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Abstract: Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque
formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs
and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering
exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress
Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing
the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by
upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β
expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic fac-
tor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38
mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling;
attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetyl-
choline levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis
mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-
2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein
(Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated
protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review
protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau
hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and
hippocampus during the early and late AD phases.

Keywords: Alzheimer’s disease; Aβ plague; medicinal herb; oxidative stress; inflammation; neuronal
apoptosis

1. Introduction

Alzheimer’s disease (AD), a progressive age-related neurodegenerative disorder, is
the most common type of dementia, accounting for 60–80% of dementia cases [1,2]. Clinical
research has demonstrated that metabolic diseases such as obesity, insulin resistance, and
type 2 diabetes mellitus (T2DM) and unhealthy lifestyle habits such as smoking, stress, and
sleep disorders are closely associated with sporadic AD development [3–5]. Over 45 million
people worldwide have AD, and people aged >65 years demonstrate a high prevalence
of AD (7–10%), leading to death within 3–9 years after confirmed diagnosis [5–8]. AD is
currently ranked as fifth leading cause of death among the elderly population in the United
States [9]. Annually, the number of people with AD is increasing at a steady rate of approx-
imately 1.8 million people worldwide, particularly in low- and middle-income countries.
Therefore, medical and care costs related to AD are increasing gradually, leading to a heavy
financial burden on the affected individuals’ families and the society [10–12]. As such, AD
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is becoming a global healthcare issue [13]. The behavioral characteristics of AD include a
gradual decline in the quality of daily living associated with memory, learning, judgment,
movement, speech, and reasoning disabilities [14–16]. The pathological hallmarks of AD
include the extracellular accumulation of amyloid β (Aβ) plaques; intracellular aggregation
of hyperphosphorylated tau (p-tau), which subsequently forms neurofibrillary tangles
(NFTs); and loss of cholinergic transmission in the layer II entorhinal cortex, hippocampus,
and basal forebrain—resulting in cognitive dysfunction [14,17–19]. The hippocampus,
critical for memory and spatial learning, is vulnerable to Aβ deposition in the early stages
of AD [20,21]. Aβ peptides contain 36–43 amino acids generated by the transmembrane
glycoproteins expressed on cell surfaces, and Aβ1–40 and Aβ1–42 (with 40 and 42 amino
acids, respectively) are the major toxic substances involved in AD pathogenesis [22,23]. In
addition, Aβ25–35 can be generated through the enzymatic cleavage of Aβ1–40 [24]. Among
the Aβ fragments, Aβ25–35 is the shortest, but has the neurotoxic properties of a full-length
Aβ peptide and presents a high level of aggregation during AD pathogenesis [25]. In
general, Aβ oligomer deposition, an early event in AD pathogenesis, elicits neurotoxic-
ity, oxidative stress, synaptic dysfunction, calcium overload, inflammatory cascades, and
aberrant tau hyperphosphorylation in lesions [6,26,27]. Mitogen-activated protein kinases
(MAPKs) belong to a group of serine–threonine kinases; they are mainly divided into
three subfamilies: extracellular regulated kinases 1/2 (ERK1/2), p38 MAPK, and c-Jun
N-terminal protein kinase (JNK). These kinases are key in AD development [21]. Pharma-
cological enhancement of brain Aβ clearance is a potential strategy for AD prevention and
treatment [28].

Donepezil, an acetylcholinesterase (AChE) inhibitor, and memantine, an N-methyl-D-
aspartate receptor (NMDAR; NR) antagonist, have been approved for the clinical treatment
of AD. However, these single-target drugs are not only associated with various adverse
effects and toxicity but also less effective in reversing the pathological progression of
AD [29,30]. By contrast, because of their multitarget and multichannel properties, medici-
nal herbs and their derived ingredients (MHDIs) demonstrate considerably exceptional AD
treatment outcomes compared with the aforementioned drugs [11,31]. Therefore, develop-
ing potential MHDI-based AD treatment strategies is highly warranted. Here, we review
the critical aspects of current studies on MHDIs for AD treatment in in vivo AD animal
models and explore the potential clinical application of MHDIs in AD treatment.

2. MHDI-Mediated Suppression of Aβ Accumulation

Under physiological conditions, the transmembrane glycoprotein amyloid precursor
protein (APP) plays a major role in central nervous system maturation and cell contact
and adhesion. However, APP overexpression can cause the production of neurotoxic
derivatives, closely related to AD development [32,33]. APP can be cleaved by α-secretase
to initiate the nonamyloidogenic cascade preventing Aβ accumulation [34,35]. Aβ peptides
are produced from APP cleavage through the activation of β- and γ-secretases in the brain
regions, particularly in the temporal and frontal lobes during the early AD stages [36,37].

2.1. Effects of MHDIs on Aβ Accumulation through α-, β-, and γ-Secretase Activity Regulation

Notoginseng saponin Rg1, derived from Panax notoginseng, ameliorates cognitive
deficits partly by downregulating β- and γ-secretase expression in the hippocampus at
28 days after Aβ1–42-induced AD [35]. In 2021, Guo et al. also reported that ginsenoside
Rg1 ameliorates Aβ accumulation partly by inhibiting β-secretase in the hippocampus
after 6 treatment weeks in Aβ25–35-induced AD [38]. Furthermore, γ-secretase is a trans-
membrane protein complex containing four subunits (e.g., presenilin 1), and the activity of
β-site APP-cleaving enzyme-1 (BACE-1), a β-secretase, is the rate-limiting factor for Aβ ac-
cumulation, which causes hippocampal neuronal loss and cognitive dysfunction [17,35,39].
Therefore, BACE-1 may be a biomarker and therapeutic target for AD [38]. Previous
studies have demonstrated that increased BACE-1 might accelerate AD pathogenesis, and
pharmacological inhibition of BACE-1 reduces Aβ deposition in the brain during AD
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treatment [40,41]. Isorphynchophylline, extracted from Uncaria tomentosa, reduces Aβ

generation and deposition partly through a decrease in BACE-1 expression in the brain at
129 days in TgCRND8 transgenic mice [42]. However, strong inhibition of BACE-1 causes
serious adverse effects including sensorimotor gating deficits and schizophrenia, indicating
that the balance of BACE-1-mediated signaling appears to be important in AD [40]. Now,
researchers consider the possibility that a moderate decrease in BACE-1 activity would
provide benefits and avoid adverse effects for AD prevention and treatment [40,43].

2.2. Summary

MHDIs mentioned in this section inhibit Aβ accumulation by upregulating α-secretase
activities and downregulating β- and γ-secretase activities in the hippocampus in the late
phase of AD in animal models (Table 1 and Figure 1).

Table 1. MHDIs that suppress Aβ accumulation in AD animal models.

Major
Ingredients

Isolated from
Medicinal

Herbs

Anti-Aβ

Accumulation
Activities

Models Reference

Notoginseng
saponin Rg1

Panax
notoginseng

α-secretase↑, β-
secretase↓,
γ-secretase↓

28 days after
Aβ1–42-induced AD [35]

Ginsenoside Rg1
Bcl-2↑, MAP-2↑,
NeuN↑, Bax↓,
β-secretase↓

6 weeks after
Aβ25–35-induced AD [38]

Isorphynchophylline Uncaria
tomentosa

BACE-1↓, presenilin
1↓, p-APP (Thr668) ↓

129 days in
TgCRND8

transgenic mice
[42]

Bcl-2, B-cell lymphoma 2; MAP-2, microtubule-associated protein 2; NeuN, neuronal nuclei, Bax, Bcl-2-associated
x protein.
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Figure 1. Schematic representation of the effects of MHDIs on Aβ accumulation in the hippocampus
in the late phase of AD in in vivo models. sAPP, soluble amyloid precursor protein.
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3. MHDI-Mediated Inhibition of Aβ-Induced Oxidative Stress

Reactive oxygen species (ROS)-induced oxidative stress elicited in the early stages
of AD is closely associated with Aβ generation, which leads to synaptic dysfunction
and cognitive impairment [22,44]. Superoxide anions, hydroxyl radicals, and hydrogen
peroxide are crucial ROS types, which attack intracellular DNA, proteins, and lipids. In
addition, mitochondria are considered the main cellular source for the production of free
radicals (e.g., superoxide anions) [45].

