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Leveraging artificial intelligence for pandemic preparedness
and response: a scoping review to identify key use cases
Ania Syrowatka 1,2✉, Masha Kuznetsova 3, Ava Alsubai1, Adam L. Beckman2,3, Paul A. Bain4, Kelly Jean Thomas Craig 5,
Jianying Hu6, Gretchen Purcell Jackson 5,7, Kyu Rhee5,8 and David W. Bates 1,2,9

Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making
to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for
involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had
two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that
applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to
public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for
the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions;
surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of
influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and
types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling
approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or
projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few
were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other
stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.

npj Digital Medicine            (2021) 4:96 ; https://doi.org/10.1038/s41746-021-00459-8

INTRODUCTION
Given the pace of globalization, future pandemics are likely to
follow novel coronavirus disease 2019 (COVID-19), although their
frequency is uncertain. Half a year into the pandemic, it was
estimated that 59–92% of COVID-19 deaths in the USA could have
been avoided if the pandemic had been managed differently and
mortality rates were similar to those in countries with moderate
rates of COVID-19 deaths, such as Norway or Canada1.
Despite a significantly lower mortality rate compared with

severe acute respiratory syndrome (SARS), caused by a related
coronavirus (SARS-CoV) with a case fatality rate of 11%2, COVID-19
has resulted in exponentially more harm. The virus spread rapidly
and widely around the world, in a way SARS-CoV did not, from
asymptomatic and mild cases resulting in undetected spread and
leading to a higher number of deaths overall. If pandemics are to
be managed effectively, policymakers, clinicians, and other
stakeholders need access to data and recommendations in near-
real time, including models to weigh the relative risks and benefits
of various interventions. Notably, there have been numerous
conflicting projection models for COVID-19, but few were accurate
for this novel pathogen.
Policymakers and governments have many choices for

population-level health interventions, which are critical to control
spread early on. Non-pharmaceutical interventions include imple-
menting travel bans, closing businesses, shutting schools, mandat-
ing masks, and allocating scarce supplies such as personal protective
equipment (PPE) and testing. Implementation, timing, enforcement,
and cessation all represent additional choices. Many of these

decisions are still based on expert recommendations, rather than
data-driven models. With these decisions come difficult tradeoffs, as
many have serious economic consequences as well as direct health
implications. For example, implementing restrictions (e.g., stay-at-
home orders) during a pandemic may reduce infection-related
morbidity and mortality, but the associated economic decline, social
isolation, and delayed medical care also adversely affect public
health and welfare.
Optimally managing a pandemic necessitates rapid feedback

cycles of data-driven learning to respond effectively at each step.
Policymakers must make initial decisions about which interven-
tions are most likely to protect public health, and make mid-course
adjustments, including updating policies and recommendations as
more data become available. Clinicians must determine how to
diagnose, triage, and care for infected patients under uncertainty,
given the possibility that the pathogen may behave differently
from known infections; rapidly studying and disseminating
information about symptoms, disease progression, and responses
to treatments are critical for reducing harm.
Data have always been important for healthcare and public

health decision-making; however, data have been especially
instrumental in efforts to tackle COVID-19 worldwide. Unprece-
dented levels of global collaboration have initiated data-sharing
efforts from traditional sources such as those from health services,
and non-traditional ones including transportation records and
personal data from smartphones. These early strides in data
sharing are critical for artificial intelligence (AI) where performance
improves with large, inclusive, historical and real-time datasets.
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Innovations are rapidly advancing the application of data,
advanced analytics, and machine learning (ML) to help manage
the COVID-19 pandemic.
The objective of this scoping review was to synthesize available

literature describing the use of AI to inform clinical and public
health decision-making for pandemic preparedness and response.
This review had two parts: an in-depth review of studies that
leveraged ML techniques, and a limited review of studies that
applied traditional modeling approaches. The in-depth review
identified key use cases for ML alongside data sources and types
of ML well suited for each use case. The limited review highlighted
additional areas where ML could be leveraged for improving the
accuracy of estimations or projections.

METHODS
This scoping review is reported in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR)3.

Search strategies
Five databases (PubMed [NCBI], Embase [Elsevier], Web of Science
[Clarivate], IEEE Xplore [IEEE], and the ACM Guide to Computing
Literature [ACM]) were searched without date limits on May 4, 2020,
to identify relevant peer-reviewed literature. Two main concepts of
AI and pandemics were mapped to the most relevant controlled
vocabulary using Medical Subject Headings (MeSH), and free-text
terms were included. Although the search strategy captured the
published literature on all pandemics, additional MeSH terms and
keywords were added to focus on the COVID-19 pandemic and the
most recent past pandemic of influenza A subtype H1N1 (H1N1) in
2009. The search also captured relevant literature about the SARS
global outbreak caused by SARS-CoV in 2003. Two preprint servers
(medRxiv and bioRxiv) were searched from January 1 to May 27,
2020, to locate relevant research that had not yet been published.
The main concepts of AI and COVID-19 were captured using free-

text terms. Reference lists of included structured reviews were hand
searched to identify further relevant studies.
In addition, a structured Google search was conducted to locate

grey literature describing the application of AI for the manage-
ment of COVID-19. Reputable trade and commercial publications
were also reviewed to identify emerging and proprietary AI
solutions. Peer-reviewed, preprint, and grey literature search
strategies are provided in Supplementary Notes 1–3.

