or the free tubulin subunits 
might interact with the nascent tubulin polypeptide to form 
a multiprotein complex that stalls the ribosome. The latter 
mechanism is reminiscent of translational arrest by the signal 

Table L Genes that Produce "Long"and "Short" Forms of the Encoded Protein by Initiating Transcription 
from Two Sites, as Depicted in Fig. 1 

Gene Source Function of long isoform Function of short isoform References 

ct-Isopropylmalate Yeast Imported into mitochondria Cytoplasmic Beltzer et al., 1988 
synthase (LEU4) 

Valine-tRNA syn- Yeast Cytoplasmic Chatton et al., 1988 
thetase (VASI) 

Histidine-tRNA syn- Yeast Cytoplasmic Natsoulis et al., 1986 
thetase (HTS1) 

tRNA-dimethyl- Yeast Cytoplasmic Ellis et al., 1987 
transferase (TRMI) 

Invertase (SUC2) Yeast Cytoplasmic Carlson et al., 1983 
Gelsolin Human Cytoplasmic Kwiatkowski et al., 1988 
Porphobilinogen Human Specific to erythroid cells Chretien et al., 1988 

deaminase 
Surface antigen Hepatitis B Secreted Persing et al., 1986; 

virus Ganem and Varmus, 1987 
E2 Bovine papil- Transcriptional repressor Lambert et al., 1987 

loma virus 
E6 Rabbit papil- Cytoplasmic; predominates Barbosa and Wettstein, 

ioma virus in malignant tumors 1987, 1988 

Imported into mitochondria 

Imported into mitochondria 

Imported into mitochondria* 

Secreted 
Secreted (plasma form) 

"Housekeeping" enzyme in all 
nonerythroid cells 

Inhibits secretion (thus 
controlling virus assembly) 
Activator of transcription 

Localized to nucleus; abun- 
dant in benign tumors 

* In the case of N2,N2-dimethylguanosine tRNA methyltransferase, the NH2-terminal extension increases the etticiency of import into mitochondria, but it is not 
obligatory. 
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recognition particle (Walter and Blobel, 1981) except, of 
course, that translational arrest by the signal recognition par- 
ticle is not followed by mRNA degradation. 

Case 2 

A major class of histone mRNAs is selectively and rapidly 
degraded when DNA synthesis is inhibited in mammalian 
cells. Two types of evidence implicate a 3' terminal stem- 
and-loop structure in this controlled degradation: (a) regula- 
tion of histone mRNA stability is lost when the 3' hairpin is 
either deleted or moved to an internal position (Levine et al., 
1987), and (b) transposing the hairpin to the 3' end of an 
a-globin gene causes ct-globin mRNA to be degraded in par- 
allel with histone mRNAs (Pandey and Marzluff, 1987). 
Since histone mRNAs are degraded 3' to 5' both in vivo (Ross 
et al., 1986) and in vitro (Ross and Kobs, 1986), a reason- 
able hypothesis is that the 3' hairpin constitutes the target for 
a 3' exonuclease. 

An interesting complication is that, when DNA and pro- 
tein synthesis are inhibited at the same time in vivo, the ac- 
celerated degradation of histone mRNAs is prevented. Two 
explanations for the protein synthesis requirement have sur- 
faced recently. Peltz and Ross (1987) postulate that histone 
mRNA decay is triggered by the accumulation of free histone 
proteins, an idea that is strongly supported by the effect of 
adding core histones to a cell-free system. The resulting ac- 
celerated decay was specific for histone proteins (which 
could not be replaced by other basic, single-stranded nucleic 
acid-binding proteins) and for histone mRNAs. A second ex- 
planation for the protein synthesis requirement postulates a 
direct role for ribosomes in mRNA turnover. Graves et al. 
(1987) found that histone H3 mRNA was not properly de- 
graded in vivo when ribosomes terminated translation pre- 
maturely, as the result of frameshift mutations that intro- 
duced a terminator codon some 300-500 nucleotides 
upstream from the normal stop site. Thus they postulate that 
the length of the 3'-noncoding sequence influences the 
efficiency of mRNA degradation, either because the putative 
3' exonuclease is ribosome bound and must be brought close 
to the 3'-terminal hairpin, or because ribosomes must tra- 
verse (almost) the entire length of the message to melt sec- 
ondary structure, thereby facilitating nuclease attack. The 
report by Capasso et al. (1987) of a mutant histone H4 
mRNA that is degraded rapidly even though ribosomes ter- 
minate m200 nucleotides upstream from the normal site 
does not necessarily contradict the findings of Graves et al. 
(1987); if the need for ribosome transit has to do with remov- 
ing secondary structure from the mRNA, that requirement 
is likely to vary from one construct to another. 

