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Dysregulated fatty acid metabolism is clinically associated with eosinophilic allergic
diseases, including severe asthma and chronic rhinosinusitis. This study aimed to
demonstrate the role of 12/15-lipoxygenase (12/15-LOX) in interleukin (IL)-33-induced
eosinophilic airway inflammation; to this end, we used 12/15-LOX-deficient mice, which
displayed augmented IL-33-induced lung inflammation, characterized by an increased
number of infiltrated eosinophils and group 2 innate lymphoid cells (ILC2s) in the airway.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics
revealed that the levels of a series of 12/15-LOX-derived metabolites were significantly
decreased, and application of 14(S)-hydroxy docosahexaenoic acid (HDoHE), a major 12/
15-LOX-derived product, suppressed IL-33-mediated eosinophilic inflammation in 12/15-
LOX-deficient mice. Using bioactive lipid screening, we found that 14(S)-HDoHE and 10
(S),17(S)-diHDoHE markedly attenuated ILC2 proliferation and cytokine production at
micromolar concentration in vitro. In addition, maresin 1 (MaR1) and resolvin D1 (RvD1),
12/15-LOX-derived specialized proresolving mediators (SPMs), inhibited cytokine
production of ILC2s at nanomolar concentration. These findings demonstrate the
protective role of endogenous 12/15-LOX-derived lipid mediators in controlling ILC2-
mediated eosinophilic airway inflammation and related diseases. Thus, 12/15-LOX-
derived lipid mediators may represent a potential therapeutic strategy for ameliorating
airway inflammation-associated conditions.
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INTRODUCTION

Asthma is a common disease affecting more than 300 million
people worldwide, and the number of patients with asthma is
rapidly increasing (1, 2). Genetic and environmental factors
induce diverse immune responses that are classified into atopic
and non-atopic phenotypes, mainly characterized by eosinophilic
airway inflammation. Severe asthma is characterized by resistance
to standardized treatments, including corticosteroids, and
frequent exacerbation, which could worsen the quality of life in
these patients. However, the exact mechanism underlying severe
asthma has not been fully elucidated. Thus, it is necessary to
elucidate its pathophysiological process.

Dysregulated metabolism of polyunsaturated fatty acids
[arachidonic acid (AA), eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA)] is observed in allergic diseases,
including severe asthma and its related diseases, such as aspirin-
exacerbated respiratory disease and eosinophilic chronic
rhinosinusitis (3, 4). This abnormality is partly characterized
by impaired synthesis of specialized proresolving mediators
(SPMs; lipoxins (LXs; LXA4 and LXB4), protectins (PD1 and
PDX), resolvin D series (RvDs; RvD1-6), and maresins (MaRs;
MaR1-2), which promote the resolution of inflammation. SPMs
inhibit the migration of polymorphonuclear cells to
inflammatory sites and enhance the phagocytic activity of
apoptotic cells via macrophages (5, 6). These mediators are
mainly biosynthesized via 15-lipoxygenase (LOX) in humans
and 12/15-LOX, an ortholog of 15-LOX in mice, that are highly
expressed in eosinophils and specific types of macrophages
(7–10). Previously, we observed downregulated biosynthesis of
15-LOX-derived SPMs in eosinophils isolated from patients with
severe asthma and eosinophilic chronic rhinosinusitis (7, 11–13).
Systemic administration of SPMs suppressed pulmonary
eosinophilic inflammation in murine models of asthma
(14–18). These findings suggest the regulatory roles of 15-LOX
and 12/15-LOX in eosinophilic inflammation in the lungs,
although the causal relationships between these enzymes and
severe allergic diseases remain unclear.