Inclusion and exclusion criteria
This scoping review had two parts: an in-depth review focused on
the use of ‘complex’ ML for preparedness or response to viral
respiratory pandemics as well as the SARS global outbreak, and a
limited review describing the use of traditional modeling
approaches. ‘Complex’ ML (hereafter referred to as ML) included
neural networks, tree-based algorithms, support vector machines,
and natural language processing. Traditional approaches included
compartmental, simulation, statistical, and time series models. The
Glossary provides a detailed listing of complex and traditional
models (Box 1). Although categorization could be considered
somewhat arbitrary, models were categorized as complex if they
were generally less explainable, required increased computing
power, or could more effectively manage irregularly sampled or
high-dimensional data. Various publications have summarized
these methods and offer insights about strengths and weak-
nesses4–6. All study designs were considered for inclusion. Articles
were excluded if they did not report on original research or
describe a structured review of the literature, did not focus on
human populations, or were not published in the English
language. Studies reporting on public opinion, vaccine uptake or
adverse events, molecular docking, genomic sequencing, or
applications in robotics were also excluded. Detailed inclusion
and exclusion criteria are provided in Supplementary Table 1.
The Google search focused on grey literature describing the

application of proprietary AI solutions by governments or industry
for COVID-19 response, and other emerging applications not yet
captured by the peer-reviewed and preprint literature. The same
exclusion criteria were applied.

Screening and data abstraction
Articles were screened in two stages using Covidence (Australia), a
web-based review management tool. Articles were first screened
for relevance based on the information provided in the title and
abstract and then evaluated for inclusion based on the full text.
Articles were screened by one reviewer at each stage. For articles
that described the use of ML, the following criteria were
abstracted into standardized forms: citation information; relevant
use cases; respiratory pandemic (or SARS); population under study
(i.e., region); purpose of the models (e.g., surveillance or
prediction); type of ML models; outcomes of interest (e.g.,
infections or deaths); and data sources. Given the volume of
relevant peer-reviewed and preprint literature reporting on
traditional modeling approaches, data abstraction was not
completed for studies included in the limited review. Manuscript
details are provided in Supplementary Tables 2 and 3. Similarly,
data were not abstracted for relevant grey literature.

In-depth review of studies that applied machine learning
techniques
The characteristics of studies that reported on the use of ML were
summarized. Examples from the peer-reviewed, preprint, and grey
literature were categorized into a framework of use cases related
to public health and clinical practice. Each use case was narratively
synthesized. Commonly used data sources and ML techniques
were summarized in tabular form. Emerging use cases were
identified as opportunities for future work.

Box 1 Glossary of artificial intelligence-related terms

Artificial intelligence123: computer applications that can perform tasks that
normally require human intelligence.
Machine learning123: algorithms and models which machines can use to learn
without explicit instructions.
Deep learning123: a subset of machine learning that generally uses neural
networks.

Glossary Table 1 Distinction between complex and traditional models used for
the scoping reviewa

Complex machine learning
techniquesb (in-depth review)

Traditional artificial intelligence
and disease transmission
models (limited review)

Adaptive boosting, decision
trees, fuzzy logic, gradient
boosting,
k-means clustering, natural
language processing, nearest
neighbors, neural networks,
random forests, support vector
machines

Compartmental (e.g., Suscepti-
ble-Infected-Recovered), simula-
tion (e.g., agent-based, Markov),
statistical (e.g., Bayesian, expo-
nential or logistic growth, linear
or logistic regression), time
series (e.g., auto regressive
integrated moving average)

aCategorization of models as complex or traditional was somewhat
arbitrary. Models were categorized as complex if they were generally
less explainable, required increased computing power, or could more
effectively manage irregularly sampled or high-dimensional data. This
distinction was necessary given the large body of literature identified
through the scoping review.
bVarious publications have summarized these methods and offer
insights about strengths and weaknesses4–6.
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Limited review of studies that used traditional modeling
approaches
The number of peer-reviewed articles and preprints that described
traditional modeling approaches was reported to highlight the
large volume of literature compared with manuscripts describing
the application of ML. The objectives of these models and data
sources were summarized in tabular form to identify additional
areas where ML could be leveraged to provide more accurate
estimations or projections.

RESULTS
From 8070 unique peer-reviewed and preprint records, 183
reported on the use of ML and met the inclusion criteria for the
in-depth review (Supplementary Table 2). A modified Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow diagram is provided in Fig. 1. The review of the
grey literature identified one additional use case not captured by
the peer-reviewed or preprint literature and provided supporting
examples for other use cases. Overall, the in-depth review
identified six key use cases where ML was used for pandemic
preparedness and response, as well as emerging areas beyond
management of infectious disease, such as impacts of a pandemic
on mental health or chronic conditions (Table 1).
The search also identified 1167 manuscripts that described the

use of traditional modeling approaches and met the inclusion
criteria for the limited review (Supplementary Table 3). A synthesis
of the findings is presented in Box 2 and Table 2.

Forecasting infectious disease dynamics and effects of
interventions
ML can be leveraged to improve the accuracy of estimations and
projections to inform decision-making about the management of
pandemics. Forty studies used ML to identify factors influencing
spread of disease, fit epidemic curves, and forecast infectious
disease dynamics or effects of interventions (40/183 studies
[Supplementary Table 2]; 22%).
Most COVID-19 estimations and forecasts (32/33 studies; 97%)

relied on relatively simplistic publicly available data sources such
as counts from the Johns Hopkins COVID-19 map, Worldometer,

and the World Health Organization as well as data released by
country-specific Centers for Disease Control and Prevention,
where ML may not provide much benefit compared with
traditional modeling approaches. For example, one study used
publicly available Worldometer and Google Trends data to project
COVID-19 infections; however, traditional linear regression was
shown to outperform a recurrent neural network-based model7.
Early in the pandemic, when data were limited, ML was used to

augment traditional modeling approaches. Four studies used
neural networks8–11 and one used a random forest algorithm12 to
provide data-driven estimates of parameters for compartmental or
statistical models. Two studies compared the performance of
neural network-augmented models with traditional Susceptible-
(Exposed)-Infected-Recovered models and showed that the

Fig. 1 Study selection flow diagram. Modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram
showing disposition of articles.