Case 3 

In the third example, the postulated role of ribosomes is once 
again to erase or alter secondary structures, but this time the 
effects are on mRNA synthesis rather than degradation. La 
Crosse virus is an insect-borne RNA-containing bunyavirus 
that replicates in the cytoplasm of infected cells. Like all 
negative-stranded RNA viruses, La Crosse virus carries an 
RNA polymerase within the virion. The problem is that the 
polymerase makes only short ('~175 nucleotides) 5'-terminal 
fragments of mRNA. The solution, demonstrated both in 
vivo (Raju and Kolakofsky, 1987) and in vitro (Bellocq et al., 

1987), is that ongoing protein synthesis relieves the tran- 
scriptional block. A clue to the mechanism is that the trans- 
lational requirement can be obviated by substituting inosine 
for guanosine in the nascent mRNA chains (Bellocq and 
Kolakofsky, 1987). Because inosine substitution greatly 
weakens RNA secondary structures, Kolakofsky and co-work- 
ers (e.g., Bellocq and Kolakofsky, 1987; Bellocq et al., 1987) 
postulate that ribosome transit also disrupts base pairing. The 
idea is that, in the absence of ribosomes, the viral RNA poly- 
merase senses an (as yet undefined) base-paired structure in- 
volving the 5' end of nascent mRNA chains, and polymerase 
responds by terminating transcription. When translation and 
transcription occur simultaneously, however, ribosome transit 
prevents the nascent mRNA strands from folding and there- 
fore polymerase reads through, producing full-sized mRNAs. 
The mechanism has obvious similarities to the attenuation 
phenomenon in bacteria (Yanofksy, 1988). 

Contro l  o f  Translat ion by m R N A - b i n d i n g  
Proteins in Prokaryotes  . . . 

A handful of Escherichia coli ribosomal proteins (rp's) j and 
bacteriophage proteins are the paradigms of translational 
repressor proteins. The traditional list of such proteins has 
grown some in the past year or two (Table II) and detailed 
structures of many of the target sites have been deduced. The 
results confirm some old hypotheses and reveal some sur- 
prising twists. Many repressor binding sites involve a stem- 
and-loop structure, as indicated in Table II. Not every hair- 
pin structure in mRNA is a target, of course. By mutagenesis 
of several target sites the features required for tight, specific 
binding have been identified; they include "bulged" nucleo- 
tides that protrude from the stem (Romaniuk et al., 1987; 
Climie and Friesen, 1987), unpaired nucleotides in an inter- 
nal loop (Thomas and Nomura, 1987), and unpaired nucleo- 
tides in the hairpin loop (Romaniuk et al., 1987; Freedman 
et al., 1987). Many nucleotides in the stem itself can be 
changed without impairing regulation, provided that base 
pairing is maintained by compensatory sequence changes 
(Baughman and Nomura, 1984; Climie and Friesen, 1987); 
thus the function of the stem seems to be to orient the scat- 
tered unpaired bases that the protein directly touches. 

The primary function of most known translational repres- 
sor proteins involves binding to nucleic acids, a circumstance 
that probably facilitated their recruitment to the secondary 
task of regulating translation. Thus Nomura et al. (1980) 
postulated some years back that the mRNA-binding sites for 
ribosomal repressor proteins might resemble their binding 
sites on 16S and 23S rRNA. That prediction has now been 
confirmed for $8, L1, and L10 (see references in Table II); 
in the case of $4 and L4, however, the anticipated homology 
between the mRNA- and rRNA-binding sites is not obvious. 
Threonine-tRNA synthetase is another protein, recruited 
secondarily to regulate translation, that probably binds to ho- 
mologous sites on mRNA and, in this case, tRNA (Springer 
et al., 1986). 

As indicated in Table II, the target site for many of the 
repressor proteins on mRNA overlaps the ribosome binding 

1. Abbreviations used in this paper: RBS, ribosome binding site; rp. ribo- 
somal protein. 
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Table II. Negative Regulation of Translation by mRNA-binding Proteins 