3.1. Involvement of Decreased Antioxidant Status and Increased Lipid Peroxidation in Aβ-Induced
Oxidative Stress

Oxidative stress is caused by an imbalance between increased free radicals and de-
creased antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GSH-Px). SOD catalyzes the conversion of superoxide anions to
hydrogen peroxide [18]. CAT attenuates oxidative stress by converting cellular hydrogen
peroxide into water and oxygen and CAT deficiency is closely related to AD pathogene-
sis [46]. GSH-Px can cause hydrogen peroxide clearance and diminish hydroxyl radical
generation [18,47]. After Aβ accumulation, excessive ROS attack cellular organelles under
impaired antioxidant defense, causing a considerable decrease in SOD, CAT, and GSH-Px
levels and the exacerbation of AD progression [18,48]. ROS attack the neuronal cell mem-
brane and then lead to neuronal cell damage through lipid peroxidation, which causes
the formation of reactive aldehydes, such as 4-hydroxynonenal (4-HNE) and malondialde-
hyde (MDA), resulting in increased membrane permeability and decreased membrane
activity [18,39]. Moreover, MDA, a toxic lipid peroxidation byproduct, disrupts protein
synthesis, eventually leading to cognitive impairment [49].

3.2. Effects of MHDIs on Aβ-Induced Oxidative Stress through Antioxidant Activity and Lipid
Oxidation Regulation

Ginsennoside Rd, derived from Panax ginseng, ameliorates memory and learning
deficits partly by downregulating 4-HNE expression in the hippocampus at 5 days after
Aβ1–40-induced AD [50]. Nuclear-related factor-2 (Nrf2), a pivotal transcription factor,
translocates to the nucleus, binds to the antioxidant response element, produces antiox-
idant factors, and regulates the defense system to protect against oxidative stress [51].
Kynurenic acid can activate Nrf2-mediated signaling to reduce oxidative stress-induced
neuronal damage [52]. Lignans, isolated from Schisandra chinensis Baill, protect against
Aβ-induced oxidative stress by promoting kynurenic acid–induced Nrf2-mediated signal-
ing in the brain at 28 days after Aβ25–35-induced AD [53]. GSH-Px, a major endogenous
antioxidant, is key to ROS detoxification and cellular redox homeostasis maintenance. Thus,
disruption of GSH-Px homeostasis in the brain is closely related to AD development [31].
However, elevated expression of GSH-Px has been noted in the brains of patients with
mild cognitive deficits [54]. In 2014, Chen et al. found that bajijiasu, isolated from Morinda
officinalis, alleviates Aβ-induced oxidative stress mainly through SOD, CAT, and GSH-Px
activity upregulation and MDA activity downregulation in the hippocampus at 25 days
after Aβ25–35-induced AD [23]. Safflower yellow, isolated from Carthamus tinctorius, re-
duces Aβ-induced oxidative stress partly by upregulating SOD and GSH-Px activities and
downregulating MDA activity in the hippocampus at 28 days after Aβ1–42-induced AD [55].
In 2018, Zang et al. demonstrated that GJ-4, extracted from Gardenia jasminoides J. Ellis, alle-
viates memory deficit partly via increased SOD and decreased MDA levels in the cortex and
hippocampus at 10 days after Aβ25–35-induced AD [56]. Tenuigenin, derived from Polygala
tenuifolia Willd., effectively ameliorates memory deficit and oxidative stress mainly through
increased SOD and GSH-Px activities and decreased MDA and 4-HNE activities in the
hippocampus at 28 days after streptozotocin (STZ)-induced AD [47]. In 2019, Zhang et al.
reported that ginsenoside Rg3, isolated from P. ginseng C. A. Meyer, prevents cognitive
dysfunction partly by enhancing SOD, CAT, and GSH-Px expression and reducing MDA ex-
pression in the hippocampus at 60 days after D-galactose-induced AD [57]. In 2020, Yin et al.
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reported that neferine, isolated from Nelumbo nucifera, protects against cognitive deficits
partly by restoring SOD, CAT, and GSH-Px activities in the hippocampus at 4 days after
aluminum chloride (AlCl3)-induced AD [58]. However, Rhodiola crenulata extract was noted
to alleviate oxidative stress by downregulating GSH-Px expression in the hippocampus
at 28 days after Aβ1–42-induced AD [31]. In 2021, Shunan et al. demonstrated that betalin,
from Beta vulgaris L., significantly attenuates cognitive deficits partly by upregulating SOD,
CAT, and GSH-Px expression and downregulating MDA expression in the hippocampus at
28 days after AlCl3-induced AD [48].

3.3. Summary

Taken together, the MHDIs mentioned in this section inhibit Aβ-induced oxidative
stress mainly by enhancing the activities of antioxidant enzymes such as SOD, CAT, and
GSH-Px and reducing the levels of lipid peroxidation products such as 4-HNE and MDA in
the cortex and hippocampus in the early and late phases of AD in animal models (Table 2
and Figure 2).

Table 2. MHDIs that inhibit Aβ-induced oxidative stress in AD animal models.

Major
Ingredients

Isolated from
Medicinal

Herbs

Antioxidative
Stress Activities Models References

Ginsennoside Rd Panax ginseng 4-HNE↓
5 days after

Aβ1–40-induced
AD

[50]

Lignans Schisandra
chinensis Baill

kynurenic acid↑,
Nrf2↑

28 days after
Aβ25–35-induced

AD
[53]

Bajijiasu Morinda
officinalis

SOD↑, CAT↑,
GSH-Px↑,

MDA↓

25 days after
Aβ25–35-induced

AD
[23]

Safflower yellow Carthamus
tinctorius

SOD↑, GSH-Px↑,
MDA↓

28 days after
Aβ1–42-induced

AD
[55]

GJ-4
Gardenia

jasminoides J.
Ellis

SOD↑, MDA↓,
iNOS↓, COX-2↓,
PGE2↓, TNF-α↓

10 days after
Aβ25–35-induced

AD
[56]

Tenuigenin Polygala tenuifolia
Willd

SOD↑, GSH-Px↑,
MDA↓, 4-HNE↓
p-tau (Ser396) ↓,
p-tau (Thr181) ↓

28 days after
STZ-induced AD [47]

Ginsenoside Rg3 P. ginseng C. A.
Meyer

SOD↑, CAT↑,
GSH-Px↑,
MDA↓,

60 days after
D-galactose-

induced
AD

[57]

Neferine Nelumbo nucifera SOD↑, CAT↑,
GSH-Px↑

4 days after
AlCl3-induced

AD
[58]

Rhodiola crenulata
GSH-Px↓,

arachidonic
acid↓

28 days after
Aβ1–42-induced

AD
[31]

Betalin Beta vulgaris L.
SOD↑, CAT↑,

GSH-Px↑,
MDA↓,

28 days after
AlCl3-induced

AD
[48]

iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; TNF-α, tumor necrosis
factor-α.
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Figure 2. Schematic representation of the effects of MHDIs on Aβ-induced oxidative stress in the
cortex and hippocampus in the early and late phases of AD in in vivo models.

4. MHDI-Mediated Downregulation of Tau Hyperphosphorylation

Under physiological conditions, tau, a microtubule-associated protein, promotes the
stability of axonal microtubules and regulation of axonal transport. After phosphorylation,
tau detaches from microtubules and then elicits axonal transport dysfunction and synaptic
toxicity [17,59]. In AD pathogenesis, tau is hyperphosphorylated and it forms paired
helical filaments, which are the main constituents of NFTs [60]. Aβ-induced tau hyper-
phosphorylation is processed through the activation of glycogen synthase kinase-3 beta
(GSK-3β), MAPKs, hyperhomocysteinemia (HHcy), and cyclin-dependent kinase 5 (CDK5);
the balance between GSK-3β and protein phosphatase 2A (PP2A) activities determines the
phosphorylation status of tau in an AD brain [13,17,61]. Moreover, CDK5 plays a role in
the early phase of p-tau formation [55].

