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The geometry of clinical labs and wellness states
from deeply phenotyped humans
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Longitudinal multi-omics measurements are highly valuable in studying heterogeneity in

health and disease phenotypes. For thousands of people, we have collected longitudinal

multi-omics data. To analyze, interpret and visualize this extremely high-dimensional data,

we use the Pareto Task Inference (ParTI) method. We find that the clinical labs data fall

within a tetrahedron. We then use all other data types to characterize the four archetypes.

We find that the tetrahedron comprises three wellness states, defining a wellness triangular

plane, and one aberrant health state that captures aspects of commonality in movement

away from wellness. We reveal the tradeoffs that shape the data and their hierarchy, and use

longitudinal data to observe individual trajectories. We then demonstrate how the movement

on the tetrahedron can be used for detecting unexpected trajectories, which might indicate

transitions from health to disease and reveal abnormal conditions, even when all individual

blood measurements are in the norm.
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To make substantial progress in studying human wellness,
there is a need for systematic and holistic approaches that
generate and interpret longitudinal health data1–5. Emer-

ging technologies allow for thousands of low-cost measurements
from individual participants over time6–9. Through a partnership
with Arivale (a now-closed spin-off company from our lab) we
generated such a longitudinal, multi-omics dataset, spanning e.g.
genomics, proteomics, metabolomics and microbiome
quantification10–13. Integrating divergent data types into system-
scale analyses represents a major challenge12,14–16. Commonly
used methods for analyzing high-dimensional data include cor-
relation networks, univariate statistical tests with multiple-
hypothesis correction, and multivariate machine learning
models8,9,12–14,17. These common approaches have successfully
been used across various studies. Another approach involves
different types of grouping such as clustering and t-SNE18–22, and
a framework called Multi‐Omics Factor Analysis (MOFA) was
suggested to integrate multi-omics data23,24. The approach we
take herein for dimensionality reduction and analyzing broad
features of the high-dimensional data is Pareto Task Inference
(ParTI)25. This approach is based on an evolutionary theory and
its main concept is that if data points of a high-dimensional
dataset fall on a simple shape like a line, a triangle, a tetrahedron,
it is due to tradeoffs in the biological system, rather than by
chance25,26. This method also computes statistical significance for
the resulting simplex25. If a significant simplex is found, the
vertices are denoted archetypes, that specialize in a certain task,
with tradeoffs among these tasks. Enrichment analysis of any
measurable feature can be used to characterize the archetypes and
uncover the tradeoffs. The ParTI method has several advantages:
it allows the analysis of a dataset as a continuous space rather
than deterministic grouping, it does not require prior knowledge
for characterizing the archetypes and revealing the tradeoffs, and
due to the geometric representation of the data - the visualization
of a high-dimensional dataset and the overlay of different data
types is straightforward25–27. Multiple studies have successfully
used this method to analyze different types of high-dimensional
data, such as tumor mRNA expression data28, and single-cell
data29,30. Here, we apply the ParTI method to analyze the high
dimensional dataset of personalized data clouds obtained by
Arivale. We find that the clinical lab data-points fall on a sig-
nificant tetrahedron. We then use all other data types to char-
acterize the phenotypic features of the four archetypes and reveal
the fundamental tradeoffs that define these states. We find that
both the discrete (questionnaire data) and the continuous vari-
ables (the four ‘omics’ data types) indicate three wellness states
and one aberrant health state. We then show how longitudinal
data and the movement on the tetrahedron can be used for early
detection of transitions from health to disease state, and for
identifying abnormal conditions.

Results
The Arivale cohort. Participants provided blood and stool sam-
ples every six months, filled out questionnaires about their health
history and lifestyle habits, and used a Fitbit activity tracker.
From the blood samples, 124 clinical lab tests, 990 metabolites
and 256 proteins were measured (see Methods), and the DNA
was sequenced (whole genome sequencing for 2876 and SNPchip
for 1948). Based on these measurements and the participants
goals, health coaches guided the participants on how to change
their lifestyle to optimize their health. The program was available
for 5 years and included nearly 5000 participants that had
between 1 to 8 timepoint10,11. Most participants in the Arivale
wellness program consented for their deidentified data to be used
for research purposes, which are analyzed herein.

Clinical labs fall on a significant and robust tetrahedron. Fol-
lowing data cleaning and normalization (see Methods) we retained
67 clinical lab analytes (Supplementary Dataset 1), and 3094 indi-
viduals. 42% of the individuals were male and 58% were female
(Supplementary Fig. 1). Age was normally distributed for both
males and females (Supplementary Fig. 2), with a mean age of 48.4
(±12.5) for men and 48.8 (±12.2) for women. We then applied the
ParTI analysis and found that the clinical labs dataset falls within a
significant tetrahedron (P-value < 0.001, Figs. 1, 2). We applied the
method with a different number of archetypes (n= 2.3), however,
we did not get a significant P-value (P-value= 0.51, 0.502 respec-
tively). For 5 archetypes we received a P-value= 0.001, which was
not significant after correcting for multiple hypothesis testing. We
applied the analysis with various types of data sampling repeatedly
resulting in significant P-values, showing that the tetrahedron is
robust to data selection (see Methods, and Fig. 2).

Characterizing the four archetypes using enrichment analysis
with all other data types. The clinical lab matrix was used to
construct the tetrahedron, and we used all other data-sets (20
matrices, 12,848 variables) to characterize the archetypes and
reveal biological trade-offs (Fig. 1). We applied the enrichment
analysis as described in Hart et al. (see Methods)25. In short, we
were looking for features that are maximized close to an arche-
type and decay as they move away from the archetype to any
direction. We tested for enrichment of all the variables at each
archetype using all data-points in every test (see Methods, Fig. 1).
We used the Bonferroni correction to correct for multiple
hypothesis testing. The full table of features and P-values can be
found in Supplementary Dataset 2.