Interleukin (IL)-33 is an IL-1 family cytokine with potent
inflammatory properties (19). The gene encoding ST2, an IL-33
receptor, is closely related to asthma susceptibility (20, 21). Group
2 innate lymphoid cells (ILC2s) are potent producers of type 2
cytokines, including IL-5 and IL-13, in response to IL-33 (22–24).
Other cell types, including eosinophils, basophils, mast cells, and
dendritic cells also respond to IL-33, showing proinflammatory
reactions (25–35). IL-33 is highly expressed in airway mucosa or
nasal polyps isolated from patients with asthma, and its expression
level is well correlated with disease severity (36–39). Therefore, IL-
33 is considered a pivotal regulator and potential therapeutic
Abbreviations: Alox15, 12/15-lipoxygenase; AA, arachidonic acid; BALF,
bronchial alveolar lavage fluid; DHA, docosahexaenoic acid; EPA,
eicosapentaenoic acid; HDoHE, hydroxy docosahexaenoic acid; HE,
hematoxylin eosin; HETE, hydroxyeicosatetraenoic acid; IL, interleukin; LC,
liquid chromatography; LOX, lipoxygenase; LT, leukotriene; MaRs, maresins;
MS/MS, tandem mass spectrometry; PAS, periodic acid Schiff; PD1, protectin
D1; PDX, protectin DX; PG, prostaglandin; RT-PCR, reverse transcription-PCR;
Rv, resolvin; SPM, specialized proresolving mediator.
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target in respiratory diseases with type-2 airway inflammation,
including severe asthma.

In the present study, we investigated the regulatory roles of
12/15-LOX-derived lipid mediators in IL-33-induced
eosinophilic airway inflammation in mice. Lipidomic analysis
of inflamed lung tissue and in vitro lipid screening analysis using
ILC2s were performed to demonstrate the roles of 12/15-LOX.
MATERIALS AND METHODS

Mouse Experiments
Specific pathogen- and virus-antibody-free, 6-8-week-old, male
C57BL/6J (C57BL/6) mice, weighing 25-30 g, were purchased
from Charles River Laboratories, Japan. 12/15-LOX-deficient
mice were obtained from the Jackson Laboratory (002778, Bar
Harbor, ME, USA). All animals were housed at the facility in
bubble barrier units (bioBubble, Fort Collins, Colo., USA) under
positive pressure. The experimental protocol was reviewed and
approved by the Laboratory Animal Care and Use Committee of
Keio University of Medicine, the Animal Committee of the
University of Tokyo, and the Animal Care and Use Committee
of the RIKEN.

Administration of Reagents In Vivo
We administered 40 mL of PBS or IL-33 (R&D, 500 ng per
mouse) via intranasal administration under anesthesia with
intraperitoneal administration of ketamine (100 mg/kg) and
xylazine (10 mg/kg). In some experiments, we simultaneously
administered 5 mg/day of 14(S)-HDoHE (Cayman Chemical,
Ann Arbor, MI, USA) via intraperitoneal injection.

Establishment of IL-33-Induced
Airway Inflammation
We administered IL-33 (R&D Systems, Minneapolis, MN, 500
ng per mouse) for 3 consecutive days and analyzed them 1 or 4
days after the last challenge as previously described (40) with
technical modification. Bronchoalveolar lavage fluid (BALF) was
collected for cell counts and flow cytometric analysis, and lung
tissue for the measurement of mRNA expression and
histopathologic analysis. Formalin-fixed paraffin-embedded
lung slides were stained with hematoxylin and eosin (HE) or
periodic acid Schiff (PAS).

