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Dynamical symmetry indicators for Floquet crystals
Jiabin Yu 1✉, Rui-Xing Zhang 1,2 & Zhi-Da Song 3

Various exotic topological phases of Floquet systems have been shown to arise from crys-

talline symmetries. Yet, a general theory for Floquet topology that is applicable to all crys-

talline symmetry groups is still in need. In this work, we propose such a theory for

(effectively) non-interacting Floquet crystals. We first introduce quotient winding data to

classify the dynamics of the Floquet crystals with equivalent symmetry data, and then con-

struct dynamical symmetry indicators (DSIs) to sufficiently indicate the inherently dynamical

Floquet crystals. The DSI and quotient winding data, as well as the symmetry data, are all

computationally efficient since they only involve a small number of Bloch momenta. We

demonstrate the high efficiency by computing all elementary DSI sets for all spinless and

spinful plane groups using the mathematical theory of monoid, and find a large number of

different nontrivial classifications, which contain both first-order and higher-order 2+1D

anomalous Floquet topological phases. Using the framework, we further find a new 3+1D

anomalous Floquet second-order topological insulator (AFSOTI) phase with anomalous chiral

hinge modes.
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Crystalline symmetries are crucial in the study of static band
topology1–7, because they can protect and can efficiently
indicate exotic topological phases8–29. Powerful theories,

topological quantum chemistry30 and symmetry indicators31,32,
have been formulated to systematically characterize the
crystalline-symmetry-protected (and crystalline-symmetry-indi-
cated) topological phases, which enabled the prediction of thou-
sands of topologically nontrivial materials in a computationally
efficient manner33–36. The power of the two theories relies on the
following two features. First, the two theories can be formally
applied to all crystalline symmetry groups. Second, the topolo-
gical invariants proposed in the two theories are computationally
efficient, as they only involve a small number of high-symmetry
momenta11,32,37–40 instead of the entire first Brillouin zone
(1BZ).

Beyond the static paradigm, non-interacting Floquet
systems41–63—systems with noninteracting time-periodic
Hamiltonian—can host anomalous topological phases64–72 that
have no analog in any static systems, such as phases with
anomalous chiral edge modes in the absence of nonzero Chern
numbers64,66,72. Recently, researchers have recognized the
important role of crystalline (or space-time) symmetries in pro-
tecting driving-induced higher-order topological phases in Flo-
quet systems73–97, and predicted exotic physical phenomena like
anomalous corner modes. In particular, ref. 94 introduces a sys-
tematic theoretical framework of classifying and characterizing
2+1D anomalous Floquet higher-order topological phases pro-
tected by point group and chiral symmetries.

In the field of Floquet topological phases, there are two (among
others) open questions that are fundamentally and practically
important. The first one is the topological classification for all
crystalline symmetry groups, namely how to efficiently determine
whether two generic Floquet crystals with the same crystalline
symmetries are topologically equivalent. The second one is how
to efficiently determine whether a generic Floquet crystal is in an
anomalous phase that has no analog in any static systems. In this
work, we refer to such inherently dynamical Floquet crystals as
Floquet crystals with obstruction to static limits, in analog to the
Wannier obstruction22,30,31,98 for topologically nontrivial phases
of static crystals. Then, the second question can be rephrased as
how to efficiently diagnose the obstruction to static limits, which
is essential for all the above-mentioned anomalous Floquet
topological phenomena.

Unfortunately, there have been few efforts to address the above
two open questions in the literature, and the previous related
works focused on either specific models or special types of
crystalline symmetry groups. There have been no general theory
that is applicable to all crystalline symmetry groups in all spatial
dimensions. Furthermore, the topological invariants proposed in
the previous studies have relatively low computational efficiency,
since they either do not have an accessible mathematical
expression or typically require the information over the entire
1BZ (or a submanifold with nonzero dimensions). Therefore, a
general and computationally efficient theory for Floquet topology
that takes crystalline symmetries into account is in need.

In this work, we introduce a general theoretical framework to
characterize the topological properties of Floquet crystals, which
is applicable to all crystalline symmetry groups in all spatial
dimensions (up to three). As a demonstration of our general
principle, we focus on non-interacting Floquet crystals in the
symmetry class A3,70—in the absence of time-reversal, particle-
hole and chiral symmetries—because an applied drive can break
the time-reversal symmetry, and exact particle-hole and chiral
symmetries hardly appear in normal phases of crystals. The brief
logic is shown in Fig. 1. We introduce quotient winding data,
which, together with the symmetry data30,31 of the quasi-energy

bands, provides a topological classification of Floquet crystals
(Fig. 1a). In a two-step manner, the symmetry data first provides
a coarse classification, which omits the essential information of
the dynamics, and the quotient winding data then classifies the
dynamics of Floquet crystals with equivalent symmetry data.
Based on our classification scheme, we further introduce the
concept of DSIs to indicate the obstruction to static limits
(Fig. 1b). A nonzero DSI is a sufficient condition for Floquet
crystals to have obstruction to static limits. The DSI constructed
in this work for Floquet crystals is a dynamical generalization of
the symmetry indicator proposed in ref. 31 for static crystals.