4.1. Effects of MHDIs on Aβ-Induced Tau Hyperphosphorylation through PP2A, CDK5, and
GSK-3β Expression Regulation

In 2014, Yang et al. reported that Dendrobium nobile Lindl. attenuates p-tau by down-
regulating GSK-3β expression in the hippocampus at 7 days after lipopolysaccharide
(LPS)-induced AD [62]. Safflower yellow attenuates tau hyperphosphorylation partly by
enhancing PP2A expression and reducing CDK5 and GSK-3 expression in the hippocam-
pus at 28 days after Aβ1–42-induced AD [55]. Emodin, extracted from Rheum officinale,
significantly ameliorates HHcy-mediated Aβ-induced tau hyperphosphorylation partly
by upregulating PP2A expression and downregulating BACE-1 expression in the hip-
pocampus at 14 days after homocysteine (Hcy)-induced AD [61]. In 2019, Zhang et al.
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demonstrated that R. crenulata extract effectively ameliorates p-tau expression partly by
increasing p-GSK-3β (Ser9)/GSK-3β ratio in the hippocampus at 28 days after Aβ1–42-
induced AD [63]. In addition, Centella asiatica prevents tau hyperphosphorylation by
downregulating GSK-3β expression and upregulating PP2A activity in the hippocampus
at 10 weeks after d-galactose/AlCl3-induced AD [13]. According to clinical case reports,
the brains of patients with AD demonstrate a considerable increase in the levels of tau
phosphorylated at Thr205, Ser396, and Ser404, as well as increased GSK-3β expression
but decreased PP2A expression [13,64]. In AD pathogenesis, p-tau accumulation in the
hippocampal cornu ammonis 1 (CA1) occurs earlier than in other brain regions. Moreover,
the extent of p-tau aggregation in the hippocampus reveals a close relationship of p-tau
with cognitive function [65]. ERK1/2 and phosphoinositide 3 kinase (PI3K)/protein ki-
nase B (Akt), which are upstream factors of GSK-3β, inhibit GSK-3β activity through the
phosphorylation of GSK-3α at Ser21 and GSK-3β at Ser9, resulting in the suppression of
p-tau-induced neuronal injury [17,44,66,67]. Sulforaphene, from Raphani semen, inhibits
p-tau accumulation partly by upregulating Akt (Ser473)/GSK-3β (Ser9)–mediated signaling
in the hippocampus at 6 weeks after STZ-induced AD [64]. The seeds of Litchi chinensis
fraction ameliorate tau-induced cognitive impairment by upregulating Akt expression
and downregulating GSK-3β expression in the hippocampal CA1 region at 28 days after
Aβ25–35-induced AD [67].

4.2. Summary

MHDIs mentioned in this section, therefore, provide beneficial effects against tau
hyperphosphorylation through the upregulation of p-Akt and PP2A expression and the
downregulation of GSK-3β and CDK5 expression in the hippocampus in the early and late
phases of AD in animal models (Table 3 and Figure 3).

Table 3. MHDIs that downregulate tau hyperphosphorylation in AD animal models.

Major
Ingredients

Isolated from
Medicinal

Herbs
Anti-p-Tau Activities Models References

Dendrobium
nobile Lindl.

GSK-3β↓
p-tau (Ser199-202) ↓,

p-tau (Ser396) ↓, p-tau
(Ser404) ↓, p-tau
(Thr231), p-tau

(Thr205)

7 days after
LPS-induced AD [62]

Safflower yellow C. tinctorius PP2A↑, CDK5↓,
GSK-3↓

28 days after
Aβ1–42-induced

AD
[55]

Emodin Rheum officinale
PP2A↑, p-CREB↑,

SYP↑, SYN-1↑,
BACE-1↓,

14 days after
Hcy-induced AD [61]

Centella asiatica PP2A↑, Bcl-2 mRNA↑,
GSK-3β↓

10 weeks after d-
galactose/AlCl3-

induced
AD

[13]

R. crenulata GSK-3β
(Ser9)/GSK-3β↑

28 days after
Aβ1–42-induced

AD
[63]

Sulforaphene Raphani semen
p-Akt (Ser473) ↑,

p-GSK-3β (Ser9) ↑,
IL-10↑, TNF-α↓, IL-6↓

6 weeks after s
STZ-induced AD [64]

Seed of Litchi
chinensis Akt↑, GSK-3β↓

28 days after
Aβ25–35-induced

AD
[67]

CREB, cyclic AMP response element-binding protein; SYP, synaptophysin; SYN-1, synapsin-1; STZ, streptozotocin.
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5. MHDI-Mediated Reduction of Aβ-Induced Inflammation

In the early stages of AD pathogenesis, Aβ deposition–induced inflammatory re-
sponses activate microglia and astrocytes, which secrete pro-inflammatory cytokines, such
as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX-2), transforming growth factor-α, and chemokines and
5-lipoxygenase (5-LO), and thus disrupting the blood–brain barrier and exacerbating neu-
ronal damage in the hippocampus, eventually worsening the presentation of early-stage
AD [18,65,68–70]. Large amounts of inflammatory cytokines can activate BACE-1 and γ-
secretase to suppress Aβ clearance, thereby increasing Aβ accumulation [71]. TNF-α plays
a pivotal role in activation of the subsequent cytokines (IL-1β and IL-6) through various
signaling pathways and then leads to the activation of nuclear factor-κB (NF-κB) [72]. 5-LO
is a crucial enzyme in the formation of pro-inflammatory leukotrienes. Pharmacological
inhibition of 5-LO alleviates memory deficits, synaptic dysfunction, and p-tau accumulation
in a mouse model of AD [73].

5.1. Effects of MHDIs on Aβ-Induced Inflammation through Inflammatory Mediator Regulation

Emodin inhibits Aβ-induced inflammation by reducing TNF-α, IL-6, 5-LO, and NF-κB
expression in the hippocampus at 14 days after Hcy-induced AD [61]. In 2019, Guo et al.
demonstrated that ethyl acetate, extracted from Picrasma quassioides Benn., suppresses
neuroinflammation and reduces Aβ accumulation by downregulating TNF-α, IL-1β, and
IL-6 expression in the hippocampus at 23 days after Aβ25–35-induced AD [74]. Nefer-
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ine and betalin inhibit Aβ-induced inflammation by reducing TNF-α, IL-1β, IL-6, iNOS,
COX-2, and NF-κB expression in the hippocampus at 4 and 28 days after AlCl3-induced
AD, respectively [48,58]. In 2020, Chen et al. reported that timosaponin BII, isolated from
Anemarrhena asphodeloides Bunge, protects against cognitive impairment partly through
the downregulation of TNF-α, IL-1β, and iNOS expression in the hippocampus at 38 days
after LPS-induced inflammation and AD [75]. Moreover, in 2020, Song et al. found that
schisandrin, derived from S. chinensis Baill., effectively reduces inflammatory response
by downregulating TNF-α, IL-1β, IL-6, and NF-κB expression in the hippocampus at
14 days after STZ-induced AD [72]. Furthermore, cuban policosanol, purified from Sac-
charum officinarum, was noted to ameliorate amyloid plaque deposition mainly through
the downregulation of TNF-α, IL-1β, and IL-6 expression in the cortex and hippocampus
after 4 months in 5xFAD mice [18]. Activated microglia can be divided into two pheno-
types: M1 (classical type) and M2 (alternative type). M1 microglia can secrete excessive
amounts of pro-inflammatory factors and then exacerbate brain injury in AD. By contrast,
M2 microglia can secrete anti-inflammatory cytokines [IL-10, IL-13, and Arginase 1 (Arg1)]
and neurotrophic factors to promote repair of damaged neurons. Arg1, highly expressed
in M2 microglia, can compete with iNOS for the common substrate L-arginine, resulting
in reduced nitric oxide production and inflammatory damage [76,77]. Furthermore, M1
microglia triggers pro-inflammatory astrocyte activity, whereas M2 microglia promotes
anti-inflammatory astrocyte activity [76]. Thus, M1-to-M2 microglia conversion contributes
to synapse protection in AD hippocampus [78,79]. Ginsennoside Rd attenuates cognitive
decline by downregulating ionized calcium-binding adapter molecule 1 (Iba1; a marker of
microglia), glial fibrillary acidic protein (GFAP; a marker of reactive astrocytes), TNF-α,
IL-1β, IL-6, and caspase-3 expression and upregulating IL-10 expression in the hippocam-
pus at 5 days after Aβ1–40-induced AD [50]. Brain-derived neurotrophic factor (BDNF)
is a key regulator in the synaptic plasticity contributing to the development of cognitive
function, whereas in AD pathogenesis, the reduction of BDNF and insulin-like growth
factor 1 (IGF-1) levels in the brain is tightly associated with Aβ accumulation and cognitive
impairment [80,81]. Ginsenoside Rg5, derived from P. ginseng, attenuates Aβ-induced
inflammation and Aβ deposition mainly by upregulating BDNF and IGF-1 expression and
downregulating TNF-α, IL-1β, iNOS, and COX-2 expression in the cortex and hippocampus
at 28 days after STZ-induced AD [81]. In 2019, Zhang et al. demonstrated that safflower
yellow ameliorates Aβ-induced inflammation and cognitive decline mainly through the
downregulation of TNF-α, IL-1β, and IL-6 expression and upregulation of Arg1 expression
in the cortex and hippocampus at 20 days after Aβ1–42-induced AD [77].