Collection of BALF
The mice were sacrificed by an overdose of intravenous
pentobarbital at the indicated times after the last challenge.
The trachea was cannulated, and the lungs were lavaged by
washing twice with 0.7 mL of ice-cold PBS with EDTA (0.6 mM).
The total number of cells in BALF was counted using a
hemocytometer, and a differential cell count of 200 cells was
determined on Diff-Quik-stained cytospin slides (Baxter
Scientific Products, McGraw Park, Ill., USA) prepared with
Auto Smear CF12D (Sakura Finetek, Tokyo, Japan). Flow
cytometric analysis was performed for cell counts of specific
types of lymphocytes (ILC2s and Th2 cells).
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Targeted Liquid Chromatography
Tandem Mass Spectrometry
(LC-MS/MS)-Based Lipidomics
LC-MS/MS-based mediator lipidomics was performed as
previously described (41). Lung tissues were homogenized in
ice-cold methanol and kept in -20°C overnight. The methanolic
extract was then diluted with water, acidified with HCl to a pH of
3.5, and applied to Sep-Pak C18 cartridges (Waters) for solid phase
extraction. Deuterated internal standards (1 ng of leukotriene (LT)
B4-d4, LTD4-d5, prostaglandin (PG) E2-d4, and 15-HETE-d8
(Cayman Chemical, Ann Arbor, MI, USA) were added to the
supernatants prior to extraction. For LC-MS/MS analysis, a triple
quadrupole linear ion trap mass spectrometer (QTRAP 5500; AB
Sciex, Foster City, CA) equipped with a 1.7-mm, 1.0 × 150 mm
Acquity UPLC™ BEH C18 column (Waters Corp., Milford, MA)
was used. MS/MS analyses were conducted in negative ion mode,
and the eicosanoids and docosanoids were identified and
quantified by multiple reaction monitoring. Calibration curves
were obtained over a range of 1–1,000 pg. The LC retention times
for each compound were determined using the corresponding
synthetic standards. PD1 and PDX, stereoisomers, were not
separable under this LC-MS/MS setting.

Functional Assays of ILC2s In Vitro
Mouse ILC2s were isolated from mesentery using a previously
reported method (42). Purified ILC2s were cultured in 96-well
round-bottom plates in 200 mL RPMI-1640 media containing 10%
FCS, HEPES buffer, non-essential amino acids, penicillin,
streptomycin, and 2-mercaptoethanol in the presence of IL-2 (10
ng/mL) at 37°C. To comprehensively evaluate the effect of lipid
metabolites, cultured ILC2s were seeded at a density of 10,000 cells
per well into 96-well round-bottom plates in the absence of IL-2, and
IL-33 was added to the culture medium at a final concentration of
10 ng/mL after pretreatment for 30 min with lipid metabolites
(10-11 M – 10-5 M). One hundred microliters of supernatant were
collected for the cytokine assay, and ILC2s were counted by flow
cytometry on day 4. For apoptosis analysis, ILC2s were stained with
AnnexinVandpropidiumiodide(PI)accordingtothemanufacturer’s
protocols (Apoptosis Detection Kit, BD Pharmingen), and then
analyzed by flow cytometry on day 1 and day 4. All data were
analyzed using FlowJo software (TreeStar, Ashland, OR, USA).

Statistical Analysis
Data arepresented as themean±SEM.Dose-response relationships
of lipid metabolites on ILC2 activities were analyzed with repeated
measures of analysis of variance, followed by the Bonferroni/Dunn
procedure as a post hoc test. Data were analyzed using GraphPad
Prism version 4.0c (GraphPad Software, San Diego, CA). Statistical
significance was set at P < 0.05.
RESULTS

12/15-LOX Deficiency Augmented IL-33-
Induced Airway Eosinophilic Inflammation
To determine whether 12/15-LOX affects the disease onset and/
or progression of airway eosinophilic inflammation, we used
Frontiers in Immunology | www.frontiersin.org 3
mice deficient in the gene encoding 12/15-LOX (alox15) in a
murine model of IL-33-induced innate airway eosinophilic
inflammation. 12/15-LOX-deficient (12/15-LOX-/-) mice
developed more severe airway inflammation associated with an
increased number of eosinophils and lymphocytes in BALF
compared to controls (Figure 1A). Lymphocyte subset analysis
revealed a significant increase in the number of ILC2s and Th2
cells (CD4+ST2+ cells) in BALF from IL-33-challenged 12/15-
LOX-/- mice compared to wild-type mice (Figure 1B).
Importantly, the number of ILC2s was greater than that of Th2
cells (Figure 1B). Expression of mRNA levels of type 2 cytokines
(il5, il13) and chemokines for eosinophils (ccl11, ccl24, and
ccl26), which are critical inducers of eosinophilic inflammation,
in the lungs was significantly higher in IL-33-treated 12/15-LOX-/-