Notably, all indices in our theory—including symmetry data,
quotient winding data, and thus the DSI—only involve a small
number of Bloch momenta in 1BZ, indicating that the evaluation
of them is highly computationally efficient or even analytically
feasible. As a demonstration of the high efficiency, we provide a
table of all elementary DSI sets for all spinless and spinful plane
groups. Using specific models, we show that the resultant DSIs
can efficiently indicate the nontrivial dynamics in both first-order
and higher-order 2+1D anomalous Floquet topological phases.
We further apply our framework to the 3+1D inversion-invariant
case (space group P1 or #2), and find a 3+1D Floquet phase with
anomalous chiral hinge modes, which is the first 3+1D AFSOTI
phase that is solely protected by static crystalline symmetries. It is
both the generality and high computational efficiency that make
our theory remarkably powerful for prediction of new Floquet
topological phases.

Results
In the following, we will introduce our framework based on
symmetry data, quotient winding data, and DSI. We will use a
1+1D inversion-invariant example to illustrate the main idea.
Then, we will discuss the DSIs for 2+1D systems. At last, we will
introduce the 3+1D AFSOTI phase that we find using DSI. We
also briefly describe the general framework in Methods, and the
details can be found in Supplementary Notes 2 and 3.

The 1+1D inversion-invariant example that we will use is
constructed on a 1D lattice with lattice constant being 1, and each
lattice site consists of two orbitals at the same position: one
spinless s orbital and one spinless p orbital. As we consider the
noninteracting cases, we only care about the single-particle Hil-
bert space, and the symmetry group G of interest is spanned by
the 1D lattice translations and the inversion symmetry. With
bases jψki ¼ ðjψk;si; jψk;piÞ, the single-particle Floquet Hamilto-
nian is represented as H(k, t), where H(k, t+ T)=H(k, t) with
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Fig. 1 Brief summary of main results. a The flowchart for topologically
classifying Floquet crystals based on symmetry data and quotient winding
data. b The flowchart for using DSI to indicate obstruction to static limits.
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T > 0 the time period, and k is the Bloch momentum. The cor-
responding unitary time-evolution matrix U(k, t) can be given by
Dyson series. (See Supplementary Note 1 for detailed forms of H
and U for this 1+1D example.) Furthermore, the inversion
symmetry P is represented as P ψk

�� � ¼ ψ�k

�� �
uPðkÞ with

uPðkÞ ¼ σz , where σ’s are the Pauli matrices. The inversion
invariance of the system leads to

uPðkÞUðk; tÞuyPðkÞ ¼ Uð�k; tÞ : ð1Þ

The quasi-energy spectrum of U(k, t), derived from diag-
onalizing U(k, T), is important for our later discussion. We plot
the quasi-energy spectrum for U(k, t) in Fig. 2a for one set of
parameter values, showing two quasi-energy bands in the phase
Brillouin zone (PBZ) [Φk,Φk+ 2π), which are separated by two
quasi-energy gaps. (See Supplementary Note 1 for details.) The
parameter values used in Fig. 2 give us one specific Floquet sys-
tem; if we change the parameter values, we would get a new time-
evolution matrix U 0ðk; tÞ, featuring another Floquet system. For
this 1+1D example, two Floquet systems are considered to be
topologically equivalent if and only if (iff) they are connected by a
continuous deformation that preserves the symmetry group G
and both quasi-energy gaps.

In terms of the general terminology discussed in the Methods,
we choose both quasi-energy gaps to be the topologically relevant
gaps70,71 for this 1+1D example, and after choosing the relevant
gaps, U(k, t) (or U 0ðk; tÞ) becomes a Floquet gapped unitary
(FGU). In general, the relevant gaps for a generic FGU are chosen
based on the physics of interest, and one common choice is to
choose all quasi-energy gaps to be relevant, as done in this 1+1D
example. Topological properties of FGUs are the focus of
this work.

Symmetry data. As the first step of our topological classification,
let us describe the symmetry data for the quasi-energy band
structure of the 1+1D FGU U(k, t). Owing to the inversion
invariance, the eigenvectors for the quasi-energy bands at an
inversion-invariant momentum k0= Γ/X have definite parities
α= ± , as shown in Fig. 2a. For each quasi-energy band
Em;k (m= 1, 2), we can count the number of eigenvectors carrying
parity α at each k0, denoted by nmk0;α. As a result, we have a four-
component vector for the m-th quasi-energy band as

Am ¼ ðnmΓ;þ; nmΓ;�; nmX;þ; nmX;�ÞT ; ð2Þ
of which the values can be read out from Fig. 2a as

A1 ¼ ð1; 0; 1; 0ÞT ; A2 ¼ ð0; 1; 0; 1ÞT : ð3Þ
The symmetry data is the matrix A that has A1 and A2 as its two
columns

A ¼ ðA1 A2Þ ; ð4Þ
which clearly only involves two momenta in the 1D 1BZ. The four
components of Am in Eq. (2) are not independent, as they satisfy the
following compatibility relation30,31nmΓ;þ þ nmΓ;� ¼ nmX;þ þ nmX;� or
equivalently