Enrichment analysis of the self-reported assessments indicates
four distinct health states. We first describe the discrete variables
(demographic, clinical information, and the self-reports), which
are textual categories that are easy to interpret and provide a brief
characterization of every archetype (Table 1). Archetype I was
enriched for older ages (mean of 57 in the first bin close to the
archetype vs mean of 48 for the rest of the data), for having a
partner and grandchildren (P-value= 2e−07, 6.9e−07, Table 1),
but was not enriched for gender (Supplementary Dataset 5).
According to the self-reports, Archetype I was enriched for taking
supplements, eating cruciferous vegetables daily, experiencing
satisfaction from life and being physically active (Table 1).
Archetype II was enriched for females (Supplementary Dataset 5),
vegetarian diet and an active life-style. Although this archetype
was enriched for happiness and satisfaction in general, it was also
enriched for changes in mood, and experiencing stress (Table 1).
Archetype III was enriched for males (Supplementary Dataset 5),
for not eating fruits or breakfast, for consuming alcoholic drinks
daily with a preference for beer, and for good physical and mental
feeling. This archetype was also enriched for non-responders
(individuals who did not respond to a particular question).
Archetype IV was not enriched for gender (Supplementary
Dataset 5) or age, but was enriched for high BMI and high weight.
It was enriched for not drinking alcoholic drinks, and for
drinking sugary drinks. Participants adjacent to this vertex were
more likely to report aberrant health (diarrhea, reflux, etc.), high
appetite and diabetic diet. They were not satisfied with their
appearance and their physical and mental condition (Table 1).
From this analysis we conclude that the bottom triangle of the
tetrahedron comprises three “healthy” archetypes – I. the older
archetype II. the female-archetype, and III. the male-archetype.
Archetype IV, at the far edge of the tetrahedron (mean Euclidean
distance between archetypes I,II,III is 29.8 (±2.6), and the mean
distance between the lower triangle to Archetype IV is 38.5
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Fig. 1 Pareto task inference of clinical labs—study overview. 67 blood measurements from 3094 individuals were used for the Pareto task inference
analysis to find the minimal significant polyhedron and the position of the archetypes (the vertices). After finding the polyhedron using the clinical labs, all
other data types (lifestyle self-administered questionnaires and Fitbit records, genomics, microbiome, metabolomics and proteomics) were used to find
enriched traits close to every archetype in order to characterize the archetypes and reveal the tradeoffs in the system.

a.
b.

c.

Fig. 2 The clinical labs dataset falls on a significant tetrahedron (t-test P-value < 0.001). a The dataset is composed of n= 3094 participants and 67
blood measurements, displayed on the first 3 PCs space (light blue dots). The colored ellipses designate the archetypes’ possible positions with error after
1000 times of bootstrapping. b, c The tetrahedron is robust to data selection. The participants in the cohort have multiple visits (between 1–8). To test the
robustness of the tetrahedron, we randomly selected one visit per participant and constructed different data sets. Then, for every data selection we ran the
ParTI analysis and found that for different data selections we receive significant tetrahedrons (t-test P-value <0.05). Out of 7 data selections 4 were
significant, 3 runs had a t-test P-value < 0.001 (two of them are shown here in b and c), and the rest had a t-test P-value=0.04, 0.06, 0.07, 0.28 (see
Methods).
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(±2.8)), is markedly different from the first three, and in general is
enriched for traits associated with poor health- the unhealthy-
archetype (Table 1, Fig. 3). Importantly, these traits were self-
reported and found to be enriched close to the archetypes, and
that the data points were not clustered or grouped together based
on these traits (such as age and gender). The spatial organization
of the data points was determined by the blood chemistry profiles
and plotted in 3D using dimensionality reduction (PCA) for
visualization purposes (see Methods, Fig. 2). Additionally, if for
example an archetype is enriched for males, it means that close to
that archetype there is a higher rate of males compared to random
sampling (97% are males in the first bin). Next to archetype II
that was enriched for females, 100% of the individuals in the first
bin were females (Supplementary Dataset 5).

Enrichment analysis of polygenic risk scores (PRS). Next, we
analyzed the enrichment of the polygenic risk scores (PRS), desig-
nating a continuous measure of risk aggregating the effects of mul-
tiple SNPs. We found that the PRS for high BMI was increased
adjacent to the unhealthy-archetype (P-value= 4.8e−11), this
archetype was also enriched for high BMI. Other traits were enriched
close to the different archetypes, but their P-values did not pass the
Bonferroni correction threshold, these include: high risk for high
LDL, triglycerides, and HDL close to the male-archetype (P-value=
2.5e−03, 2.7e−02, 3.5e−02). The female-archetype was enriched for
lower PRS for HDL and LDL (P-value= 2.9e−03, and 1.9e−02), and
high PRS for losing weight from a low-fat diet (P-value= 2.3e−04).
The older-archetype was enriched for low PRS of BMI and Alzhei-
mer’s disease (P-value= 1.72e−05, and 2.4e−02 respectively, Fig. 3).

Microbiome enrichment analysis. Shannon index, observed spe-
cies, and Chao1 are metrics that indicate the diversity of the gut
microbiome, and higher diversity is often associated with better
health13,29,31–33. We found that all these three metrics were low near
the unhealthy-archetype. Other archetypes did not show any sig-
nificant relationship with microbiome diversity (Fig. 3). Thirty gut
bacterial genera were significantly enriched in particular archetypes
after Bonferroni correction (P-value < 3.89e−06). 29 of these genera
were enriched next to the unhealthy-archetype, and 26 of the
29 showed lower abundance next to that archetype (a depletion of
26% of the genera that were tested). Depletion of bacteria species and
low diversity are associated with many disease conditions13,17,31,34.
Among the depleted genera are Faecalibacterium, Ruminococcaceae
UCG-005, Christensenellaceae R-7 group and Lachnospiraceae, which
have been associated with a healthy gut ecosystem35,36 through the
fermentation of dietary fiber and the production of butyrate and
other short-chain fatty acids. Three genera showed significant
enrichment with high levels in archetype IV: Bacteroides, Lachno-
clostridium and Megasphaera. Bacteroides is one of the most com-
mon genera in the gut microbiome, and an increase of this genus is
associated with several conditions like inflammation, type 1 diabetes,
and severe diarrhea37–42. Lachnoclostridium showed an increase in
abundance following cefprozil treatment (antibiotic)43, and Mega-
sphaera was enriched in obese compared to lean twins44,45. The
Marvinbryantia genus was significantly enriched in the older-
archetype (Fig. 3). Increase in Marvinbryantia was linked with low-
ering blood pressure in a rat model of hypertension46.