mice than in wild-type mice (Figure 1C). Histological analysis
demonstrated prominent accumulation of inflammatory cells
around the bronchus and increased mucus production in the
lung tissue stained with HE and PAS, respectively (Figures 1D, E).
In addition, the absence of 12/15-LOX had no impact on the
number of cells and lymphocyte subset including Th2 cells and
ILC2s in BALF at the steady state (Supplementary Figures 1A, B).
Lipidomic Profile of Lung Tissue
During IL-33-Induced Airway
Eosinophilic Inflammation
To investigate the lipid mediator profiles in the lungs during IL-
33-induced eosinophilic pulmonary inflammation, LC-MS/MS-
based mediator lipidomics was performed. The amounts of lipid
mediators on days 1 and 4 following the last challenge are
summarized in Supplementary Table 1. COX-derived
products such as PGE2, PGD2, and PGF2a, thromboxane B2,
and 12-HHT were abundantly produced in the inflamed
lung tissue on day 1, and these amounts were almost the
same between wild-type and 12/15-LOX-/- mice (Figure 2A).
Among the LOX-derived products, 14-HDoHE, 17-HDoHE,
and 12-hydroxyeicosatetraenoic acid (HETE) were generated
at substantial levels on day 1. Additionally, their biosynthesis
was dependent on 12/15-LOX (Figure 2A). Among the
monohydroxylated forms of DHA (4-, 7-, 10-, 13-, 14-, 17-,
20-, and 21-HDoHE), the amount of 14-HDoHE was the highest
on day 1 (Figure 2B). The amounts of fatty acids, precursors of
lipid mediators (AA, EPA, and DHA), in the lungs did not differ
between wild-type and 12/15-LOX-/- mice on day 1 (Figure 2C).
Among the downstream lipid mediators (AA-, EPA-, and DHA-
derived dihydroxy- or trihydroxy-fatty acids), PD1/PDX, RvD2,
RvD5, and RvE3 were also present in a 12/15-LOX-dependent
manner on day 1 (Figure 2D). PD1/PDX was relatively abundant
compared to other mediators.
14(S)-HDoHE and 10(S),17(S)-diHDoHE
Suppress ILC2 Cell Activation In Vitro
To further understand the molecular mechanism of 12/15-LOX
in the regulation of innate eosinophilic pulmonary
inflammation, we performed lipid screening using AA-, EPA-,
and DHA-derived metabolites. Their suppressive effects on the
May 2021 | Volume 12 | Article 687192
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proliferation of ILC2 cells in vitro in response to IL-33 were
investigated by flow cytometry. The lipid screening assay
demonstrated that 14(S)-HDoHE was a potent suppressor of
cellular proliferation of ILC2s among DHA-derived
monohydroxy metabolites (4-, 7-, 10-, 13-, 14-, 17-, 20-, and 21-
HDoHE) (Figure 3A). In addition, among DHA-derived SPMs,
including RvDs, PDs, MaRs, and other AA- or EPA-derived
dihydroxy or trihydroxy metabolites, 10(S),17(S)-diHDoHE
(PDX) most potently suppressed the proliferation of ILC2 cells
(Figure 4A).

14(S)-HDoHE suppressed ILC2 cell proliferation in a
concentration-dependent manner (Figure 3B). In addition,
cytokine release (IL-5) from ILC2 cells was suppressed by 14(S)-
HDoHE in a concentration-dependent manner (Figure 3C). The
inhibitory effect of 14(S)-HDoHE on IL-5 production was more
Frontiers in Immunology | www.frontiersin.org 4
potent thanother related structural isomers suchas 12(S)-HETE, 12
(R)-HETE, 12(S)-HEPE, and 12(R)-HEPE (Figure 3D). Flow
cytometric analysis of Annexin V- and PI-stained ILC2 cells upon
stimulation with IL-33 revealed the pro-apoptotic effects of 14(S)-
HDoHE on ILC2s after stimulation with IL-33 for 1 or 4 days
(Figures 3E–G). PDX similarly inhibited ILC2 proliferation and
IL-5 production in a concentration-dependent manner. PDX
displayed more potent suppressive effect than its related
metabolites including 17(S)-HDoHE and 10(S/R)-HDoHE
(Figures 4B, C). The suppressive effects of PD1, RvD1, and
RvD2, were also evaluated at nanomolar concentrations. Unlike
the others, RvD1 slightly inhibited the proliferation and IL-5
production of ILC2s (Figures 4D–G). In addition, the
suppressive effects of MaR1 were evaluated at nanomolar to
micromolar concentrations. MaR1 inhibited IL-5 production, not
A