Box 2 Limited review of traditional modeling approaches

Of the 1167 studies that described the use of traditional models, 324 were peer-
reviewed including 43 focused on COVID-19, and an additional 843 were COVID-
19 preprints. The studies primarily focused on the modeling of infectious disease
dynamics and forecasting to inform public health response. Compartmental
models (e.g., Susceptible-Infected-Recovered models) were the most common.
Others included agent-based, exponential or logistic growth, and autoregressive
integrated moving average models. Examples of use cases and data sources that
were used to develop these models are provided in Table 2.
Traditional models were widely used to inform public health decision-making
about implementation of non-pharmaceutical interventions to manage the
COVID-19 pandemic. A notable example was the projections of infections,
mortality, and hospital resource use available from the Institute for Health
Metrics and Evaluation at the University of Washington under various
countermeasures (Fig. 2)124. The models evolved over time and integrated
additional data sources as the pandemic progressed to provide more accurate
data-driven projections125,126.
The H1N1 peer-reviewed literature provided a few use cases that will be
particularly important as effective preventive measures and therapeutics become
available for COVID-19. Models could be used to forecast the impact of
pharmaceutical interventions (e.g., antiviral medications), determine optimal
vaccination strategies, and understand transmission risks of mass immunization
clinics127–129. In the shorter-term, modeling could also help to compare various
non-pharmaceutical interventions for children returning to school such as mask
wearing or proper classroom ventilation, as well as determine the optimal
frequency for routine workplace COVID-19 testing to reduce the impact of
outbreaks130,131.

COVID-19 coronavirus disease 2019, H1N1 pandemic influenza A subtype H1N1.
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augmented models provided better approximations of the true
epidemic curve resulting in more accurate forecasts8,10.
Another approach involved augmenting sparse data. One study

explored multiple approaches including random forests and
variations of neural networks to forecast COVID-19 infections,
deaths and effects of non-pharmaceutical interventions13. The
models were trained using historical SARS data and fine-tuned
using limited COVID-19 data. Similarly, a study published one month

after the COVID-19 outbreak in Wuhan combined three strategies to
develop an accurate ML model to forecast suspected infections by
augmenting a 14-day COVID-19 dataset with other data sources,
selecting the most appropriate model from a panel of models, and
fine-tuning the parameters14. The final model used a polynomial
neural network and showed significantly lower error compared with
traditional time series modeling including autoregressive integrated
moving average and exponential growth models.

Table 1. Number of manuscripts included in the in-depth review by use case and respiratory pandemic or SARS global outbreaka.

Use case Hypothetical
pandemic

SARS (2003) H1N1 (2009) COVID-19
peer-reviewedb

COVID-19
preprintb

Total

(1) Forecasting infectious disease dynamics and
effects of interventions

1 2 4 4 29 40

(2) Surveillance and outbreak detection 1 1 11 – 3 16

(3) Real-time monitoring of adherence to public
health recommendations

– – – – 1 1

(4) Real-time detection of influenza-like illness – 6 – – 2 8

(5) Triage and timely diagnosis of infections – 4 4 8 71 87

(6) Prognosis of illness and response to treatment – – – 4 27 31

Structured reviews covering multiple use cases – – – 2 1 3

Emerging areas beyond management of infection – – – 2 4 6

COVID-19 coronavirus disease 2019, H1N1 pandemic influenza A subtype H1N1, SARS severe acute respiratory syndrome.
aA manuscript may cover multiple use cases.
bAt the time of database searches (May 4, 2020).

Table 2. Areas where machine learning could be leveraged for improving the accuracy of estimations or projections and potential data sources
identified through the review of traditional approaches.

Use cases Data sources

Infectious disease dynamics: R0, reproduction number1; peak time,
intensity, and duration2; proportion of asymptomatic infections3;
transmission rate4; household transmission5; spatiotemporal dynamics
with GIS6; population immunity7

Published literature: seroconversion40; vaccine effectiveness42; estimates
from other diseases (e.g., SARS)46

Publicly available data: COVID-19 global cases from the Center for
Systems Science and Engineering at Johns Hopkins University47;
Worldometer COVID-19 pandemic updates48Health outcomes: infections8; severe cases9; susceptibility10; deaths11;

latency and infectious period12; undetected cases13; infections among
healthcare workers14; infections among incarcerated populations15;
infections among homeless populations16

Government data: government reported case data1; census data49; World
Health Organization case reports and data on respiratory risk factors50;
Ministry of Civil Aviation (i.e., airline passenger data)6; airport
transportation data51; Armed Forces health surveillance data52; board of
education school data (e.g., absentee reports that document H1N1)53;
hospital/outpatient sentinel surveillance21

Impact on healthcare systems and demand for: inpatient beds17; intensive
care unit beds18; N95 respirators and surgical masks19; ventilators18;
medical supplies20; staffing21

Effects of NPIs: social distancing22; self-isolation/quarantining2; workplace
closures23; contact tracing24; wearing masks by general population25;
handwashing26; optimal assay test pooling strategies for efficient
testing27; frequency of routine testing for COVID-19 in high-risk
environments to reduce workplace outbreaks28; mass testing/using
drones to deliver tests29; periodic testing of health workforce30; impact of
NPIs in residential care facilities31; closing borders32; effectiveness of
airport thermal screening33; restrictions to sea, land and air travel34;
school closures35; control measures for children if schools open (e.g.,
better ventilation, mask wearing)36; public risk communication37; media/
news reports37; impact of available information on behavior and
vaccination uptake38; ventilation of indoor spaces39

Mobile phone mobility data54

Daily news reports37

Purchasing information55

Google mobility reports using five different categories: retail and
recreation, grocery and pharmacy, transit stations, workplace, and
residential56