Repressor 
protein Target gene Structure and location* 

Binding site for repressor 

How identified References 

Phage RI7 Replicase 21-nucleotide hairpin; Saturation muta- 
coat protein AUG is within stem* genesis of  syn- 

thetic 21 -mer 
Phage Q13 Coat gene Includes AUG initiator Protected from 

replicase codon RNase 
Phage fl Gene II Unstructured sequence 

gene V (replicase) near AUG (see text) 
Phage T4 Gene 32 Unstructured sequence Deletion muta- 

gene 32 near AUG genesis 
Phage T4 Many T4 genes Includes AUG initiator Protection from 

regA regA, rllB, etc. codon RNase 
Phage P22 Scaffolding Unknown 

scaffold protein gene 
E. coli § thrS Includes positions - 1 0  Map spontaneous 

thrS through 40 o ~ mutations 
E. coli II infC Includes A U U  initiator Mutagenesis of  

infC codon AUU abolishes 
repression 

Romaniuk et al., 1987 

Weber et al., 1972 

Yen and Webster, 1982; 
Model et al., 1982 
Krisch and Allet, 

1982 
Winter et al., 1987 

Wyckoff and Casjens, 
1985 

Springer et al., 1986 

Butler et al., 1987 

E. coli RNA 13/13' genes Unknown Bedwell and Nomura, 
polymerase 1986** 

E. coli rp's 
rp L1 L11 gene Hairpin in position Mutagenesis Kearney and Nomura, 

(LI 1 operon) - 18 to - 4 5 ,  ql 1987; Thomas and 
Nomura, 1987 

rp L4 S10 gene Hairpin in position Deletion and point Freedman et at., 1987 
(S10 operon) - 3 5  to -805 mutagenesis 

rp L10 LI0 gene Hairpins in positions Protection and Climie and Friesen, 
(rif operon) - 8 0  to - 136, - 140 to - 174' mutagenesis 1987 

rp $4 S13 gene Hairpin ( - 2 0  to - 8 0 )  Mutagenesis; ill- Deckman and Draper, 
(ct operon) pseudoknotted to nucleo- ter binding with 1987; Thomas et al., 

tides +4  to +7* RNA fragments 1987 
rp $8 L5 gene Predicted hairpin has Mutagenesis Olins and Nomura, 

(spc operon) AUG within stem*.** 1981 

* The mRNA sequence is numbered relative to the A of the AUG initiator codon, which is designated + 1 ; the preceding nucleotide is designated - 1. The Shine- 
Dalgarno sequence falls around position - 7  to -10.  
~: These hairpin structures have been proven by generating compensatory mutations and/or by probing the mRNA with structure-specific enzymes. 
§ ThrS, threonine-tRNA synthetase. 
II lnfC, translational initiation factor 3. 

The target site for rp L1 was defined by selecting mutants that had lost regulation but could still be translated; that approach precludes the recovery of mutations 
in the Shine-Dalgarno site which might or might not be included in the repressor binding site. 
** Autoregulation of 1~/1~' has been observed in vivo, but in vitro experiments are still needed to determine if the level of regulation is (exclusively) translational. 
*:~ The location and revised secondary structure of the $8 target site on spc mRNA have recently been determined by site-directed mutagenesis and RNase protec- 
tion experiments (Nomura, M., personal communication). 

site (RBS), and those proteins probably inhibit translation by 
direct competition with ribosomes. L1 should probably be 
counted in that category, since the hairpin that comprises its 
target is pulled close to the RBS when the secondary struc- 
ture of the whole region is taken into account (Kearney and 
Nomura, 1987). The target site for $4 maps surprisingly far 
upstream from the affected RBS, but Deckman and Draper 
(1987) have solved that dilemma by demonstrating the exis- 
tence of a pseudoknot: the hairpin structure to which $4 
binds has a single-stranded GGGC sequence in the loop that 
pairs with the complementary CCCG sequence just down- 
stream from the GUG initiator codon, thus bringing the $4 
protein within reach of the initiating ribosome. The binding 
site for L10 also maps far upstream from the start of the 
affected coding sequence, and again the mRNA is thought to 
be folded in a way that brings L10 near the RBS (Fiil et al., 

1980); the tertiary interaction has not yet been defined for 
L10, however, as it has been for $4. 

Both T4 gene 32 protein and the gene V protein of filamen- 
tous phage fl mediate DNA replication by binding to single- 
stranded regions of DNA; appropriately, their target sites on 
mRNA also seem to be unstructured. Something more than 
single strandedness must identify the target sites in mRNA, 
however, since neither of those proteins can substitute for the 
other as a translational repressor (Fulford and Model, 1984). 
A recent report suggests that the single-stranded DNA-bind- 
ing protein of E. coli can also bind to its own mRNA and 
block translation (Shimamoto et al., 1987). Bacteriophage 
T4 regA protein remains the most perplexing of the transla- 
tional repressors inasmuch as it inhibits the translation of a 
variety of phage and even some bacterial mRNAs that have 
no obvious common structure (Miller et al., 1987). 
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Recent studies with the clll gene of bacteriophage L may 
have uncovered the first example of a translational "activator" 
protein in E. coli (Altuvia et al., 1987). The clII gene is 
preceded by an RNase III cleavage site and clII is translated 
efficiently only in cells that have RNase III. That is not an 
uncommon situation; the usual explanation is that cleavage 
by RNase III relieves some conformational constraint and 
thereby facilitates initiation. Altuvia et al. (1987) discovered, 
however, that a mutant clII gene that cannot be cleaved by 
RNase III still requires RNase III for efficient translation. 
Thus they postulate that the mere binding of RNase III to 
mRNA induces the requisite change in conformation, and 
that subsequent cleavage of (wild-type) clII mRNA actually 
inactivates it for translation. The translation of lambda gene 
clI is also positively regulated by a host protein, but in a less 
direct fashion than gene clII (Mahajna et al., 1986). 