5.2. Effects of MHDIs on Aβ-Induced Inflammation through Receptor for Advanced Glycation End
Product- and MAPK-Mediated Signaling Regulation

The receptor for advanced glycation end product (RAGE), a pattern recognition recep-
tor, is abundantly expressed in neurons, microglia, and astrocytes. In Aβ-induced inflamma-
tion, increased RAGE expression in neurons and glia cells leads to excessive ROS generation,
which results in oxidative stress. In addition, binding of Aβ to RAGE in microglia (M1)
enhances the production of pro-inflammatory cytokines, which induce NF-κB activation
by modulating inflammatory signaling pathways (such as the MAPK signaling pathway).
NF-κB activation, in turn, produces large amounts of pro-inflammatory cytokines, ROS,
and RAGE; this results in the formation of a vicious cycle between RAGE and NF-κB,
exacerbating Aβ accumulation in the cortex and hippocampus [68]. Thus, pharmacological
downregulation of the activity of the inflammatory signaling pathways effectively attenu-
ate the severity of cognitive deficits [22]. Moreover, cytokines can upregulate β-secretase
activity and then augment Aβ formation [75]. Tanshinone IIA, from Salvia miltiorrhiza
Bunge, attenuates Aβ accumulation partly by downregulating RAGE/NF-κB-mediated
inflammatory signaling in the hippocampus at 30 days in APP/PS1 transgenic mice [68].
However, reactive astrocytes also play positive roles in AD in glial scar formation, limiting
the extent of Aβ-induced damage, as well as in BDNF upregulation through tropomyosin
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receptor kinase B (TrkB) receptor expression [27]. In addition, astrocytes are important in
clearing Aβ deposits [50]. MAPKs are also critical regulators of pro-inflammatory signaling
response [51]. Aβ-induced inflammatory response can be elicited through the activation
of JNK- and p38 MAPK-mediated signaling [82–84]. Cytokine release, in turn, activates
p38 MAPK-mediated signaling and subsequently causes tau hyperphosphorylation [62]. In
2016, Wang et al. reported that caffeic acid, extracted from Ocimum gratissimum, amelio-
rates Aβ-induced inflammation mainly by downregulating p38 MAPK/NF-κB-mediated
signaling in the hippocampus at 2 weeks after Aβ1–40-induced AD [85]. A steroid-enriched
fraction of Achyranthes bidentata protects against Aβ-induced inflammation partly through
the downregulation of p38 MAPK/JNK/NF-κB-mediated signaling in the cortex and hip-
pocampus at 16 days after Aβ1–40-induced AD [84]. In 2021, Yamamoto et al. found that
rosmarinic acid suppresses Aβ-induced inflammation by downregulating JNK-mediated
signaling in the hippocampus after 8 treatment months in a triple-transgenic mouse model
of AD [65]. The effects of M1-to-M2 transformation on the formation of synaptic plasticity
are attributable to the activation of the BDNF/TrkB/ERK1/2-mediated signaling path-
way [78]. Safflower yellow, extracted from C. tinctorius L., effectively enhances synaptic
plasticity by activating the BDNF/TrkB/ERK1/2-mediated signaling pathway in the cor-
tex and hippocampus at 3 months in APP/PS1 mice [78]. However, in 2019, Wang et al.
reported that Aβ1–42 effectively enhances the ERK1/2 signaling cascade, representing a
close connection between Aβ and ERK1/2-mediated signaling [86]. In addition, in 2013,
Ashabi et al. indicated that the inhibition of ERK1/2 activation, p38 MAPK activation, or
both attenuates neuroinflammation in an Aβ-induced AD model [51].

5.3. Summary

MHDIs mentioned in this section thus reduce Aβ-induced inflammation mainly by
inhibiting the expression of inflammatory factors, such as TNF-α, IL-1β, IL-6, iNOS, COX-
2, NF-κB, and 5-LO and promoting the expression of anti-inflammatory factors, such as
IL-10 and Arg1. Furthermore, the anti-inflammatory effects of MHDIs against Aβ-induced
neuronal damage are partly attributable to the upregulation of BDNF/TrkB/ERK1/2-
mediated signaling and downregulation of p38 MAPK/JNK-mediated signaling in the
cortex and hippocampus in the early and late phases of AD in animal models (Table 4 and
Figure 4).

Table 4. MHDIs that reduce Aβ-induced inflammation in AD animal models.

Major
Ingredients

Isolated from
Medicinal

Herbs

Anti-Inflammation
Activities Models References

Emodin R. officinale
microglia activation↓,
TNF-α↓, IL-6↓, 5-LO↓,

NF-κB↓

14 days after
Hcy-induced AD [61]

Ethyl acetate Picrasma
quassioides Benn TNF-α↓, IL-1β↓, IL-6↓

23 days after
Aβ25–35-induced

AD
[74]

Betalin B. vulgaris L.

TNF-α mRNA↓, IL-1β
mRNA↓, IL-6

mRNA↓, iNOS
mRNA↓, COX-2
mRNA↓, NF-κB↓

28 days after
AlCl3-induced

AD
[48]

Neferine N. nucifera
TNF-α↓, IL-1β↓, IL-6↓,

iNOS↓, COX-2↓,
NF-κB↓

4 days after
AlCl3-induced

AD
[58]

Timosaponin BII
Anemarrhena
asphodeloides

Bunge

TNF-α↓, IL-1β↓,
iNOS↓

38 days after
LPS-induced
inflammation

and AD

[75]



Int. J. Mol. Sci. 2022, 23, 11311 11 of 27

Table 4. Cont.

Major
Ingredients

Isolated from
Medicinal

Herbs

Anti-Inflammation
Activities Models References

Schisandrin S. chinensis Baill Sirtuin 1↑, TNF-α↓,
IL-1β↓, IL-6↓, NF-κB↓

14 days after
STZ-induced AD [72]

Cuban
policosanol

Saccharum
officinarum

4-HNE↓, TNF-α↓,
IL-1β↓, IL-6↓

4 months in
5xFAD

transgenic mice
[18]

Ginsennoside Rd Panax ginseng

IL-10↑, HSP70↑, Iba1↓,
GFAP↓, TNF-α↓,

IL-1β↓, IL-6↓,
caspase-3↓

5 days after
Aβ1–40-induced

AD
[50]

Ginsenoside Rg5 P. ginseng

BDNF↑, IGF↑, ChAT↑,
TNF-α↓, IL-1β↓,
iNOS↓, COX-2↓,

AChE↓

28 days after
STZ-induced AD [81]

Safflower yellow C. tinctorius L.