Google query and news data57

Google Flu Trends data58

Apple Maps COVID-19 mobility trends59

Publicly available data on infection rates from cruise companies60,61

Impact of lifting NPI-related restrictions40

Effects of pharmaceutical interventions: use of antiviral medications41;
vaccination strategies42; disease spread given vaccination availability
constraints43; transmission risk at immunization clinics44

National Oceanic and Atmospheric Administration: temperature,
humidity, wind speed62,63

Home television watching (i.e., proxy for time spent at home)64

Humanitarian assistance such as food distribution planning45

1-64Provided in supplementary references.
COVID-19 coronavirus disease 2019, GIS geographic information system, H1N1 pandemic influenza A subtype H1N1, NPI non-pharmaceutical intervention, SARS
severe acute respiratory syndrome.
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As the pandemic progressed and more data became available,
ML was leveraged to analyze temporal COVID-19 data and many
studies integrated additional data sources such as health and
demographic information, and geographic characteristics such as
population density or climate. The most common techniques were
variations of neural networks (Supplementary Table 2). These
models forecasted various short- (e.g., 10 days15) or longer-term
(e.g., 24 days16) outcomes including infections, deaths, and effects
of non-pharmaceutical interventions; spread of COVID-19 across
the globe17; and regional vulnerability to COVID-1918. Although
many studies compared the relative performance of various ML

techniques, these models were rarely evaluated against traditional
approaches.
Similar ML-based approaches were also explored following

SARS and H1N1 using historical data (Table 3). Most studies
included in the limited review used traditional approaches to
forecast infectious disease dynamics or effects of non-
pharmaceutical interventions (Box 2). ML could be used to address
other use cases presented in Table 2 with the advantage of
integrating additional data sources and more effectively modeling
irregularly sampled or high-dimensional data to provide more
accurate predictions.

Table 3. Machine learning approaches explored in response to past or hypothetical pandemics and the SARS global outbreak by use case.

Forecasting infectious disease dynamics and effects of interventions

➢ In 2005, following the SARS global outbreak, two studies used neural networks to project the number of infections, deaths, hospital admissions,
and/or effects of non-pharmaceutical interventions90,91.

➢ Between 2014 and 2018, three studies applied fuzzy logic to forecast effects of non-pharmaceutical interventions or optimal vaccination strategies
using historical H1N1 data92,93, and allocation of hospital personnel during a hypothetical pandemic94.

➢ In 2018, various types of neural networks were used to estimate the reproductive number for a compartmental model using H1N1 data95.

➢ In 2012, a support vector machine was used to analyze Tweets posted during the H1N1 pandemic to inform forecasts of influenza-like illness96.
These predictions demonstrated lower error than projections based on data from the Centers for Disease Control and Prevention alone.

Surveillance and outbreak detection

➢ In response to SARS, a 2004 conference proceeding described a prototype of a system to mine global news, weblogs, and other websites, then
analyze and summarize the content to provide timely outbreak alerts97.

➢ Two studies applied various ML algorithms to mine emergency department electronic health record data for surveillance of influenza-like illness
during the H1N1 pandemic using historical data98,99.

➢ Various studies used ML to mine and analyze Tweets from 2009–201096,100–104. Support vector machines were used most often and outperformed
other approaches. For example, support vector regression was able to estimate the prevalence of influenza-like illness 1–2 weeks earlier than standard
reporting channels103.

➢ A similar approach was applied in 2015 to monitor the re-emergence of the H1N1 pandemic strain based on Tweets and web searches105. A follow-
up study used rough sets theory to identify suspected cases106.

➢ A systematic review summarized the literature on the use of social media to track pandemics and highlighted that support vector machines were
commonly used to classify Tweets for syndromic surveillance107.

➢ In 2016, an article described a smartphone application that used infrared thermal images for fever detection and interpreted audio using a
k-nearest neighbors approach to identify coughing in public spaces108.

Real-time monitoring of adherence to public health recommendations

➢ No relevant studies were identified.

Real-time detection of influenza-like illness

➢ In 2005, neural network-based algorithms were developed in response to SARS to interpret thermal imaging for mass temperature screening109–111.
The data were re-analyzed in 2010 using fuzzy neural networks112,113.

➢ In 2017, a study used radar to measure heart and respiratory rates coupled with thermal imaging interpreted using neural networks and k-means
clustering to identify febrile air passengers with 98% sensitivity114.

Triage and timely diagnosis of infections

➢ In 2005, a study applied various ML algorithms to distinguish between SARS and typical pneumonia using chest X-rays. The best performing model
was able to appropriately classify 71% of SARS patients115,116.

➢ In 2011, a National Institutes of Health study used a support vector machine to differentiate H1N1 pneumonia from healthy lungs as well as other
infectious and chronic lung conditions based on CT images with AUCs >0.99; however, the study only included images from four patients diagnosed
with H1N1117.

➢ In 2006, a hierarchical fuzzy signature was used to accurately distinguish SARS patients from healthy individuals as well as those with pneumonia
or hypertension based on vital signs and clinical symptoms118.

➢ In 2014, two studies applied case-based reasoning using a neural network and/or nearest neighbors approach to identify patients with H1N1 based
on symptoms with accuracies of 95% and 86%119,120.

➢ In 2014, a study used random forests and boosted regression trees to identify risk factors associated with contracting the H1N1 pandemic strain in
the following 2010–2011 influenza season121.

➢ In 2019, a recurrent neural network and decision tree-based model was proposed for detection of SARS. The system was able to identify cases
using user-generated text and geospatial information with 91% accuracy122.

Prognosis of illness and response to treatment

➢ No relevant studies were identified.