B

D E

C

FIGURE 1 | 12/15-lipoxygenase deficiency augments IL-33-induced airway eosinophilic inflammation. Airway inflammation was induced by administration of IL-33
(500 ng per mouse, intranasal), for 3 consecutive days, in C57BL/6 and 12/15-lipoxygenase deficient mice. Analysis was performed 4 days after the final
administration of IL-33. (A) Number of total cells, eosinophils, lymphocytes, and macrophages in BALF. (B) Number of ILC2 and Th2 cells in BALF by flow cytometric
analysis. (C) Relative mRNA expression of cytokines (il5, il13, ccl11, ccl24, and ccl26) was determined by RT-PCR and quantitative real-time PCR analysis. Airway
histology was assessed by (D) hematoxylin and eosin and (E) periodic acid–Schiff (PAS)-Alcan blue staining. The data are representative of three independent
experiments. Mean ± SEM, n=4 for each group.
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cell proliferation, of ILC2s at nanomolar concentrations (Figures
4H, I). These results suggest that the DHA-derived 12/15-LOX
metabolites collectively regulates ILC2 functions to control innate
type-2 airway inflammation.
Frontiers in Immunology | www.frontiersin.org 5
14(S)-HDoHE Suppressed IL-33-Induced
Airway Eosinophilic Inflammation In Vivo
Next, we determined the potential preventive effect of 14(S)-
HDoHE, a major product of 12/15-LOX in the lung during
A

B

D

C

FIGURE 2 | Lipidomic profiles of lungs during IL-33-induced airway eosinophilic inflammation. Airway inflammation was induced by administration of IL-33 (500 ng
per mouse, intranasal), for 3 consecutive days, in C57BL/6 and 12/15-lipoxygenase (LOX)-deficient mice. Analysis was performed 1 day after the final administration
of IL-33. (A) Lipidomic analysis showed quantitative alterations of arachidonic acid (AA) and docosahexaenoic acid (DHA)-derived metabolites via cyclooxygenase
(COX), 5-LOX, and 12/15-LOX, including prostaglandins (PG), thromboxanes (Tx), 12- hydroxyheptadecatrienoic acid (HHT), hydroxyeicosatetraenoic acid (HETE),
leukotriene B4 (LTB4), and hydroxy docosahexaenoic acid (HDoHE). (B) Comparative analysis of DHA-derived monohydroxy metabolites in wild-type or 12/15-LOX
deficient mice. (C) Comparative analysis of the amounts of polyunsaturated fatty acids [AA, DHA, and eicosapentaenoic acid (EPA)] in wild-type or 12/15-LOX
deficient mice. (D) Comparative analysis of 12/15-LOX-derived dihydroxy- or trihydroxy-lipid metabolites, including lipoxin (LX), Rv, MR, and protectin (PD). Mean ±
SEM, n=3 for each group. **P < 0.01 (Student’s t-test). NS, not significant.
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A B