Metabolomics enrichment analysis. A total of 990 plasma
metabolites were measured for every participant, of which 45%

Fig. 3 The enrichment analysis revealed one aberrant health state, and three wellness states: (1) the older-archetype (2) the female-archetype (3) the
male-archetype. Written in blue are the traits that are found to be enriched close to every archetype at high (left) or low (right) levels. Also shown are the
major axes of the data variation (also shown and described in Fig. 4, n= 3094).
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were lipids, 18% Amino Acids, 8% Xenobiotics, and 18%
unknown (Supplementary Fig. 3). The four archetypes had dis-
tinctive signatures of enriched metabolites (Supplementary
Fig. 4), with no common metabolites that were shared in all the
four archetypes. The unhealthy-archetype was the most meta-
bolically perturbed with 216 enriched metabolites. Some of the
most enriched metabolites were lipids containing saturated fatty
acids (palmitic and stearic), indicative of a poor diet. On the
contrary, the older-archetype was enriched for a variety of
omega-3 fatty acids containing lipid species, while depleted in
lipid species containing saturated fat. 9/16 (56%) of the depleted
metabolites next to the older-archetype were omega-6 fatty acid
containing lipids (arachidonic and adrenic acids), which were at
high abundance close to the unhealthy-archetype. These findings
indicate better dietary habits and/or supplement use in indivi-
duals close to the older-archetype. The male-archetype had 56
enriched metabolites, of which 10 overlapped with the unhealthy-
archetype (the biggest overlap). The female and male archetypes
showed a tradeoff between the sex hormones, where the
androsterones—the precursor for testosterone, androsterone
glucuronide and DHEA-S were enriched in the male-archetype,
and pregnenediol was enriched in the female-archetype. Other
sex related metabolites such as creatinine, which correlates with
lean muscle mass and tends to be higher in males than females47,
showed a similar trend. Only eight other metabolites were enri-
ched in the female-archetype, five of them were Plasmalogens.
Plasmalogens are found in various human tissues, especially in
the nervous, immune, and cardiovascular system, and have a role
in signal transduction, membrane dynamics and in protecting
cells from reactive oxygen species damage48. All eight metabolites
that were enriched in the female-archetype, were depleted from
the unhealthy-archetype. Branched chain amino acids (BCAA)
leucine, valine, and isoleucine, were depleted in the female-
archetype, and enriched in the male-archetype. This tradeoff
might indicate differences in diet, since BCAAs are high in animal
products such as meats and eggs, while plant-based diets are
generally characterized by lower BCAA content49. BCAAs were
also enriched in the unhealthy-archetype. Consistent with this
enrichment pattern, elevated circulating BCAA levels have been
previously associated with increased risk of cardiovascular and
metabolic diseases50,51. The shared BCAA metabolic signatures
among the male- and unhealthy-archetypes highlight potential
similarities between these two archetypes, based on similar diet-
ary habits, and possible shared physiological perturbations
(Supplementary Dataset 2).

Proteomics enrichment analysis. A total of 265 plasma proteins
were measured from two Cardiovascular Disease (CVD) panels,
and one inflammatory panel. Our analysis identified 136 proteins
enriched in the unhealthy-archetype, 16 in the male-archetype, 38
in the female-archetype, and only seven for the older-archetype.
Only 11 proteins were found at significantly lower levels in the
unhealthy-archetype, while 125/136 (92%) were at significantly
higher levels. Among the 11 less abundant proteins was Para-
oxonase 3 (PON3), which is associated with HDL levels. The
most significantly low abundant protein for the older-archetype
was leptin (LEP) (P-value= 4.3e−11). LEP was depleted also in
the male-archetype, and enriched in the unhealthy-archetype
(Fig. 3). Low-density lipoprotein receptor (LDLR) was in lower
abundance adjacent to the older and the female archetypes, and
more abundant adjecent to the males and the unhealthy-
archetypes (Fig. 3). These findings are consistent with the high
LDL levels observed in the clinical labs (Fig. 3), and the meta-
bolomics. Only 2/37 proteins that were enriched close to the
female archetype had significantly higher levels.

The clinical labs profiles at the archetypes reveal the main axes
of variation and their order: (1) the wellness axis, (2) the age
axis, (3) the gender axis. To better understand which analytes
from the blood-chemistries were the most influential in deter-
mining the spatial position of the data points, we calculated the
correlation between the distances of the data-points to an
archetype and the analyte values for every archetype and every
analyte, and ranked the analytes according to the correlation
coefficients in descending order (Supplementary Figs. 5–7). We
found that high levels of omega-3 total, DHA, DPA and vitamin-
D are correlated with shorter distances to the older-archetype,
which is consistent with the enrichment of the self-reported
supplements uptake, since the richest sources of these nutrients
are derived from dietary supplementation. We found that low
levels of triglycerides, insulin, LDL cholesterol, white blood cell
count, and lower insulin resistance scores (lipoprotein insulin
resistance (LPIR) and HOMA-IR), were correlated with greater
distances to this archetype, which supports the conclusion that
this archetype is characterized by better health. In contrast, high
levels of triglycerides, insulin, LDL cholesterol, and WBC, and
higher LPIR and HOMA-IR scores, were correlated with proxi-
mity to the unhealthy-archetype. This reciprocal image of the
correlations between the older archetype and the unhealthy-
archetype nicely demonstrated the trade-offs between health and
aberrant health states according to the clinical labs (Fig. 4, Sup-
plementary Fig. 7). Another trade-off can be seen between the
male and female archetypes, with positive correlation between
hemoglobin, hematocrit, red cell count and creatinine with dis-
tances from the female-archetype, and anti-correlation of these
markers and the distances from the male-archetype (Fig. 4). High
levels of LDL were correlated with shorter distances to the male-
archetype, which is consistent with high PRS for high levels of
lipids, and high levels of lipids measured in the metabolomics
dataset described earlier. However, insulin, glucose, HOMA-IR,
CRP, and white cell count correlated with greater distances to this
archetype, suggesting that this archetype is also characterized
with healthy individuals in opposed to the unhealthy-archetype
(Fig. 4).