AUC area under the curve, COVID-19 coronavirus disease 2019, CT computed tomography, H1N1 pandemic influenza A subtype H1N1; SARS severe acute
respiratory syndrome.
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Surveillance and outbreak detection
The grey literature highlighted many examples where ML was
used for outbreak detection. For example, industry-based
companies and Boston Children’s Hospital HealthMap (USA) were
among the first outside of China to report the emerging risk of
COVID-19 by leveraging natural language processing (NLP) to
translate and analyze foreign news reports19.
Sixteen studies reported on the use of ML for surveillance or

outbreak detection (16/183 studies [Supplementary Table 2]; 9%).
However, only three studies focused on COVID-19. Two preprints
used NLP and deep neural networks to mine and analyze Twitter
posts for personal reports of potential exposure to COVID-1920,21.
Another preprint described leveraging data from smartphone-
connected thermometers to monitor rates of influenza-like illness
and flag higher than expected rates22. Both approaches tracked
potential exposures or symptoms in real time coupled with precise
geolocation information to understand where outbreaks were
occurring. These data sources could also be used to forecast
influenza-like illness rates.
Similar approaches were explored in response to or following SARS

and H1N1 (Table 3). In addition, clinical information, such as electronic
health record (EHR) data from emergency departments, was shown to
be an informative data source for monitoring rates of influenza-like
illness using historical H1N1 data. A smartphone application (app) was
also developed for syndromic surveillance in public spaces.

Real-time monitoring of adherence to public health
recommendations
The peer-reviewed and preprint literature did not provide
examples of how ML was used in real time to improve adherence
to public health recommendations; all the examples were found in
the grey literature. This use case was not explored in response to
past pandemics or the SARS global outbreak.
Early in the COVID-19 pandemic, some countries such as China

and Russia leveraged existing AI-based facial-recognition software
and cameras to identify individuals who were not compliant with
mandated self-isolation or quarantine23,24. This technology also
advanced to accurately identify those wearing a mask for mass
public monitoring24. On a smaller scale, contactless verification of
employees was proposed for returning to work25.
To address privacy concerns, alternatives based on facial detection

rather than recognition were developed to help businesses, schools,

and workplaces reopen safely. Numerous companies developed
computer vision-based solutions to monitor and improve adherence
to public health recommendations such as wearing masks, social
distancing, and hand sanitization by analyzing closed-circuit
surveillance videos using neural networks (Fig. 3)26,27. Clients were
able to receive daily summaries or real-time alerts to help improve
adherence to protect employees and visitors. Additional features
included tracking store capacity and prioritizing areas for timely
sanitation26.
Similar computer vision systems were developed for hospitals

to monitor interactions with COVID-19 patients at the bedside and
document which employees entered the room and for how long,
whether there was close contact with the patient, and if PPE was
secure28. As a next step, industry was developing computer vision
applications to monitor healthcare PPE inventory in real time29.
The review identified one related preprint where ML was used

to help decision-makers understand adherence to non-
pharmaceutical interventions in near real time (1/183 studies
[Supplementary Table 2]; <1%). Deep neural networks were used
for travel mode detection to calculate various population-level
mobility and social distancing metrics reported daily on the
COVID-19 Impact Analysis Platform30.

Real-time detection of influenza-like illness
Computer vision solutions were also developed to detect
influenza-like illness consistent with viral respiratory pandemic
symptoms for mass screening (8/183 studies [Supplementary
Table 2]; 4%). However, only two studies focused on COVID-19.
The first COVID-19 study employed computer vision to assess

for both fever and cyanosis with 97% and 77% accuracies,
respectively31. Similar approaches were developed following
SARS, however, the types and quality of sensor data and ML
techniques improved over time (Table 3). The grey literature
showed that thermal scanners were widely deployed for COVID-19
in hospitals and public spaces29, although underlying data
sources, models and performance may have varied. ‘Pandemic’
drones were also developed to detect influenza-like illness
remotely including fever, increased heart and respiratory rates,
as well as more overt symptoms such as coughing32.
The other COVID-19 study developed a smartphone app that

differentiated COVID-19 coughs from other types using convolu-
tional neural networks (CNN) and a support vector machine, and

Fig. 2 Example of projected hospital resource use for COVID-19 patients in the USA using traditional modeling approaches. The image
shows forecasts for use of hospital beds, intensive care beds and ventilators over the next four months from the Institute for Health Metrics
and Evaluation124. Image courtesy of the University of Washington, available under Public License and used with permission.
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demonstrated promising accuracy33. The grey literature search
identified another app that was under development and aimed to
detect COVID-19 by analyzing voice recordings34.
Data from wearable devices were also leveraged for early

detection of COVID-19. A press release reported that algorithms
integrating data collected by the Oura Ring (Oura Health Ltd,
Finland) with patient-reported data from a COVID-19 monitoring
app were able to detect subclinical signs of infection up to 3 days
prior to onset of classic symptoms such as fever or cough with
90% accuracy35.

Triage and timely diagnosis of infections
The most common use case for the application of ML for
pandemic response was triage and timely diagnosis of sympto-
matic cases (87/183 studies [Supplementary Table 2]; 48%). Most
studies developed algorithms or tools in response to COVID-19
(78/87; 90%), and one study conducted a systematic review of
these tools36. Eight studies (9%) reported on the development of
similar tools following H1N1 or SARS (Table 3).
The use of ML for detection or estimation of disease severity

based solely on chest imaging made up the bulk of COVID-19
original research (65/78 studies [Supplementary Table 2]; 83%).
Most studies relied on open-source datasets and leveraged some
variation of CNNs for image segmentation, classification to
differentiate between COVID-19 and other common lung infec-
tions, or estimation of disease severity (Table 4). The algorithms
showed varying performance with AUCs ranging from 0.81 to
>0.99, which could have been impacted by size or quality of the
data source, type of imaging, approaches to image processing,
types of ML used, and fine-tuning of parameters.
ML algorithms incorporating other information beyond imaging