D E

F G

C

FIGURE 3 | 14(S)-HDoHE inhibit proliferation and cytokine production of ILC2s, with pro-apoptotic effects. ILC2 cells (10,000 cells per well) were cultured with
IL-33 (10 ng/mL) for 1 or 4 days in the presence or absence of (A) DHA-derived monohydroxy-lipid metabolites (HDoHE, hydroxy docosahexaenoic acid: 10-5 M)
or (B–G) in the presence or absence of 14(S)-HDoHE (3 × 10-7 – 10-5 M: (B, C); or 10-5 M: (D–G), (D) 12-hydroxyeicosatetraenoic acid (HETE) and 12-
hydroxyeicosapentaenoic acid (HEPE). The total cell count (A, B) and concentrations of IL-5 (C, D) in the culture supernatant were measured. (E–G) Flow cytometric
analysis of Annexin V- and PI-stained ILC2 cells cultured with or without IL-33 (10 ng/mL) in the presence or absence of 14(S)-HDoHE (10-5 M) for 1 or 4 days. The
data are representative of three independent experiments. Mean ± SEM, n=3-8 for each group. *P < 0.05, **P < 0.01 (Student’s t-test).
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6871926
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inflammation, in vivo on IL-33-induced airway eosinophilic
inflammation. Intraperitoneal administration of 14(S)-HDoHE
reduced the number of eosinophils and macrophages in BALF
compared with that in vehicle-treated mice in 12/15-LOX-/- mice
Frontiers in Immunology | www.frontiersin.org 7
(Figure 5A). 14(S)-HDoHE administration also decreased the
number of ILC2 and CD4+ST2+ Th2 cells present in BALF in 12/
15-LOX-/- mice (Figure 5B). Also, 14(S)-HDoHE reduced the
number of ILC2 and Th2 cells in BALF of WT mice (Figure 5B).
A B

D E F G

IH

C

FIGURE 4 | Effects of SPMs on proliferation and cytokine production of ILC2s. (A) ILC2 cells (10,000 cells per well) were cultured with IL-33 (10 ng/mL) for 4 days
in the presence or absence of (A) dihydroxy- or trihydroxy-lipid metabolites (LX, lipoxin; Rv, resolvin; MR, maresin; PD, protectin D: 10-5 M) or in the presence or
absence of (B, C) 10(S),17(S)-diHDoHE (PDX, 3 × 10-7 – 10-5 M), (D, E) 17(S)-HDoHE-derived SPMs (RvD1, resolvin D1; RvD2, resolvin D2; PD1, protectin D1: 3 x
10-7 nM), (F, G) RvD1 (1 × 10-11 – 3 x 10-7 M: (D, E), or (H, I) MaR1 (MaR1; maresin 1: 10-11 – 10-5 M). The total cell count (A, B, D, F, H) and concentrations of
IL-5 (C, E, G, I) in the culture supernatant were measured. Data are shown as Mean ± SEM, n = 3 for each group. *P < 0.05, **P < 0.01 (Student’s t-test).
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DISCUSSION

In the present study, we demonstrated that 12/15-LOX, a key
enzyme for the biosynthesis of specialized pro-resolving lipid
mediators (SPMs), conferred a protective effect on innate
pulmonary eosinophilic inflammation in vivo. Lipidomic
analysis revealed a series of 12/15-LOX-derived mediators
present at substantial levels in the inflamed lung. Using
bioactive lipid screening, the potent effect of 14(S)-HDoHE
and 10(S),17(S)-diHDoHE in suppressing ILC2 function was
observed in vitro. These findings demonstrate the direct effect of
DHA-derived pro-resolving mediators in suppressing ILC2
activation. 14(S)-HDoHE also displayed potent anti-
inflammatory effects on IL-33-induced eosinophilic airway
inflammation when administered in vivo. These results provide
a new therapeutic option for 12/15-LOX-derived pro-resolving
mediators in ILC2-mediated allergic diseases.