TNF-α↓, IL-1β↓, IL-6↓,
iNOS mRNA↓,

Arg1↑(marker of M2
microglia), YM-1

mRNA↑ (M2-related
cytokine), CD206

mRNA↑ (M2-related
cytokine)

28 days after
Aβ1–42-induced

AD
[77]

Tanshinone IIA salvia miltiorrhiza
Bunge

TNF-α↓, IL-1β↓, IL-6↓,
RAGE↓, NF-κB↓

30 days in
APP/PS1

transgenic mice
[68]

Caffeic acid Ocimum
gratissimum

p-p38 MAPK↓,
NF-κB-p65↓, TNF-α↓,
IL-6↓, p53↓, AChE↓,

CAT↑, GSH-Px↑

14 days after
Aβ1–40-induced

AD
[85]

Achyranthes
bidentata

p-p38 MAPK↓,
p-JNK↓

TNF-α↓, IL-1β↓, IL-6↓

16 days after
Aβ1–40-induced

AD
[84]

Rosmarinic acid p-JNK↓, p-c-Jun↓

8 months in the
triple-transgenic
mouse model of

AD

[65]

Safflower yellow C. tinctorius L.
Arg1↑, BDNF ↑, TrkB

↑, p-ERK1/2↑
iNOS↓

3 months in
APP/PS1

transgenic mice
[78]

ChAT, choline acetyltransferase.
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6. MHDI-Mediated Amelioration of Aβ-Induced Synaptic Dysfunction

In the brain, the mammalian target of rapamycin plays a major role in dendritic
growth and synaptic plasticity development [3]. Synaptic activity is essential in synap-
tic plasticity and memory formation, and maintenance of synaptic activity effectively
protects against AD pathogenesis [87]. The maintenance of normal synaptic plasticity
requires particular proteins, including immediate early genes (IEG) and activity-regulated
cytoskeleton-associated protein (Arc), which are crucial for long-term memory formation
and consolidation [88]. Synaptic plasticity disruption followed by synapse loss caused by
Aβ oligomers in the hippocampal CA1 subregion occurs in the early stages of AD, and
the hippocampal CA1 subregion is more vulnerable to AD-related neuronal damage than
are the other subregions. In addition, synapse loss and dendritic spine abnormalities are
closely associated with cognitive decline [36,59,87,89].

6.1. Involvement of Synaptic Protein Expression in Aβ-Induced Synaptic Dysfunction

The synapse-associated proteins, involving presynaptic dynamin 1, synapsin-1 (SYN-1),
synaptophysin (SYP), postsynaptic density protein (PSD)-95, and neural cell adhesion
molecule, play a crucial role in synaptic plasticity and memory formation [68,90]. SYN-1, a
presynaptic marker, is significantly expressed in synaptic vesicles, and it plays a crucial role
in the modulation of neurotransmitter release [78]. SYN-1 expression can reflect synapse
density [91]. Moreover, SYP, a calcium-binding protein, is a presynaptic vesicle protein,
with a role in synaptic formation and vesicular endocytosis [78,92]. PSD-95, a critical
scaffolding component of postsynaptic terminals, is vital for synaptic transmission and
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synaptic stabilization during long-term potentiation (LTP) [27,93]. Dendritic spine density
is also crucial for synaptic function and cognitive behavior [36]. Microtubule-associated
protein 2 (MAP-2), a dendritic marker, is a pivotal factor for dendritic spine development
and dendritic elongation. Thus, upregulated MAP-2 expression exerts beneficial effects
against synaptic dysfunction through dendritic morphology maintenance in Aβ-damaged
neurons [90]. By contrast, activation of RhoA, a member of the Rho–GTPase family, and its
downstream target ROCK reduces dendritic spine density and length during AD patho-
genesis [94]. Moreover, the accumulation of p-tau in the hippocampus reduces MAP-2
expression, leading to cognitive dysfunction [95]. APP also has critical physiological roles
in dendritic spine density and synaptic plasticity [96]. Protein kinase c (PKC)/BDNF-
mediated signaling plays a key role in synaptogenesis, synapse development, synaptic
transmission, and synaptic plasticity in the hippocampus and the related cortical regions in
AD animal models [27,90]. PKC plays an essential role in the modulation of the survival
and apoptotic pathways. Moreover, BDNF is essential for cognitive function through the
regulation of axonal sprouting and synaptic plasticity [97].

6.2. Effects of MHDIs on Aβ-Induced Synaptic Dysfunction through Synaptic Protein
Expression Regulation

In 2014, Zhan et al. reported that berberine rescues synaptic/memory deficits by
upregulating IEG and Arc mRNA and protein levels in the hippocampus at 7 weeks
after D-galactose-induced AD [88]. Xanthoceras sorbifolia extract increases dendritic spine
density probably through the activation of BDNF/TrkB/PSD-95-mediated signaling and
inhibition of RhoA/ROCK-mediated signaling in the hippocampus at 18 days after Aβ25–35-
induced AD [94]. In 2017, Ji et al. reported that daucosterol palmitate, extracted from
Alpinia oxyphylla Miq., ameliorates Aβ-induced cognitive impairment partly due to the
enhancement of SYP expression in the hippocampus at 14 days after Aβ1–42-induced
AD [92]. Catalpol, extracted from Rehmanniae Radix, effectively promotes the expression of
synaptic proteins including dynamin 1, SYP, PSD-95, and MAP-2 by activating PKC/BDNF-
mediated signaling in the hippocampus at 2 months in aged rats [90]. BDNF combines with
its receptor TrkB to activate Akt/cyclic AMP response element-binding protein (CREB)-
mediated signaling. Akt is the upstream regulator of CREB, which plays a key role in
the maintenance of synaptic plasticity during the pathogenesis of AD [98]. However, Aβ

accumulation can suppress the proteolytic cleavage of pro-BDNF, which reduces the BDNF
levels [99]. Icariin, isolated from Epimedium brevicornum Maxim, attenuates Aβ-induced
synaptic dysfunction through the activation of BDNF/TrkB/Akt/CREB-mediated signaling
in the hippocampus at 28 days after Aβ1–42-induced AD [98]. In addition, molecular
chaperones exhibit diverse functions such as protein folding and Aβ disaggregation. Thus,
chaperone proteins protect against Aβ-induced synaptic injury in the hippocampal and
cortical neurons by preventing Aβ oligomers binding to the dendrites [93].

6.3. Involvement of Acetylcholine Release in Aβ-Induced Synaptic Dysfunction

Cholinergic neurons that release acetylcholine (ACh) from axon terminals are most
closely associated with cognitive function; therefore, loss of cholinergic neurons causes
memory and learning deficits [11,26]. ACh synthesis and degradation require choline
acetyltransferase (ChAT) and AChE, respectively. Thus, brain ACh levels can be increased
by promoting ChAT function or reduced by upregulating AChE activity [100]. Aβ ac-
cumulation alters neurotransmitter-related enzyme expression and thus increases AChE
activity but reduces ChAT activity, resulting in reduced synaptic transmission and plastic-
ity [6,101]. Increased AChE levels, in turn, trigger Aβ aggregation, leading to exacerbation
of Aβ accumulation [101]. In the early stages of AD, ACh neuromediator synthesis is
reduced [102].
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6.4. Effects of MHDIs on Aβ-Induced Synaptic Dysfunction through ChAT, ACh, and AChE
Level Regulation

Galantamine, a phenanthrene alkaloid isolated for the first time from Galanthus
woronowii [103], is the first nutraceutical to be approved by the United States Food and Drug
Administration as a reversible AChE inhibitor [104]. Moreover, galantamine can block
ACh degradation in the synaptic cleft, resulting in constant ACh stimulation of cholinergic
receptors [104,105]. In 2006, Meunier et al. demonstrated that galantamine protects against
Aβ-induced memory deficits partly by inhibiting AChE activity in the hippocampus at
7 days after Aβ25–35-induced AD [106]. Galantamine also acts as an allosteric modula-
tor of nicotinic ACh receptors (nAChRs) [107,108]. Galantamine enhances microglial Aβ