Another way to reveal the most impactful analytes that
determined the spatial spread of the data points is by correlating
the analytes with the PC coefficients (Table 2). We found that the
first PC was highly correlated (R > 0.5) with diabetes markers
such as insulin, LPIR, HOMA IR, and cardiovascular diseases
markers such as triglycerides, and LDL, and anti-correlated (R <
−0.5) with HDL and Adiponectin serum. These results suggest
that the first axis separates the data based on health status
(“healthy” versus “unhealthy”), that is reflected in the clinical labs
(Table 2, Fig. 5). Diseases that are not reflected in the clinical labs,
like mental-illnesses for instance, are most likely not captured by
this analysis.

The second PC is mostly correlated with omega-3 fatty acids,
including total omega-3’s, the individual omega-3’s DHA and
DPA, and the omega-6/omega-3 ratio. In a typical western diet,
the richest source of omega-3 fatty acids often comes from
supplement use. Additionally, in our cohort supplement uptake is
more prevalent in the older portion of the population, and
therefore these findings suggest that the second axis is determined
by supplement uptake or age. Since both age and supplement
uptake are associated with this PC and between themselves, we
cannot infer causality or determine whether one attribute is
dominant over the other. The third and the fourthth PCs are
mainly correlated with cholesterol. As higher values of cholesterol
are more frequent in men52,53, it suggests that the 3rd split of data
is based on gender. The first four PCs explain 33.65% of the
variance in the data, and higher PCs were less conclusive. This
analysis supports the previous characterization of the archetypes
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using the enrichment analysis, and provides hierarchy to the rules
that shape the data. The data first splits according to wellness
state, then supplement uptake/age, and lastly—by gender (Fig. 5).
Interestingly, sex differences diminish with age and sickness.

Utilizing longitudinal data and the movement on the tetra-
hedron for early detection of transitions from health to disease
state. After finding the tetrahedron and characterizing the
archetypes and the tradeoffs in the system, we used longitudinal
data to study how individuals move on the tetrahedron over time.

Moving towards the unhealthy-archetype is associated with
higher levels of diabetes, obesity, and cardiovascular disease
markers including insulin, glucose, LPIR, triglycerides, LDL.
Therefore, advancing towards this archetype indicates possible
deteriorating health. In contrast—moving away from the
unhealthy-archetype towards the healthy plane suggests
improvement in wellness. Indeed, when we correlated the dis-
tances between the archetypes and health markers such as weight
and BMI, we obtained positive correlation with the older-arche-
type, and anti-correlation with the unhealthy-archetype (Sup-
plementary Fig. 8).

a. 

c. d. b. 