Previous studies have shown the regulatory effects of 14(S)-
HDoHE onmurine platelets and human alveolar macrophages in
vitro (43, 44). PD1/PDX also possesses potent anti-inflammatory
functions in regulating neutrophil activation in vitro (45, 46) and
ameliorates pulmonary inflammation and fibrosis in vivo (47,
48). Interestingly, we previously reported that peripheral blood
eosinophils isolated from patients with severe asthma had a
defective biosynthetic capacity of 14(S)-HDoHE, 17(S)-HDoHE,
and PD1/PDX (7). Similarly, their biosynthetic capacities have
been reported to be impaired in obese mice, and systemic
administration of these metabolites ameliorated obesity-
induced inflammatory states (49). These findings highlight the
therapeutic potential of 14(S)-HDoHE and related SPMs in the
regulation of chronic inflammation through DHA metabolism.
However, the precise mechanism underlying the 14(S)-HDoHE-
mediated effects thorough specific receptors and/or downstream
metabolites remains undetermined.

IL-33 induces ILC2 proliferation and activation, which
orchestrate innate type-2 inflammation as the dominant IL-5-
producing cell in vitro and in vivo (22, 23, 50–55). IL-5 plays a
central role in prolonging eosinophils survival and activating
Frontiers in Immunology | www.frontiersin.org 8
eosinophils to elicit degranulation, superoxide generation,
cytokine release, and cysteinyl leukotriene synthesis (12, 56). In
this study, 14(S)-HDoHE, 17(S)-HDoHE, and other DHA-derived
SPMs, such as RvDs, PDs, and MaRs, differentially exerted
regulatory effects on cellular functions of ILC2 cells at
micromolar or nanomolar concentrations. In humans, LXA4, an
AA-derived SPM, decreased IL-13 release from ILC2s stimulated
with IL2/IL25/IL-33/PGD2 at nanomolar concentrations (57). In
addition, MaR1, a DHA-derived SPM, regulated IL-13 release from
ILC2 in vitro at nanomolar concentration and in vivo at ng/mouse
administration in a murine model of asthma (58). Also, regulatory
T cells synergistically exerted inhibitory effects on ILC2 in the
presence of MaR1 (58). Other cell types, including regulatory T
cells, may enhance the suppressive effects of SPMs on ILC2s.
Additionally, our study suggests that RvD1 and MaR1 can inhibit
ILC2 function at nanomolar concentration. Thus, we speculate that
these bioactive SPMs collectively, not individually, orchestrate the
regulatory circuit for ILC2-mediated eosinophilic inflammation.

The cellular sources of 12/15-LOX-derived mediators during
allergic inflammation are of particular interest. 12/15-LOX-
expressing eosinophils play pro-resolving functions by enhancing
the resolution of neutrophilic inflammation in acute peritonitis (8,
9) and by promoting corneal wound healing in the eye (59). In
addition, 12/15-LOX-expressing resident macrophages play an
important role in the efferocytosis of apoptotic neutrophils in
acute peritonitis (10). Further studies are required to identify the
cell types that locally produce 12/15-LOX-derived SPMs to
suppress ILC-2-mediated eosinophilic inflammation.

In conclusion, our results demonstrate that 12/15-LOX-derived
mediators regulate IL-33-induced eosinophilic airway
inflammation. Bioactive lipid screening identified 14(S)-HDoHE
and 10(S),17(S)-diHDoHE as potent endogenous suppressors of
ILC2 activation. These findings contribute to a better understanding
of the cellular and molecular mechanisms underlying the resolution
of eosinophilic airway inflammation. Thus, 12/15-LOX-derived
lipid mediators and/or 12/15-LOX-mediated lipid metabolism
may represent a potential therapeutic strategy for ameliorating
airway inflammation-associated conditions.
A B

FIGURE 5 | 14(S)-HDoHE suppresses IL-33-induced airway eosinophilic inflammation. Airway inflammation was induced by administration of IL-33 (500 ng per
mouse, intranasal), for 3 consecutive days, in C57BL/6 and 12/15-lipoxygenase deficient mice. 14(S)-hydroxy docosahexaenoic acid (HDoHE) was administered via
intraperitoneal injection prior to IL-33 administration. Flow cytometric analysis was performed 4 days after the final administration of IL-33. (A) Number of eosinophils
and macrophages in the BALF. (B) Number of lymphocyte subsets, including ILC2 and Th2 cells, in the BALF. Mean ± SEM, n=4 for each group. NS, not significant.
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