clearance partly by upregulating microglial α7 nAChR expression in the hippocampus at
2 weeks after Aβ42-induced AD [107]. It has been suggested that AChE plays a key role in
Aβ accumulation in the early stages of senile plaque formation [109]. In 2022, Siddique et al.
reported that galantamine effectively inhibits Aβ42 aggregation mainly by reducing AChE
activity and promoting GSH-Px levels in the brain at 57 days in the transgenic Drosophila
model of AD [109]. Currently, galantamine provides beneficial effects on mild to moderate
AD by downregulating AChE activity and upregulating ACh release in the brain [110].
However, galantamine can cause some adverse effects, such as hepatotoxicity and gas-
trointestinal disorders, and cannot reduce the rate of decline of cognitive capacities in the
later stages of AD [105,111]. Gastrodia elata Blume treatment significantly improves spatial
memory mainly by upregulating ChAT expression and downregulating AChE expression
in the prefrontal cortex and hippocampus at 52 days after Aβ25–35-induced AD [101]. In
2014, Huang et al. reported that bajijiasu ameliorates Aβ-induced cognitive dysfunction
partly through increased ACh levels and decreased AChE levels in the hippocampus at
25 days after Aβ25–35-induced AD [23]. Lychee seed extract improves cognitive dysfunction
probably by inhibiting Aβ, tau, and AChE formation in the hippocampus at 8 weeks in
a rat model of T2DM and AD [112]. In 2018, Zang et al. observed that GJ-4 improves
cognitive ability partly by downregulating AChE levels and upregulating ACh levels in
the cortex and hippocampus at 10 days after Aβ25–35-induced AD [56]. Lignans, isolated
from S. chinensis Baill, ameliorate cognitive decline partly through the upregulation of ACh
levels in the brain at 1 week in AD rats [11].

6.5. Involvement of Postsynaptic Receptor and Protein Expression in Aβ-Induced
Synaptic Dysfunction

NMDARs (NRs) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicaci (AMPA)
receptors (AMPARs), both belonging to ionotropic glutamate receptors, play multiple roles
in synaptic plasticity and excitotoxicity [113]. NMDAR and AMPAR [including glutamate
A1 (GluA1) and GluA2 subunits] are the major components of PSD, and these receptors can
regulate excitatory synaptic connections and maintenance process of LTP [91]. NMDARs
are ligand-gated ion channels and their subtypes, such as NR1/NR2A (NMDAR2A) and
NR1/NR2B (NMDAR2B), are regulated in the synaptic transmission process [113,114].
Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII), a multifunctional serine/threonine
protein kinase, is a pivotal enzyme in Ca2+/CaM-mediated signaling. CaMKII isoforms are
derived from four genes (α, β, γ, and δ), and CaMKIIα is important for learning and mem-
ory [115]. Under physiological conditions, NMDAR, CaMKII, and PKC in postsynaptic
density are important in synaptic plasticity [32,116]. Intracellular calcium ions phosphory-
late CaMKII, which subsequently activates downstream ERK/CREB-mediated signaling
for the induction of LTP in the hippocampus [115]. By contrast, in AD pathogenesis, Aβ

deposition triggers extracellular Ca2+ flow into the cytoplasm, ultimately leading to calcium
overload. This calcium overload subsequently causes neurotoxicity, reducing the expression
of AMPAR 1 (GluA1), CaMKII, PKC, and NR2B contained in NMDARs [89,91,116]. Thus,
Aβ accumulation disturbs NMDAR-associated LTP induction by affecting NR2A/NR2B ra-
tio in the hippocampal CA1 and dentate gyrus [113], whereas synaptic NMDAR activation
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causes neuroprotective effects on Aβ intraneuronal accumulation through the enhancement
of synaptic activity and plasticity [59].

6.6. Effects of MHDIs on Aβ-Induced Synaptic Dysfunction through Postsynaptic Receptor and
Protein Expression Regulation

In 2013, Wei et al. reported that β-asarone, isolated from Acori graminei Rhizoma, effec-
tively alleviates cognitive decline by activating CaMKIIα/CREB-mediated signaling in the
frontal cortex at 4 months in APP/PS1 mice [117]. Oleanolic acid, from Ligustrum lucidum,
ameliorates Aβ-induced memory deficit partly by upregulating NMDAR2B, CaMKII, and
PKC expression in the hippocampus at 28 days after Aβ25–35-induced AD [116]. However,
in 2012, Liu et al. reported that pathological cytoplasmic calcium overload occurs through
the activation of NR1 subunits of NMDARs. Overloaded Ca2+ combines with CaM to
subsequently elicit increased CaMKII phosphorylation, and this in turn promotes NR1
expression; this creates a vicious cycle between the NR1 and CaMKII expression, causing
neuronal cell death in the hippocampal CA1 region [113].

6.7. Summary

MHDIs mentioned in this section reduce Aβ-induced synapse loss and promote synap-
tic proteins including dynamin 1, SYP, PSD-95, and MAP-2 by activating BDNF/Akt/CREB-
mediated signaling in the hippocampus. Moreover, they ameliorate synaptic transmission
deficits mainly through the upregulation of ACh PKC, NR2B, and CaMKII expression and
downregulation of AChE expression in the hippocampus in the early and late phases of
AD in animal models (Table 5 and Figure 5).
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Table 5. MHDIs that ameliorate Aβ-induced synaptic dysfunction in AD animal models.

Major
Ingredients

Isolated from
Medicinal

Herbs

Restoring Synaptic
Dysfunction

Activities
Models References

Berberine
IEG mRNA &

protein↑, Arc mRNA
& protein↑

7 weeks after
D-galactose-

induced
AD

[88]

Xanthoceras
sorbifolia

PSD-95↑, BDNF↑,
p-TrkB/TrkB↑, RhoA↓,

ROCK2↓

18 days after
Aβ25–35-induced

AD
[94]

Daucosterol
palmitate

Alpinia oxyphylla
Miq. SYP↑

14 days after
Aβ1–42-induced

AD
[92]

Catalpol Rehmanniae
Radix

dynamin 1↑, SYP↑,
PSD-95↑, MAP-2↑

2 months in
aged rats (23–24

months old)
[90]

Icariin
Epimedium
brevicornum

Maxim

PSD-95↑, BDNF↑,
TrkB↑, Akt↑, CREB↑

28 days after
Aβ1–42-induced

AD
[98]

Galantamine Galanthus
woronowii AChE↓

7 days after
Aβ25–35-induced

AD
[106]

Galantamine microglial α7 nAChR↑
2 weeks after
Aβ42-induced

AD
[107]

Galantamine
AChE↓, GSH-Px↑,
caspase-9 activity↓,
caspase-3 activity↓

57 days in the
transgenic

Drosophila model
of AD

[109]

Gastrodia elata
Blume ChAT↑, AChE↓

52 days after
Aβ25–35-induced

AD
[101]

Bajijiasu Morinda
officinalis ACh↑, AChE↓

25 days after
Aβ25–35-induced

AD
[23]

Lychee seed
extract Litchi chinensis AChE↓

8 weeks in a rat
model of T2DM

and AD
[112]

GJ-4 G. jasminoides J.
Ellis ACh↑, AChE↓

10 days after
Aβ25–35-induced

AD
[56]

Lignans S. chinensis Baill ACh↑ 1 week in AD
rats [11]

β-Asarone Acori graminei
Rhizoma

CaMKIIα↑, p-CREB↑,
Bcl-2↑

4 months in
APP/PS1 mice [117]

Oleanolic acid Ligustrum
lucidum

NMDAR2B↑,
CaMKII↑, PKC↑,
BDNF↑, TrkB↑,

CREB↑

28 days after
Aβ25–35-induced

AD
[116]

7. MHDI-Mediated Attenuation of Aβ-Induced Apoptosis

In the later stages of AD, hippocampal neuronal apoptosis plays a major role in AD
pathogenesis [13]. The mammalian system exhibits two major apoptotic pathways: (1) an
extrinsic pathway, induced by death receptors located on the cell membrane, and (2) an
intrinsic pathway, elicited via a mitochondria-related route [118].
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7.1. Involvement of MAPK and PI3K/Akt Signaling in Aβ-Induced Apoptosis