Distance from archetype 

Negative correlation (R < 0) 
High levels of analyte close to archetype 

Analyte 
levels 

Positive correlation (R > 0) 
Low levels of analyte close to archetype 

Distance from archetype 

0 

-1 -0.5 0 0.5 1

HDL CHOL DIRECT
LDL SIZE

A G RATIO
OMEGA 3 TOTAL
OMEGA 3 INDEX

DHA
MCV

LINOLEIC ACID
EPA
MCH

VITAMIN D  25 OH TOT
DPA

LYMPHOCYTES
OMEGA 6 TOTAL

HDL PARTICLE NUMBER
BASOPHILS

CARBON DIOXIDE  CO2 
BILIRUBIN  TOTAL

MONOCYTES
ALBUMIN

ARACHIDONIC ACID
CHLORIDE

SODIUM
MCHC

EOSINOPHILS
GFR  MDRD

BUN CREAT RATIO
GFR  MDRD  AFRICAN AM

CHOLESTEROL  TOTAL
UREA NITROGEN

CALCIUM
CREATININE ENZ  SER

POTASSIUM
BASOPHILS ABSOLUTE

HEMOGLOBIN
IMMATURE GRANULOCYTES

HEMATOCRIT
LDL CHOL CALCULATION

ASAT  SGOT 
IMMATURE GRANULOCYTES ABSOLUTE

FERRITIN
EOSINOPHILS ABSOLUTE
PROTEIN  TOTAL SERUM

PLATELET COUNT THOUSAND
OMEGA 6 OMEGA 3 RATIO

RED CELL COUNT
RDW

TOTAL NEUTROPHILS
LYMPHOCYTES ABSOLUTE

ALAT  SGPT 
ALKALINE PHOSPHATASE

GGT
LDL PARTICLE NUMBER

MONOCYTES ABSOLUTE
URIC ACID
GLOBULIN

CRP HIGH SENSITIVITY
GLYCOHEMOGLOBIN A1C

GLUCOSE
LDL SMALL

TOTAL NEUTROPHILS AB
Triglyceride HDL Ratio
WHITE CELL COUNT

TRIGLYCERIDES
HOMA IR

LPIR SCORE
INSULIN

-1 -0.5 0 0.5 1

HEMOGLOBIN
LPIR SCORE

HEMATOCRIT
URIC ACID

LDL SMALL
RED CELL COUNT

Triglyceride HDL Ratio
TRIGLYCERIDES

ALAT  SGPT 
FERRITIN
HOMA IR

LDL PARTICLE NUMBER
INSULIN

CREATININE ENZ  SER
GGT

GLUCOSE
ASAT  SGOT 

UREA NITROGEN
CALCIUM

MCHC
DPA

GLYCOHEMOGLOBIN A1C
MONOCYTES ABSOLUTE
LDL CHOL CALCULATION

OMEGA 3 INDEX
OMEGA 3 TOTAL

ALBUMIN
EPA

WHITE CELL COUNT
PROTEIN  TOTAL SERUM

ALKALINE PHOSPHATASE
BILIRUBIN  TOTAL

TOTAL NEUTROPHILS AB
DHA

POTASSIUM
EOSINOPHILS ABSOLUTE

CHOLESTEROL  TOTAL
CARBON DIOXIDE  CO2 

LYMPHOCYTES ABSOLUTE
MONOCYTES

IMMATURE GRANULOCYTES ABSOLUTE
CRP HIGH SENSITIVITY

SODIUM
IMMATURE GRANULOCYTES

MCH
GLOBULIN

EOSINOPHILS
TOTAL NEUTROPHILS

RDW
A G RATIO

BASOPHILS ABSOLUTE
BUN CREAT RATIO

VITAMIN D  25 OH TOT
MCV

BASOPHILS
ARACHIDONIC ACID

LYMPHOCYTES
PLATELET COUNT THOUSAND

CHLORIDE
OMEGA 6 OMEGA 3 RATIO
GFR  MDRD  AFRICAN AM

GFR  MDRD
HDL PARTICLE NUMBER

OMEGA 6 TOTAL
LINOLEIC ACID

LDL SIZE
HDL CHOL DIRECT

-1 -0.5 0 0.5 1

OMEGA 6 OMEGA 3 RATIO
LPIR SCORE

Triglyceride HDL Ratio
TRIGLYCERIDES

INSULIN
HOMA IR

OMEGA 6 TOTAL
WHITE CELL COUNT

TOTAL NEUTROPHILS AB
GLOBULIN

CRP HIGH SENSITIVITY
LDL SMALL
GFR  MDRD

GFR  MDRD  AFRICAN AM
PLATELET COUNT THOUSAND

LDL PARTICLE NUMBER
LINOLEIC ACID

LYMPHOCYTES ABSOLUTE
PROTEIN  TOTAL SERUM

TOTAL NEUTROPHILS
ALKALINE PHOSPHATASE

RDW
LDL CHOL CALCULATION

GLUCOSE
GLYCOHEMOGLOBIN A1C

GGT
MONOCYTES ABSOLUTE

CHOLESTEROL  TOTAL
URIC ACID

IMMATURE GRANULOCYTES ABSOLUTE
ALAT  SGPT 

RED CELL COUNT
ARACHIDONIC ACID

IMMATURE GRANULOCYTES
CHLORIDE

BASOPHILS ABSOLUTE
POTASSIUM

FERRITIN
EOSINOPHILS ABSOLUTE

ASAT  SGOT 
SODIUM

ALBUMIN
CALCIUM

MCHC
LYMPHOCYTES

BUN CREAT RATIO
HEMATOCRIT

HDL PARTICLE NUMBER
CREATININE ENZ  SER

HEMOGLOBIN
EOSINOPHILS

LDL SIZE
BILIRUBIN  TOTAL

BASOPHILS
MONOCYTES

CARBON DIOXIDE  CO2 
UREA NITROGEN

MCV
MCH

A G RATIO
HDL CHOL DIRECT

VITAMIN D  25 OH TOT
DPA
EPA
DHA

OMEGA 3 INDEX
OMEGA 3 TOTAL

Fig. 4 Correlations between the distances from the archetypes and analyte levels reveal the principal analytes next to every archetype, and the trade-
offs in the data. a Schematic view: the distances between the data-points and the archetypes were correlated with the levels of each analyte. Positive
correlation (R > 0) means that low levels of the analyte correlate with shorter distance from the archetype, negative correlation (R < 0) means that higher
levels of the analyte correlate with shorter distances from the archetype. b The correlation coefficients of analyte levels with distance from Archetype I
were ordered and presented in the horizontal bar plot (purple), and compared to the correlation coefficients of the analytes with distances from Archetype
IV (green bars). c The same as b for Archetype II (orange bars) and Archetype III (blue bars), analytes were ordered according to the correlation
coefficients of Archetype II. d The same as b for Archetype IV (green bars) and Archetype III (blue bars), analytes were ordered according to the
correlation coefficients of Archetype IV. The full table of the correlation coefficients can be found in Supplementary Figs. 5–7.
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The current dataset does not include electronic health records.
Clinical information was obtained by self-reports, which included
113 adverse events of which 80 were unique events. The most
common event was “kidney stones” that was reported by five
participants (0.16% of the cohort, Supplementary Dataset 4), and
therefore there are not many replicate trajectories for any specific
disease in the current study as there are for common drug usage
(e.g., statins) or for out-of-range values on risk biomarkers (e.g.,
LDL cholesterol, HbA1c). However, comparing the longitudinal
measurements of individuals to their initial position allows
detecting consistent change over time in a personalized (N of 1)
manner”.

There are 1186 individual trajectories of three or more time-
points (Supplementary Fig. 13), and participants move in all
directions. The maximal Euclidian distance between two time-
points is 19.4 (min: 0.1, mean: 2.5, Supplementary Fig. 9). Most
participants tumble around their initial position, such that the
mean Euclidean distance between the first and last visit is 3, (min:
0.3, max: 13.5, median: 2.7 std: 1.7, Supplementary Fig. 10, Fig. 6),
however some participants significantly changed their position on
the tetrahedron. Out of the top 2% of participants that
significantly changed their position, 87% (20/23) were getting
closer to the healthy and the older-archetype, and were moving
away from the unhealthy-archetype as expected from a wellness
program.

Three participants demonstrated a different pattern: a 56 years
old woman who moved on her 4th visit from the center of the
tetrahedron towards the unhealthy-archetype (Euclidean dis-
tance: 13.2, Fig. 6). Three days after her 4th blood draw she was
diagnosed with enlarged liver, gallbladder and pancreas. Inter-
estingly, she also moved closer to the male-archetype, showing
that in abnormal situations a female can move toward the male-
archetype, and that this unexpected movement might indicate an
abnormal health status. This trajectory was ranked second in the
length of the movement.

A similar case was detected for a woman in her 60 s that had
seven timepoints, and was ranked 6th in trajectory length. In the
first three time points she is tumbling in the middle of the
tetrahedron and from the 4th time-point onwards she is moving

horizontally away from the female-archetype toward the point
between the male and the older archetypes, with no vertical
movement towards the unhealthy- archetype (Fig. 6). Between
her 6th and 7th visits she was diagnosed with gallstones and fatty
liver disease. Unlike the first example, the movement on the
tetrahedron was gradual.

The second movement towards the unhealthy-archetype was
observed for a 56 years old man whose initial position is very
close to the older-archetype, and in all of his four following
timepoints he consistently moved away from this archetype and
toward the center of the tetrahedron (total change in Euclidean
distance= 12.8). The participant’s measurements fall in the
middle of the population distributions, and there is no record
of diagnosis of any pathology, however many analytes are
gradually changing in a consistent way, including insulin (from
3.9 to 6.2) and LDL small (from 90 to 143), which might indicate
an evolving underlying condition. This trajectory was ranked 3rd
in length.