• . .  But  Not  Yet in Eukaryotes 

Specific mRNA-binding proteins that modulate translation 
have not yet been identified in eukaryotes. Autoregulation by 
free tubulin subunits and histones might involve the binding 
of those proteins to their respective mRNAs, but that has not 
yet been shown and, in any case, the effect is on mRNA sta- 
bility rather than translation. The signal recognition particle 
does arrest translation, but it interacts with the nascent poly- 
peptide (Krieg et al., 1986) rather than with the mRNA. 

Some experiments with HIV, the etiological agent of 
AIDS, suggest that the "transactivating" protein tat might 
facilitate translation (Cullen, 1986; Feinberg et al., 1986; 
Knight et al., 1987; Wright et al., 1986), but direct binding 
of the protein to viral mRNA has not been demonstrated, and 
the phenomenology varies from experiment to experiment 
(Kao et al., 1987; Muesing et al., 1987; Peterlin et al., 
1986; Rice and Mathews, 1988). Whereas thetat gene prod- 
uct of HIV is postulated to enhance translation, the rep gene 
product of adeno-associated virus is postulated to suppress 
the synthesis of viral capsid proteins, apparently at the level 
of translation (Trempe and Carter, 1988). The inhibitory 
effect ofrep protein shows a puzzling lack of specificity, how- 
ever, which makes it unlikely that the protein binds directly 
to the affected mRNAs. 

Unlike prokaryotes, the balanced accumulation of ribo- 
somal proteins in eukaryotes is not accomplished by transla- 
tional autoregulation. Test after test in yeast (Abovich et al., 
1985), mammalian cells (Bowman, 1987), and Xenopus 
oocytes (Pierandrei-Amaldi et al., 1985b) has failed to detect 
feedback regulation by ribosomal proteins at the level of 
translation. The only exceptions were two yeast ribosomal 
protein genes, L3 and L29, that were at first thought to be 
translationally controlled (Pearson et al., 1982; Warner et 
al., 1985). A careful followup study, however, revealed no 
change in polysome distribution when L3 and L29 mRNAs 
were overproduced (Maicas et al., 1988); instead, the dis- 
crepancy between mRNA levels and protein accumulation 
was traced to rapid degradation of the newly synthesized 
L3 and L29 proteins (see below). The possibility that a few 
rp genes might be regulated at the level of transcriptional 
processing has also been suggested (Dabeva et al., 1986; 
Caffarelli et al., 1987) but has not yet been confirmed by 
using an in vitro splicing system. The most frequent and 
most compelling finding is that the synthesis of rp's is not 

balanced in eukaryotes; rather, each protein is made in 
proportion to its mRNA concentration, and excess proteins 
that cannot be incorporated into ribosomes are rapidly de- 
graded (Abovich et al., 1985; Bowman, 1987; Maicas et 
al., 1988; Pierandrei-Amaldi et al., 1985a; Warner, 1977). 
Inefficient as that may seem, it nevertheless accomplishes the 
same balanced accumulation of rp's as the elegant bacterial 
mechanism. Parenthetically, the reliance on proteolysis to 
balance rp accumulation in eukaryotes is not a complete sur- 
prise; a similar mechanism disposes of excess 13-spectrin 
(Woods and Lazarides, 1985) and 13-tubulin (Whitfield et al., 
1986) which, like rp's, are subunits of multicomponent pro- 
tein structures. 

Conclusion 

Although many genes are regulated by simply switching their 
transcription on and off, there is growing evidence of the im- 
portance and variety of posttranscriptional controls. The 
three levels of control highlighted in this review were chosen 
because they are areas of recent progress and because they 
represent regulatory devices that are used again and again. 
The examples cited reveal how minor shifts in mRNA struc- 
ture can have major consequences for translation, how on- 
going translation can control the synthesis or stability of 
mRNA, and how mRNA-binding proteins regulate transla- 
tion in prokaryotes but not (so far) in eukaryotes. 
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