MAPKs play different roles in signal transduction in response to various stimuli.
Moreover, MAPKs are key modulators of cell growth, differentiation, development, cell
survival, and apoptosis [119,120]. In general, ERK1/2-mediated signaling is involved in
cell survival, proliferation, and development, whereas p38 MAPK- and JNK-mediated
signaling triggers mitochondria-related neuronal apoptosis in response to various types of
stress stimuli [21,25,121]. However, ERK1/2-mediated signaling also triggers Aβ-induced
apoptosis in a rat model of ibotenic acid (IBO)-induced AD [122]. Aβ accumulation leads to
the phosphorylation of p38 MAPK, which subsequently triggers tau hyperphosphorylation,
disrupts synaptic plasticity, and eventually, elicits hippocampal neuronal apoptosis [25].
JNK is activated by the upstream factors including apoptosis signal-regulating kinase
1 (ASK1), MAPK kinase (MKK) 4 and MKK7. Activated JNK phosphorylates nuclear
factors such as c-Jun and activating transcription factor 2, as well as the cytosolic sub-
strate APP. Thus, Aβ-induced neuronal apoptosis is closely associated with JNK-mediated
signaling [123]. ERK1/2 and p38 MAPK-mediated signaling activation elicits neuronal
apoptosis during Aβ accumulation in the hippocampus [21,124] and JNK activation can
exert anti-apoptotic effects by downregulating mitochondria-dependent caspase-3 activity
in an in vitro AD model [120]. The PI3K/Akt/GSK-3β signaling pathway plays a pivotal
role in cell proliferation and differentiation, neural network maintenance, as well as neu-
ronal growth, survival and apoptosis [125]. In AD pathogenesis, Aβ deposition inhibits
PI3K/Akt activation and then triggers the expression of pro-apoptotic factors such as
GSK-3β and NF-κB, resulting in neuronal apoptosis [67].

7.2. Effects of MHDIs on Aβ-Induced Apoptosis through MAPK-, PI3K/Akt-, and
BDNF/CREB-Mediated Signaling Regulation

In 2016, Zong et al. reported that icariin, the main component from E. brevicornum
Maxim, attenuates Aβ-induced caspase-3-apoptoic cascade and improves spatial learning
mainly through the downregulation of NF-κB-, ERK1/2-, p38 MAPK-, and JNK-mediated
signaling in the hippocampus at 20 days after IBO-induced AD [122]. Butylphthalide exerts
beneficial effects against apoptotic neuronal death probably through the downregulation
of p38 MAPK-mediated signaling in the hippocampus at 30 days after Aβ1–42-induced
AD [10]. In 2020, Zhou et al. reported that Tinospora sinensis protects against AD-induced
neuronal damage partly by upregulating PI3K/Akt-mediated anti-apoptotic signaling
in the hippocampus at 21 days after Aβ1–40-induced AD [125]. Aβ-induced neuronal
apoptosis can be suppressed through the activation of BDNF/TrkB-mediated signaling,
which subsequently leads to CREB phosphorylation, enabling memory preservation [29].
The translocation of phosphorylated CREB to the nucleus induces the transcription of
anti-apoptotic factors including B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large
(Bcl-xL) [126]. Icariside II, extracted from E. brevicornum, mitigates Aβ-induced apoptotic
neuronal death by activating BDNF/TrkB/CREB-mediated signaling in the hippocampus
at 5 days after Aβ25–35-induced AD [29].

7.3. Involvement of Mitochondria-Mediated Apoptotic Cascades in Aβ-Induced Apoptosis

MAPKs regulate apoptotic signaling through the modulation of Bcl-2 family members
in AD animal models [44]. Bcl-2 family proteins, including pro-apoptotic proteins [i.e.,
Bcl-2-associated x protein (Bax), Bcl-2 antagonist killer 1 (Bak), and Bcl-2-associated death
promoter (Bad)] and anti-apoptotic proteins (i.e., Bcl-2, Bcl-xL, and myeloid cell leukemia 1),
rigorously regulate mitochondrial outer membrane (MOM) integrity and permeability [13].
Bcl-2 could bind to Bax (Bak) and then prevent Bax (Bak) translocation to the MOM during
the apoptotic process [127]. Moreover, Bcl-2 and Bax (Bak) play a pivotal role in the regu-
lation of the mitochondrial permeability transition pore [57]. Thus, the balance between
pro-apoptotic and anti-apoptotic Bcl-2 determines whether cells survive or undergo apopto-
sis [128,129]. JNK-mediated signaling induces Bax translocation from the cytosol to MOM,
leading to the disruption of MOM integrity and the induction of mitochondria-related
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apoptotic protein release into the cytosol [130–132]. Mitochondria-related apoptosis can
occur via caspase-dependent or -independent pathways. In mitochondria-related apoptotic
signaling, MOM permeabilization causes the release of cytochrome c (cyt c) into the cytosol,
where it binds to apoptosis protease-activating factor 1 in the presence of dATP and then
forms the apoptosome, leading to the activation of caspase-9/caspase-3 (final apoptosis
executor)-mediated apoptosis. In addition, MOM integrity disruption causes mitochon-
drial apoptosis-inducing factor (AIF) release into the cytosol and then translocation to the
nucleus, resulting in caspase-independent apoptosis [15]. Bcl-2 family proteins are pivotal
regulators of mitochondria-related apoptotic cascades [133].

7.4. Effects of MHDIs on Aβ-Induced Apoptosis through Bax-, Cullin 4B-, and
β-Catenin-Mediated Signaling Regulation

β-Asarone, the major ingredient of Acorus tatarinowii Schott, protects against apoptotic
neuronal death partly by downregulating JNK-mediated Bax/caspase-9 signaling in the
hippocampus at 28 days after Aβ1–42-induced AD [119]. In 2016, Wang et al. demonstrated
that genistein exerts beneficial effects against cognitive deficits probably by downregulating
Bax/cyt c/caspase-3-mediated apoptotic signaling in the hippocampus at 49 days after
Aβ25–35-induced AD [15]. In 2018, Wei et al. found that 2-dodecyl-6-methoxycyclohexa-2,
5-diene-1, 4-dione (DMDD), from Averrhoa carambola L., protects against Aβ-induced apop-
tosis mainly by increasing Bcl-2/Bax expression and suppressing cleaved caspase-9 and
caspase-3 expression in the hippocampus at 21 days in APP/PS1 transgenic AD mice [133].
Scutellarein, derived from Scutellaria baicalensis, effectively reduces Aβ-induced apopto-
sis mainly through the upregulation of Bcl-2 expression and downregulation of Bax and
cleaved caspase-3 expression in the hippocampus at 28 days after Aβ-induced AD [134].
Ginsenoside Rg3 attenuates Aβ-induced mitochondria-related apoptosis through the down-
regulation of Bax/caspase-9/caspase-3- and Bax/AIF-mediated apoptotic signaling in the
hippocampus at 60 days after D-galactose-induced AD [57]. Aβ and p-tau accumulation
have a close connection with mitochondria-mediated cyt c/caspase-3 apoptosis [120,135].
Somatostatin receptor 4 (SSTR4), mainly distributed in the cortex and hippocampus, is
crucial in learning and memory. SSTR4 can upregulate Aβ-degrading enzyme expression
in the hippocampus, whereas ubiquitin-mediated degradation of SSTR4 initiates neuronal
apoptosis in AD pathogenesis [8]. Cullin 4B (CUL4B) overexpression promotes SSTR4
ubiquitination, resulting in AD exacerbation [8,136]. In 2020, Weng et al. demonstrated that
tetramethylpyrazine, extracted from Ligusticum wallichii, attenuates cognitive impairment
by downregulating CUL4B/SSTR4-mediated apoptotic signaling in the hippocampus at
30 days in APP/PS1 mice [8]. The Wnt/β-catenin signaling pathway plays crucial roles in
regulation of cell proliferation, migration, and differentiation. Activation of Wnt/β-catenin-
mediated signaling reduces Aβ-induced caspase-3-mediated apoptosis in the hippocampus
in AD pathogenesis [137]. In 2018, Xie et al. indicated that SOX8, a high mobility group-box
transcription factor, could activate the Wnt/β-catenin signaling pathway in an in vitro
cell culture model [138]. Notoginsenoside R2, extracted from P. notoginseng, alleviates
Aβ-induced caspase-3-related apoptosis by activating SOX8/β-catenin-mediated signaling
in the hippocampus at 20 weeks after Aβ25–35-induced AD [139].