The third case of such a movement, ranked 1st in length and
belongs to a 54-year-old man, where three of his five timepoints
crossed the tetrahedron boundaries, however there was no report
of adverse events for this participant. Crossing the tetrahedron
boundary and moving away from it means that the individual has
an atypical set of values that are very different from the
background distribution that was used to construct the
tetrahedron, which can be due to error in the measurement, or
may indicate an abnormal physiological condition.

Overall, 30 trajectories (2.5%) had a time-point that exceeded
the tetrahedron boundaries, but there was only one trajectory that
had 3 time-points that were out of the convex hull (described
above) and another one that had 5 of 6 timepoints outside the
simplex. This trajectory belongs to a 64 years old woman who was
diagnosed with stage III bladder cancer, prior to these measure-
ments (Fig. 6). Most cancers are undetectable through typical
clinical lab tests. The measurement of specific proteins is usually
used as biomarkers for different types of cancers54–58. Interest-
ingly, all clinical labs measurements for this participant fall in the
center of the distribution for all analytes in all visits (Supple-
mentary Fig. 12). However, using longitudinal data and drawing
her personal trajectory on the tetrahedron revealed unusual
movement, which might indicate an underlying condition.
Despite the limitation of the dataset, these few examples
demonstrate how personal trajectories and the movement on
the tetrahedron can be used to detect transitions from health to
disease states, and vice versa, even when other computational and
statistical tools show no indication of such a transition.

Discussion
In this study we applied ParTI to high-dimensional human
wellness data to aid in analyzing and visualizing the most
dominant tradeoffs that shape the clinical labs data. The key
findings are as follows: (1) ParTI analysis revealed that the clinical
labs data fall on a statistically significant tetrahedron, with four
archetypes. (2) Enrichment analysis of associated multi-omics
and lifestyle data revealed characteristics of each of the arche-
types: (i) the older and healthy archetype, (ii) the young and
healthy females, (iii) the young and healthy males (iv) the
unhealthy-archetype. (3) We then describe the clinical lab profiles
at the archetypes, and found the major axes of variation and their
hierarchy: (i) the wellness, (ii) the age, and (iii) the gender axis.
(4) We found that the male-archetype shares more enriched
features with the unhealthy-archetype than did the female or the
older archetypes, which appeared to be due to generally less
healthy lifestyle and dietary habits. (5) We found that sex dif-
ferences diminished with age and in an aberrant health state. (6)

All

“Healthy” “Sick”

YoungOlder

Females Males

Fig. 5 The hierarchy of the principles that shape the spatial organization
of the data-points. The first PC is correlated to markers of disease state
like LPIR, insulin, HOMA IR (diabetes), triglyceride, LDL, (Cardio-vascular
disease), white cell count, neutrophils (inflammation). And therefore, the
first split of the data is according to wellness state. The second PC is
correlated with omega 3 in different forms. High levels of omega 3 are
achieved from supplement uptake, which characterize older individuals and
therefore the second split is based on supplement uptake / or age. The
third and 4th PC’s are correlated with lipids and markers like: Hemoglobin,
Hematocrit, Red cell count, that separate the males and females and
therefore the last split is according to sex (Table 2).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23849-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3578 | https://doi.org/10.1038/s41467-021-23849-8 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Lastly, we characterized the movement of individual participants
on the tetrahedron over time and found that most participants
tumble around their initial position, and that the vast majority of
the participants that showed a significant change in their trajec-
tory, moved towards the healthy and older archetype, and away
from the unhealthy archetype, as might be expected from a
wellness program. (7) We then detected all the cases of partici-
pants that showed a different type of movement, and demon-
strated how the movement on the tetrahedron might be utilized
for monitoring individual participants and detecting signs of
health transitions. Taken together, these findings demonstrated
the power of geometry and dimensionality reduction in analyzing
and visualizing high-dimensional datasets in a continuous trait
space, and their capacity to be leveraged for monitoring indivi-
dual’s health through blood measurements.

The four identified archetypes were strongly reflective of major
aspects of physiology: females, males, older and unhealthy, as well
as the tradeoffs and the major axes of variation. Interestingly,

there were three wellness states and only one aberrant health
state. In a different cohort (e.g., the clinical labs of breast cancer
participants) there might be a different set of archetypes, axes of
variation and different hierarchy of the tradeoffs, though the axes
of variation that come out of this analysis are generally well
known to have significant effects (sex, age, general health).

Moreover, one might ask why the clinical labs matrix was used to
construct the simplex and not the metabolomics or proteomics
data. We chose the clinical labs because it was the data type for
which we had the largest number of observations, with standardized
and commonly used measurements that have known interpreta-
tions. We also found that the simplex signal was the strongest for
the clinical labs. Additionally, the clinical labs are the only dataset
that is currently being measured in the clinic, and therefore the
most relevant and applicable for the longitudinal analysis of an
individual’s health trajectory in the resulting tetrahedron.

The enrichment analysis using different data types allowed us
to characterize the four archetypes across multiple aspects, which