were also developed to help prioritize patients with a higher
likelihood of COVID-19 for isolation and testing. Nine studies
developed models using combinations of standard variables such
as patient demographics, vital signs, clinical symptoms, comorbid-
ities, and known exposure history, as well as CT images37–45; most
also included the results from routine bloodwork (8/9 studies;
89%). The algorithms were developed using a wide array of ML
approaches and showed varying performance with AUCs ranging
from 0.84 to >0.99.
Similarly, one preprint used results from routine bloodwork to

estimate COVID-19 disease severity46. Another study used a
transformer neural network to identify symptoms documented in
unstructured clinical notes from an EHR during the week leading

up to COVID-19 testing, which could be used to inform
development of triage tools47.
Although studied in research settings, these types of clinical

decision support tools were not widely available to assist clinicians
with timely diagnosis of COVID-19. There were a few notable
exceptions. One article described the rapid development and

Table 4. Characteristics of studies that developed machine learning-
based algorithms and tools for COVID-19 diagnosis or estimation of
disease severity based solely on chest imaging (n= 65).

Characteristic n %

Purposea

Image segmentation only 2 3

Detection of COVID-19 56 86

Estimation of COVID-19 severity 9 14

Type of chest imaginga

CT 35 54

X-ray 32 49

Data sources

Private medical imaging data 23 35

Publicly available data 42 65

Machine learning modelsa,b

Convolutional neural network 58 89

Support vector machine 9 14

Otherc 11 17

Proprietary 2 3

Publication statusd

Peer-reviewed 7 11

Preprint 58 89

COVID-19 coronavirus disease 2019, CT computed tomography.
aTotals add to more than 65 and percentages add to more than 100; some
studies cover multiple categories.
bSix studies also covered the Prognosis of Illness and Response to Treatment
use case; in these cases, some of the models may have been applied for
prediction of disease severity, response to treatment, or death.
cAdaptive boosting (3); autoencoder (2); decision tree (6); explainable deep
neural network (1); fuzzy neural network (1); gradient boosted trees (2);
k-nearest neighbors (3); multi-layer perceptron (4); random forest (5);
unspecified neural network (1).
dAt the time of database searches (May 4, 2020).

Fig. 3 Example of a computer vision solution for real-time monitoring of adherence to social distancing26. The image shows the
movement of people through a public space and estimates compliance with distancing by at least 6 feet. Image courtesy of Aura Vision, used
with permission.
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deployment of an ML-based COVID-19 diagnostic system that
screened CT images across 16 hospitals in China48. More
strategically, some healthcare software companies, such as
RADLogics, Inc., have adapted existing solutions to accurately
detect COVID-19 from CT images and quantify the extent of
infection in a clinically interpretable way (Fig. 4)49,50.
In contrast, the grey literature reported widespread develop-

ment and implementation of AI-based chatbots for large-scale
public triage by governments and healthcare organizations during
the COVID-19 pandemic51. These tools were not described in the
peer-reviewed or preprint literature, and as a result, the underlying
models and appropriateness of chatbot recommendations
were generally not known. Only one preprint reported on the
Symptoma chatbot (Austria), which was shown to have 96%
accuracy for detecting COVID-1952. Another study used gradient
boosting to develop a model for COVID-19 triage for testing using
data collected from national symptom surveys and demonstrated
an AUC of 0.7353.

Prognosis of illness and response to treatment
ML models were also commonly developed to predict which
patients were at higher risk of COVID-19-related deterioration (31/
183 studies [Supplementary Table 2]; 17%), including one
systematic review36. This use case was not explored in response
to past pandemics.
Original research focused on predicting progression to severe

disease, intensive care admission, ventilator use, or mortality
(Table 5). Almost half of the studies used data routinely
captured by an EHR or obtained through a quick patient
history, and explored various classification algorithms (13/
30 studies; 43%)54–66. Nine studies compared the performance
of complex ML with simple logistic regression54–62. In four
studies, logistic regression was found to have similar or better
performance55,57,58,60, and of three studies that developed a
clinical prediction tool, two selected logistic regression as the
final model for simplicity and interpretability55,60. Similarly,
another study developed a model using extreme gradient
boosted decision trees, but deferred to an explainable single
tree for the final model66.
On the other hand, ML can help to make sense of large amounts

of complex, or unstructured data. Thirteen studies used CT or
X-ray images to predict deterioration alone or in combination with
clinical information (Supplementary Table 2) with AUCs ranging
from 0.70 to 0.97. Another study predicted which hospitalized
patients would be admitted to intensive care by analyzing
unstructured EHR notes using the proprietary NLP- and neural
network-based EHRead (Savana, Madrid) extraction technology67.

Fig. 4 Example of a ML solution for detecting and estimating the extent of COVID-19 infection based on CT images. The image on the left
shows a patient infected with COVID-19. The image on the right shows a patient negative for COVID-19. Images courtesy of RADLogics, Inc.,
used with permission.

Table 5. Characteristics of studies that developed machine learning-
based algorithms and tools to predict COVID-19-related deterioration
(n= 30).