7.5. Effects of MHDIs on Aβ-Induced Apoptosis through Endoplasmic Reticulum Stress and
Autophagy Signaling Regulation

The endoplasmic reticulum is a cell organelle for protein synthesis and translation.
The deposition of misfolded proteins in the endoplasmic reticulum causes endoplasmic
reticulum stress (ERS), which promotes apoptotic cell death and is closely associated with
AD occurrence. ERS also leads to apoptosis mainly through C/EBP homologous protein
(CHOP) and glucose-regulated protein 78 (GRP78) activation and caspase-12-mediated
signaling in the cortex and hippocampus [140]. Crocin, extracted from Crocus sativus L.,
protects against Bax/caspase-3-mediated apoptosis probably by downregulating GRP78
(an ERS marker) and CHOP expression in the prefrontal cortical neurons and also the
hippocampal CA1 region at 14 days after Aβ25–35-induced AD [140]. In 2020, Song et al.
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reported that schisandrin effectively ameliorates ERS mainly through the downregulation
of CHOP, GRP78, and cleaved caspase-12 expression in the hippocampus at 14 days after
STZ-induced AD [72]. ERS can induce autophagy via different signaling pathways [141].
Autophagy, an essential process for scavenging damaged cells and misfolded proteins, plays
a crucial role in reducing Aβ deposition [135]. In the autophagic process, the microtubule-
associated protein 1 light chain 3 (LC3), including cytosolic type I (LC3-I) and membrane
bound type II (LC3-II), is the crucial component of the autophagosomal membrane; and
autophagic activity is positively associated with the LC3-II/LC3-I ratio [142]. In addi-
tion, Beclin-1 regulates an early step in autophagosomal membrane formation [143]. In
the early stages of AD, increased autophagy leads to reduced Aβ accumulation, whereas
autophagy inhibition exacerbates it. Aβ secretion and deposition are regulated through
autophagy [135]. However, in the later stages of AD, overexpression of autophagy proteins
triggers toxic oligomeric Aβ release. Thus, maintaining autophagic flux homeostasis is
a potential strategy for AD treatment [144]. Euxanthone, extracted from Polygala caudate,
attenuates Aβ-induced apoptotic neuronal death by upregulating Bcl-2/Bax and LC3B-II
expression in the hippocampus at 16 days after Aβ1–42-induced AD [145]. However, in 2019,
Jiang et al. demonstrated that icariin protects from Aβ-induced apoptosis partly by down-
regulating Beclin-1, LC3-II/LC3-I, and cleaved caspase-3 expression in the hippocampus at
5 days after Aβ1–42-induced AD [144].

7.6. Summary

MHDIs mentioned in this section exert neuroprotective effects against Aβ-induced
apoptosis mainly by upregulating PI3K/Akt/CREB/Bcl-2-mediated anti-apoptotic signal-
ing and downregulating p38 MAPK/JNK/Bax/caspase-3- and Bax/AIF-mediated apop-
totic signaling in the hippocampus. Moreover, the anti-apoptotic effects of MHDIs are
partly due to the modulation of CUL4B/SSTR4-, SOX8/β-catenin-, CHOP/GRP78-, and
LC3-II/LC3-I/Bectin-1-mediated signaling in the cortex and hippocampus in the early and
late phases of AD in animal models (Table 6 and Figure 6).
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Table 6. MHDIs that attenuate Aβ-induced apoptosis in AD animal models.

Major
Ingredients

Isolated from
Medicinal

Herbs

Anti-Apoptotic
Activities Models References

Icariin E. brevicornum
Maxim

Bcl-2/Bax↑, NF-κB↓,p-
ERK1/2/ERK1/2↓,
p-p38 MAPK/p38

MAPK↓, p-JNK/JNK↓

20 days after
IBO-induced AD [122]

Butylphthalide p38 MAPK mRNA &
protein↓

30 days after
Aβ1–42-induced

AD
[10]

Tinospora
sinensis

p-PI3K/PI3K↑,
p-Akt/Akt↑

21 days after
Aβ1–40-induced

AD
[125]

Icariside II E. brevicornum
Maxim

BDNF↑, TrkB↑,
p-CREB/CREB↑

5 days after
Aβ25–35-induced

AD
[29]

β-asarone
Acorus

tatarinowii
Schott

ASK 1↓, p-MKK7↓,
p-c-Jun↓, Bad mRNA &
protein↓, Bax mRNA &

protein↓, cleaved
caspase-9 mRNA &

protein↓

28 days of
Aβ1–42-induced

AD
[119]

Genistein Bax↓, cyt c↓, caspase-3↓
49 days after

Aβ25–35-induced
AD

[15].

DMDD Averrhoa
carambola L.

Bcl-2/Bax↑, cleaved
caspase-9↓, cleaved

caspase-3↓

21 days in
APP/PS1

transgenic AD
mice

[133]

Scutellarein Scutellaria
baicalensis

Bcl-2↑, Bax↓, caspase-3↓,
nucleus NF-κB↓

28 days after
Aβ-induced AD [134]

Ginsenoside Rg3 P. ginseng C. A.
Meyer

Bcl-2↑, Bax↓, caspase-9↓,
caspase-3↓, AIF↓

60 days after
D-galactose-

induced
AD

[57]

Tetramethylpyrazine Ligusticum
wallichii SSTR4↑, CUL4B↓

30 days in
APP/PS1

transgenic mice
[8]

Notoginsenoside
R2 P. notoginseng

SOX8↑, β-catenin↑,
cleaved caspase-3↓,

COX-2↓

20 weeks after
Aβ25–35-induced

AD
[139]

Crocin Crocus sativus
L.

GRP78↓, CHOP↓, Bax↓,
caspase-3↓

14 days after
Aβ25–35-induced

AD
[140]

Schisandrin S. chinensis
Baill

GRP78↓, CHOP↓,
cleaved caspase-12↓

14 days after
STZ-induced AD [72]

Euxanthone Polygala
caudate Bcl-2/Bax↑, LC3B-II↑

16 days after
Aβ1–42-induced

AD
[145]

Icariin E. brevicornum
Maxim

p-Akt↑, LC3-II/LC3-I↓,
Beclin-1↓, Cathepsin D

(neurofibrillary
degeneration marker) ↓

5 days after
Aβ1–42-induced

AD
[144]

8. Conclusions

In AD pathogenesis, Aβ oligomer deposition elicits oxidative stress, tau hyperphos-
phorylation, inflammatory cascades, synapse loss, and neuronal apoptosis. MHDIs listed in
this review can suppress Aβ accumulation mainly through β- and γ-secretase activity down-
regulation. The antioxidative stress effects of MHDIs are mainly due to the enhancement of
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antioxidant activities such as SOD, CAT, and GSH-Px and reduction in lipid peroxidation.
Moreover, MHDIs effectively prevent tau hyperphosphorylation by upregulating PP2A ex-
pression and downregulating GSK-3β expression. MHDIs reduce inflammatory mediators
such as TNF-α, IL-1β, IL-6, iNOS, COX-2, NF-κB, and 5-LO partly through the upregulation
of BDNF/ERK1/2-mediated signaling and downregulation of p38 MAPK/JNK-mediated
signaling. In addition, MHDIs attenuate synapse loss and synaptic transmission deficits
mainly by increasing dynamin 1, SYP, PSD-95, MAP-2, and ACh levels but decreasing AChE
levels. Furthermore, MHDIs protect against neuronal apoptosis mainly through upregu-
lation of Akt/CREB/Bcl-2- and SOX8/β-catenin-mediated anti-apoptotic signaling and
downregulation of p38 MAPK/JNK/Bax/caspase-3-, Bax/AIF-, CUL4B-, CHOP/GRP78-,
and autophagy-mediated apoptotic signaling. In summary, MHDIs listed in this review
exert neuroprotective effects against Aβ-induced cognitive decline by downregulating Aβ

accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage,
and neuronal apoptosis in the cortex and hippocampus in the early and late phases in
in vivo models of AD. Therefore, MHDIs listed in this review probably exhibit multitarget
and multichannel properties in AD treatment.

9. Future Directions

In AD pathogenesis, Aβ-induced synaptic dysfunction, inflammation, and apoptosis
in the cortex and hippocampus are main pathological responses in worsening AD. There-
fore, further research for the development of potential restorative MHDI-based clinical
therapeutic strategies for AD is warranted.
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