Fig. 6 Trajectories of individuals and the movement on the tetrahedron can be used for early detection of transitions from health to disease state. a
most individuals tumble around their initial position on the tetrahedron. Shown in the Figure are a few examples of trajectories, colored according to the
number of timepoints: yellow- 3, green-4, red-5 and 6, and turquoise- 7 timepoints, the initial position is marked with a black circle. The pink trajectory
belongs to a 64-year-old woman who was diagnosed with stage 3 bladder cancer prior to her blood measurements, her trajectory exceeds the boundaries
of the tetrahedron. b Most of the trajectories are moving away from the unhealthy- archetype (green) towards the older and the healthy archetype
(purple), as expected from a wellness program. Shown in the Figure an example of such a trajectory. c The trajectory of a 56-year-old woman that
significantly progressed in her 4th time-point (Euclidean distance: 13.2) towards the unhealthy-archetype (green) and closer to the male-archetype (blue),
3 days prior to a diagnosis of enlarged liver, gallbladder and pancreas. d The 7 timepoints trajectory of a 61-year-old woman, tumbling in the middle of the
tetrahedra in the first 3 timepoints, and starting from the 4th time-point, gradually moving horizontally away from the female-archetype (orange) towards a
point between archetype 1 and 3. Between her 6th and 7th visits she was diagnosed with Gallstones and Fatty liver disease. e A gradual trajectory of a 56-
year-old man, who was not diagnosed with any disease, but consistently moves away from the healthy and the older archetype (purple) towards the center
of the tetrahedron, and closer to the unhealthy archetype.
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were generally concordant and provided a unified view. For
example, the unhealthy-archetype was enriched for high BMI, its
corresponding PRS, high levels of the protein leptin, and various
other traits like high blood pressure, low levels of physical
activity, and poor dietary habits. Similar cohesion was seen for the
other archetypes as well. Such traits represent sets that make
sense and are fairly well understood to be interconnected, but
others emerge that are not as known, such as the depletion and
the enrichment of specific gut microbial genera associated with
each archetype. Additionally, we provided an overview of the
most apparent tradeoffs between archetypes that were significant
after correcting for multiple hypothesis testing. The full enrich-
ment tables contain distinct signatures for every archetype
(Supplementary Dataset 2).

We analyzed the individual trajectories of participants, and
demonstrated how it can be used for detecting unexpected
motions. There are various ways to analyze the trajectories and
define what is a significant movement, while excluding outliers
and errors in measurements. For that purpose, we considered
only trajectories that had at least three timepoints, and calculated
the Euclidean distance between the initial and the end position.
This analysis revealed three trajectories that had a significant
change, and moved closer to the unhealthy archetype, and were
described in detail in the Results. The second criterion for
“abnormal” trajectory was the number of timepoints in a trajec-
tory that were outside the tetrahedron boundaries. This analysis
revealed only two trajectories that had more than one time point
outside the tetrahedron (a single time point may indicate an error
in the measurement or a transient state). Three out of the total
five examples that had a unique trajectory according to these two
criteria, self-reported an adverse event. Interestingly, the two
women that moved away from the female-archetype, and closer
to the male-archetype, both reported an adverse event that
included the liver and the gallbladder, which fit the notion that
young healthy males have a distinctive signature from females of
lipids and markers of kidney function. Since the Arivale dataset
does not contain the participant’s clinical records, valuable
information for this kind of analysis might be missing. This might
explain the two unique trajectories that do not have information
about a specific diagnosed clinical condition. These two trajec-
tories belong to male participants and the male-archetype was
also enriched for missing information in the self-reported ques-
tionnaires. However, this analysis revealed the distinct trajectory
of the participant that was subsequently diagnosed with bladder
cancer. This example is noteworthy because it is the only example
of a trajectory where 5/6 timepoints exceeded the boundaries of
the tetrahedron. This is even more exceptional considering that
this participant’s blood measurements individually fell within the
distribution of the cohort, such that in outlier analysis, none of
the individual measurements would have been abnormal. More-
over, usually cancers (other than leukemia) are not detected in
standard clinical lab measurements. In the Arivale cohort there
were several other cases of participants that were diagnosed with
cancer or other diseases, but the transition was not captured by
this analysis. This might be because of missing data, because the
transition occurred before the participant joined the program,
because the transition is not reflected in the clinical labs, or
because of lack of sensitivity in the method. To determine to what
extent this analysis could be further developed for detecting
transitions, for calculating its sensitivity and specificity, as well as
for correlating the archetypes with long-term health outcomes, a
larger and more longitudinal dataset would be needed.

Taken together, this study implements a high order data
representation of multi-omics measurements. Despite its limita-
tions, it provides insights into the interplay between wellness and
disease in deeply phenotyped data clouds. This work can help in

characterizing disease transitions, and their reflection in the
blood, and perhaps suggest a unique way to interpret blood tests.

Methods
Data collection. The de-identified data for consenting individuals was collected by
Arivale incorporation as part of a scientific wellness program between 2015–2019.
Participants in the program gave blood and stool samples and based on the
measurements and their personal goals were guided by professional coaches how to
change their lifestyle (dietary, exercise, sleep, supplement taking and stress man-
agement) in order to improve their health. There were 3,558 participants in the
program, and samples were collected approximately every 6 months. The number
of time-points per participant vary between 1 to 8 time points. The distribution of
the time points and the demographic description of the cohort is described in the
SI. The study was approved by the Western Institutional Review Board (WIRB)
with Institutional Review Board (IRB) study number 20170658 at the Institute for
Systems Biology.

Clinical laboratory tests. Blood draws for all assays (metabolomics, proteomics
and clinical labs) were performed at LabCorp service centers. At every blood draw,
weight and height were measured and BMI was calculated using the formula:
(weight(kg))/(height(m))2. Participants were requested to avoid alcohol, vigorous
exercise, aspartame and monosodium glutamate 24 h prior the blood draw, and fast
12 h in advance. Participants were asked to declare if they were fasting as directed,
and negative answers were used as exclusion criteria. Another exclusion criterion
was based on ethnicity. Different ethnicities have different ranges of clinical labs,
however, there was no good representation of ethnicities other than white (82%),
and to avoid the natural grouping by race (which happened prior to the inclusion
criteria with the 2% of Asians that were clustered next to a specific archetype), only
participants that declared one of the following: white, Ashkenazi Jewish, Sephardic
Jewish, Hispanic Latino or Spanish origin were included in this study. No further
genetic validation was done to confirm these statements. Excluded also participants
and analytes that had more than 10% missing values, resulting in a dataset of 3094
individuals and 67 analytes.

Data selection and normalization. To avoid skewed results due to data multi-
plication (multiple visits per participant), one visit was randomly selected for each
individual using the “randi” function in MATLAB. The data selection process was
repeated 7 times, and every time the randomly selected data was used to find a
tetrahedron. In 5 out of 7 repetitions a significant tetrahedron was found (P-value <
0.05), as shown in Fig. 2. The significance test was done as described in Hart et al.25.
One of the data selections that had a P-value < 0.001 was then used for all further
analysis, such that for every participant there was a key of participant internal ID and
visit, and that key was used to match samples in all other datasets—proteomics,
metabolomics etc. Missing values were imputed by the analyte mean and the clinical
labs dataset was Z-normalized following the data selection and prior to subsequent
data analysis steps.