Characteristic n %

Predictiona

Severity of COVID-19 8 27

Hospitalization 1 3

Length of hospital stay 2 7

Intensive care unit admission 7 23

Ventilator use 7 23

Discharge to hospice 1 3

Death 18 60

Response to treatment 1 3

Patients at higher risk of severe complications if infected 1 3

Type of chest imaging

CT 8 27

X-ray 6 20

None 16 53

Data sourcesa

Health records

Electronic 8 27

Unclear if electronic 12 40

Publicly available data 13 43

Machine learning modelsa,b

Random forest 14 47

Convolutional neural network 12 40

Gradient boosted trees 9 30

Support vector machine 8 27

Otherc 9 30

Proprietary 2 7

Publication statusd

Peer-reviewed 3 10

Preprint 27 90

COVID-19 coronavirus disease 2019, CT computed tomography.
aTotals add to more than 30 and percentages add to more than 100; some
studies cover multiple categories.
bSix studies also covered the Triage and Timely Diagnosis of Infections use
case; in these cases, some of the models may have been applied for
detection of COVID-19 or estimation of disease severity.
cAdaptive boosting (1); decision tree (5); k-nearest neighbors (4); multi-
layer perceptron (2); natural language processing (1); recurrent neural
network (2); unspecified neural network (3).
dAt the time of database searches (May 4, 2020).
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The data were then used to classify patients using a decision tree
yielding an AUC of 0.76.
Existing tools, such as the Epic Deterioration Index (Epic

Systems Corporation, USA), were used to predict COVID-19-
related deterioration; the index showed moderate performance
with an AUC of 0.7968. Other prognostic systems were studied in
research settings, but these tools were not widely available to
assist clinicians early in the pandemic but slowly came to market.
For example, CLEWICU (CLEW Medical Ltd., Israel) received
Emergency Use Authorization from the U.S. Food and Drug
Administration (FDA) in June 2020 for use in hospitals to predict
respiratory failure and hemodynamic instability in COVID-19
patients69.
Although there were no known specific treatments for COVID-

19 early on, one preprint described an algorithm for prediction of
patients’ response to treatment based on age, chronic conditions,
respiratory or organ failure, and treatment plan to guide the use of
limited healthcare resources70. The best performing model had an
AUC > 0.99 and was developed using a CNN for image interpreta-
tion coupled with a support vector machine to integrate clinical
data for prediction of response to treatment.

Emerging areas beyond management of infection
The COVID-19 pandemic affected health broadly beyond the
outcomes of the infectious disease itself. Literature describing the
use of ML in other domains, such as mental health and chronic
conditions, was emerging even early in the pandemic (6/
183 studies [Supplementary Table 2]; 3%). One study reported
on the short-term mental health impacts of COVID-19 through
sentiment analysis of social media posts before and shortly after
the initial outbreak in Wuhan71. Another study used ML to group
related literature on the impact of coronaviruses on people with
intellectual disabilities72.
In response to the large body of COVID-19-related literature, the

COVID-19 Open Research Dataset was released with a ‘call to
action’ for academic and industry researchers to develop AI
techniques to rapidly analyze the literature to address important
knowledge gaps73. Three responses to this call were identified:
two studies identified themes in the literature using k-means
clustering or lexical link analysis, and another study used NLP to
generate summaries of the relevant literature72,74,75. Two other
studies described the use of NLP and/or neural networks to mine
other sources of publicly available literature and summarize the
results76,77.
To ensure that impactful, high-quality research could be used to

guide pandemic response, ML techniques were used to identify
promising research uploaded to preprint servers for expedited
peer-review78. Reviews were published in the open-access journal
Rapid Reviews: COVID-19. These approaches aimed to quickly
create evidence bases that could be used to inform public health
and clinical decision-making. In addition, neural networks were
also applied to limit the spread of misinformation about the
COVID-19 pandemic79.

DISCUSSION
We performed a scoping review of the peer-reviewed, preprint
and grey literature, and identified six key use cases where ML was
leveraged for pandemic preparedness or response. We also found
that the sources of data and types of ML that were useful varied
by use case (Table 6). While there were many examples of novel
solutions, most were still at the research or developmental stage
and had not been widely used to inform clinical or public health
decisions early in the COVID-19 pandemic. For example, despite
numerous publications demonstrating good to excellent perfor-
mance in diagnosing COVID-19 from lung imaging, practical
prospective clinical applications of these algorithms were rare;

possibly, due to many algorithms being developed based on the
availability of data and knowledge of ML, rather than to address
specific clinical or public health-driven questions. However, some
existing products were adapted or modified for implementation;
these included computer vision for real-time monitoring of
adherence to public health recommendations or detection of
influenza-like illness, as well as specific tools for triage such as
chatbots. A few ML solutions received FDA Emergency Use
Authorization for use in clinical settings to detect COVID-19 or
predict infection-related deterioration69,80. Most examples of tools
that were rapidly implemented were identified through the grey
literature and were developed by health systems or industry.
Given the relative technological limitations during past

pandemics and SARS, understandably most research relied on
traditional modeling approaches. However, the limited review
included in our study highlighted that there was still a strong
reliance on traditional approaches in response to COVID-19 and
identified additional areas where ML could be leveraged to
improve performance (Table 2). ML is well positioned to
complement traditional modeling in the following ways: (1)
Integration of diverse sources of information: ML methods are
better at integrating diverse and complex sources of data than
traditional statistical regression models; (2) Combination of
different types of models: ensemble learning or data augmenta-
tion methods can be used to combine different types of
prediction models to achieve better accuracy81, or more granular
models; (3) Temporal modeling: while traditional time series
modeling or statistical methods can be effective for dealing with
regularly sampled and low-dimensional temporal data, data from
a pandemic tend to be irregularly sampled and high dimensional,
where ML methods such as neural networks could substantially
improve performance.
In addition to the use cases described in this article, ML

approaches also played a key role in other aspects of pandemic
response. One area was genome sequencing, where ML was used
for classification of COVID-19 viral genomes, which allowed for
rapid detection of unknown mutations and supported contact
tracing by determining the genetic origin of each case82,83. On a
molecular level, ML was used to understand the underlying
structures of associated proteins and molecular docking pro-
cesses84. This knowledge could inform vaccine development or
identification of effective drug treatments.