Polygenic risk scores (PRS). 52 polygenic risk scores (PRS) were calculated as a
continuous measure of risk aggregating the effects of multiple SNPs, as described in
Zubair et al.11. Briefly, each of these polygenic scores was constructed using
publicly available summary statistics from published Genome-Wide Association
Studies (GWAS)59–61. After FDR correction and filtering correlated SNPs, the PRS
for each individual was calculated by summing up the published effect size for each
selected SNP multiplied by the number of effect alleles the individual carried for
that SNP, across all of the selected SNPs. The PRS were used for enrichment
analysis and no imputation for missing values was carried out.

Proteomics. Plasma protein levels were measured by Olink Biosciences in 3 panels:
Cardiovascular II, Cardiovascular III and Inflammation, the data was processed
and batch corrected as described in Wilmanski et al. 201913. The proteomics
dataset was matched to the clinical lab dataset and included the same 3094 par-
ticipants and visits, and 265 proteins that were measured from the same blood
draws as the clinical labs. The proteins dataset was used for enrichment analysis
and no imputation for missing values was carried out.

Metabolomics. Metabolites from plasma samples were assayed by Metabolon
(North Carolina). Untargeted metabolomics analysis was performed on plasma
extracted from whole blood using Metabolon’s ultra-high-performance liquid
chromatography/tandem mass spectrometry (UHPLC/MS/MS) Global Platform
(Ryals et al. 2007). Sample handling, quality control, and data extraction, along
with biochemical identification, data curation, quantification, and data normal-
izations have been previously described13. A total of 990 different plasma meta-
bolites were measured for each individual and matched to the same blood draws as
in the clinical labs dataset. This dataset was used in the enrichment analysis and no
imputation was carried out.
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Microbiome. Stool specimens were taken at participants’ homes using a standar-
dized kit supplied by Second Genome or DNAgenotek. The samples were pro-
cessed and analyzed as described in Wilmanski et al., 201913, and matched to the
same blood draws that were used in other datasets. Three diversity measurements
(Shannon, Chao1, Diversity of observed species) were calculated at the ASV level
after rarefaction. For correlation of individual genera with archetypes, only genera
that had less than 5% zero values and a mean greater than 5 counts were used (a
total of 100 genera).

Self-reported questionnaires and lifestyle information. Self-administered
questionnaires were completed by the participants during their initial assessment.
These questionnaires included the areas of: current health state, health history,
dietary, exercise and activity habits, stress, mood and satisfaction surveys. Lifestyle
habits were also recorded by Fitbit activity tracker which recorded the number of
steps that the participants took every day, heart rate and sleep. These self-reported
questionnaires and fitbit information were used for enrichment analysis and the
characterization of the different archetypes.

Fitting a tetrahedron to the clinical labs dataset using ParTI. To fit a tetra-
hedron to the multi-dimensional clinical labs dataset we used the ParTI software
package in MATLAB25. The ParTI software fits a polyhedron to the data, finds the
archetype position and calculates the significance of the fitted polyhedron and the
error in the archetype positions. To determine the significance of the polyhedron, the
software calculates the ratio between the polyhedron and convex hull of the data (t-
ratio). Then the program shuffles the data and calculates the t-ratio for the shuffled
data. ParTI repeats this process 1000 times and a P-value is calculated by counting
how many times the t-ratio of the shuffled data was lower than the real data t-ratio,
divided by the number of runs (1000). To choose the number of archetypes we ran
the ParTI software with 2,3,4, and 5 vertices and chose the best P-value.

Enrichment analysis. After finding the tetrahedron and the archetype positions, we
used all other data types to characterize the archetypes by enrichment analysis as
described in Hart et al. 201525. In short, we were looking for traits that are high close
to an archetype and as moving away from the archetype the trait decays. To calculate
the enrichment of a trait close to an archetype we bin the data into 20 equal bins
according to the distance from the archetype. For continuous variables like age,
weight, heart rate, proteins, metabolites and others, we compare the mean and median
of the trait in the first bin to their values in the rest of the data using t-test. For discrete
variables, we calculate the hypergeometric probability. To determine if a P-value is
statistically significant and avoid type 1 errors for multiple hypothesis testing we used
the Bonferroni correction. We applied 12,848 tests and therefore we set the threshold
for significance to be 0.05/12,848= 3.8917e-06. We test every variable for every
archetype, and we use all data points in every test. The full tables that summarize the
enrichment analysis can be found in Supplementary Dataset 2.

Enrichment analysis sensitivity to bin size. To determine the sensitivity of the
enrichment analysis to the bin size we ran the analysis with 15, 20 and 25 bins. In
general, when increasing the number of bins, fewer variables were found to be
enriched with significant P-value after Bonferroni correction. With 15 bins, 53
(16%) additional features were significantly enriched compared to 20 bins, and 54
(16%) features did not pass the Bonferroni threshold when dividing the data into
25 bins. The full tables of features and their P-values can be found in Supple-
mentary Dataset 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this paper is either (1) data owned by ISB (in affiliation with Providence St.
Joseph Health), which will be made freely available for academic use; or (2) data
generated by Arivale’s commercial service. ISB and Arivale have an Asset License
Agreement, which gives ISB access to de-identified datasets from Arivale commercial
subscribers. Per the agreement, ISB is not permitted to upload datasets from commercial
subscribers to public databases. To facilitate collaborative validation and follow-up
studies, ISB has created a Data Use Agreement (DUA) that governs use of the
commercial datasets, and will make available any data used in publications to 3rd parties
that contact ISB and agree to the DUA. The limitations are consistent with other DUAs
in place by other controlled-access databases (e.g., dbGaP): that the recipient will not
disclose the data to 3rd parties who themselves have not signed the DUA; the recipient
will not attempt to re-identify the participants from their data; and that the recipient may
only use the data for non-commercial purposes. Inquiries to access the data can be made
at data-access@isbscience.org and will be responded to within 7 business days.

Code availability
Code used for ParTI analysis, other analysis, and for generating the figures is available
through the Hood-Price lab GitHub.
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