Challenges of employing machine learning
The performance of ML algorithms depends on the availability
and accessibility of vast amounts of data, conditions that are
subject to technology infrastructure and interoperability, and
privacy and data-sharing laws. In many cases, even the most basic
infrastructure necessary to transmit data between healthcare
organizations was lacking. For example, based on 2018 data, 41%
of US hospitals were not able to electronically report surveillance
data to public health agencies85.
Moreover, when datasets do exist, a lack of comprehensive and

diverse data is a critical challenge. In instances where training data
systematically exclude parts of the population (e.g., asymptomatic
cases due to lack of testing; or individuals who do not have access
to data collection using consumer-centric technologies, such as
wearables or smartphones, or reliable Internet service), the
applicability of the model to wider populations could be
compromised. Data quality could be further compromised by
incomplete or inconsistent labeling of racial, ethnic, and other
demographic information86. Based on biased or limited samples,
ML algorithms may inadvertently increase disparities by mis-
representing the burden of disease and inappropriately informing
resource allocation.
ML algorithms and tools also face challenges at deployment.

Health systems and public health experts must exercise caution

A. Syrowatka et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    96 



when applying models in different contexts. Algorithms trained in
a specific health system, cultural or socio-economic context may
not provide similar performance for populations with different
characteristics. Algorithms must undergo critical evaluation and
re-calibration when implemented across settings which requires
time, as well as financial and human resources.
Interpretability of ML solutions can also limit approval,

implementation, or adoption of these tools in real-world settings.
There is generally a tradeoff between model complexity and
interpretability that needs to be considered particularly in
healthcare settings, given ethical and legal implications of
decision-making. A few studies identified through the review
compared ML with traditional approaches and in some cases
simpler models demonstrated similar or better performance while
offering the additional benefit of interpretability, highlighting the
importance of comparing ML-based algorithms and solutions with
traditional approaches to ensure that increased complexity adds
value. However, for many use cases highly complex models were
necessary for tasks like image interpretation, and many of the
tools described in this review offered some level of interpretability
by highlighting physical locations where people were not social
distancing (Fig. 3) or areas on chest imaging contributing to
detection of COVID-19 (Fig. 4).

Overarching lessons
These findings have several overarching lessons. First, past
pandemics and the SARS global outbreak were followed by spurts
of research, followed by rapid declines in research support for

approaches that could have enabled better management of
COVID-1987,88. As such, longitudinal support is essential for this
work. Second, while ML was explored widely early in the COVID-19
pandemic as evidenced by the preprint search, almost all this
work was at the research or developmental stage, and real-world
applications were limited. Third, support for development of large
and comprehensive databases preferably at the national, and
even international level, containing health data would be
extremely valuable for many purposes, with pandemic manage-
ment being among the most important89. Fourth, tools should
be developed that allow modeling of multiple scenarios to make
better choices about the wide array of options that need to be
considered, from choices about school closures to care manage-
ment for the elderly, to distribution of scarce resources like
ventilators and PPE.

Limitations of the study
This study has several limitations. Each record was evaluated by
one reviewer due to the large number of studies identified
through the search. As a scoping review, the goal was to provide
an overview of key use cases for ML rather than a comprehensive
evaluation of specific data sources or ML approaches. Future work
is warranted to assess the risk of bias and usability of these
solutions in practical settings.
The review included preprint articles to capture the breadth of

the rapidly growing body of literature about the COVID-19
pandemic. However, the preprint articles were not peer-
reviewed and results should be interpreted with caution.

Table 6. Commonly used data sources and types of machine learning suitable for each use case based on studies from the in-depth review about
past pandemics, SARS, and COVID-19.

Key use case Commonly used data sources Suitable types of ML

Forecasting infectious disease dynamics
and effects of interventions

Publicly available counts (e.g., Johns Hopkins COVID-19 map,
Worldometer, World Health Organization), media reports,
commercial publications, web searches (e.g., Google Trends),
social media (e.g., Twitter), census data, population-level
comorbidity statistics, data on outbreaks of similar
pathogens

Augmenting traditional models: neural
networks

Data-driven ML: recurrent neural networks

Surveillance and outbreak detection Social media (e.g., Twitter), web searches, news reports,
medical record data (structured and unstructured fields)

Text mining: natural language processing

Classification: support vector machines,
transformer neural networks

Real-time monitoring of adherence to
public health recommendations

Cameras in public spaces Compliance with mandated quarantine:
proprietary facial recognition

Adherence to mask wearing, social
distancing, and sanitation: proprietary
computer vision

Real-time detection of influenza-like
illness

Cameras and sensors in public spaces Interpretation of thermal imaging: neural
networks, computer vision

Triage and timely diagnosis of
infections

Exposure history, medical record data (structured and
unstructured fields, laboratory results, chest imaging)

Interpretation of chest imaging:
convolutional neural networks

Triage based on routinely collected medical
record data: no standout ML

Interpretation of unstructured clinical notes:
transformer neural networks

Prognosis of illness and response to
treatment

Medical record data (structured and unstructured fields,
laboratory results, chest imaging)

Based on chest imaging: combination of
convolutional and recurrent neural networks

Based on routinely collected medical record
data: no standout ML

Interpretation of unstructured clinical notes:
natural language processing, neural
networks

ML machine learning, SARS severe acute respiratory syndrome.
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The grey literature search included reputable trade and
commercial publications to identify applications of proprietary AI
solutions by governments or industry for COVID-19 response, and
other emerging applications not yet captured by the peer-
reviewed and preprint literature. Although not the standard
approach, it was considered appropriate given the context, where
trade and commercial publications have been a valuable source of
information throughout the COVID-19 pandemic.

CONCLUSIONS
Important ML-based solutions have been developed in response
to pandemics and particularly for COVID-19 but few were
optimized for practical clinical or public health application early
in the pandemic. These findings can support policymakers,
clinicians, and other stakeholders in prioritizing operationalization
of AI for future pandemics.
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