CAm ¼ 0 ð5Þ
with the compatibility matrix C being

C ¼ 1 1 �1 �1
� �

: ð6Þ
The above derivation of symmetry data for the quasi-energy

band structure is for a given choice of PBZ (as in Fig. 2a), which is
exactly the same as that for a static crystalline system30,31.
However, the freedom of choosing PBZ for Floquet crystals leads
to an additional subtlety in determining the symmetry data,
which is absent in dealing with static crystals. As shown in
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Fig. 2 Plots of phase and quasi-energy bands for the two-band 1+1D inversion-invariant example.We choose the PBZ lower bound as Φk=−π in a, c, e
and as Φk= π/4 in b, d, f. In all plots, the orange dashed lines mark the boundary of the PBZ, and ± stands for the parity of the eigenvectors at Γ(k= 0) or
X(k= π). In a and b, we plot the quasi-energy bands (blue lines) given by U(k, T) in the PBZ, while all gray lines are redundant 2π-copies outside the PBZ.
All quasi-energy gaps are relevant for the topological equivalence, and thereby are relevant gaps (labeled by R.G. in the plots). In c and d, we plot the phase
bands at Γ and X for the time-evolution matrix U(k, t). In e and f, we plot the phase bands at Γ and X for the return maps Uϵ=Φ(k, t).
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Fig. 2b, we can legitimately shift the PBZ lower bound to Φk= π/4,
which relabels the quasi-energy bands as 1→ 2 and 2→ 1, resulting
in a new symmetry data eA

eA ¼ A
0 1

1 0

� �
forΦk ¼ π=4 : ð7Þ

Therefore, the symmetry data of a Floquet crystal depends on the
artificial choice of PBZ, which is in contrast to the static case where
the symmetry data of a given static crystal is uniquely determined
by the Fermi energy.

We remove this artificial PBZ-dependent ambiguity by
defining an equivalence among symmetry data of different FGUs.
We define two FGUs U 0ðk; tÞ and U(k, t) to have equivalent
symmetry data iff we can find PBZs to make their symmetry data
exactly the same. In practice, we can first pick a PBZ lower bound
Φ0

k for U 0ðk; tÞ and get its symmetry data A0. Then we check
whether A0 ¼ A (Eq. (4)) or A0 ¼ eA (Eq. (7)); if one of them is
true, U 0ðk; tÞ and U(k, t) have equivalent symmetry data,
otherwise inequivalent. Despite the ambiguity of the symmetry
data, whether two FGUs have equivalent symmetry data or not is
independent of the artificial PBZ choice. In particular, inequi-
valent symmetry data infers topological distinction. Therefore, we
can perform a topological classification for FGUs solely based on
the symmetry data, similar to what we did for static crystals.

Winding data. The above symmetry-data-based classification
only involves the time-evolution matrix at t= T, missing essential
information about the quantum dynamics. To classify the
dynamics of Floquet crystals with equivalent symmetry data, we
will construct the winding data, which contains the dynamical
information on the entire time period. A direct visualization of
the quantum dynamics for the 1+1D FGU U(k, t) is its phase
band spectrum ϕm,k(t) given by directly diagonalizing U(k, t), and
we plot the phase bands at two inversion-invariant momenta in
Fig. 2(c-d). However, for the construction of the winding data, it
turns out to be inconvenient to directly use U(k, t) or phase bands
in Fig. 2(c-d), since they are not time-periodic.

It is much more convenient to use the time-periodic return
map68,71 Uϵ(k, t) defined as

Uϵðk; tÞ ¼ Uðk; tÞ Uðk;TÞ½ ��t=T
ϵ ; ð8Þ

where ϵk is the branch cut for the logrithm used in the return
map, and throughout this work, we always set the branch cut to
be equal to the PBZ lower bound (i.e., ϵ=Φ) unless specified
otherwise. (See the Methods for more details.) As we want to
make winding data computationally efficient, we only care about
the return map at two inversion-invariant momenta Γ and X.
Since the return map preserves inversion, its eigenvectors at
k0= Γ/X have definite parities, as shown in Fig. 2e for Φk=−π.
Then, we can count the total winding (along t) of the phase bands
of Uϵ=Φ(k0, t) with parity α, resulting in an integer-valued
winding number νk0;α. We can read out all four quantized
winding numbers from Fig. 2e and further group them into a
vector

V ¼ νΓ;þ; νΓ;�; νX;þ; νX;�
� 	T

¼ 1;�1; 0; 0ð ÞT ; ð9Þ

which we refer to as the winding data of the FGU U(k, t) for
Φk=−π. (See more details in the Methods.) Clearly, the winding
data only involves two momenta in the 1D 1BZ.

As exemplified by Eq. (9), the four components of the winding
data satisfy a compatibility relation

νΓ;þ þ νΓ;� ¼ νX;þ þ νX;� ; ð10Þ
since the total winding of all phase bands at each momentum is

the same. As a result, the winding data share the same
compatibility relation as that of the symmetry data (Eq. (5))

CV ¼ 0 ; ð11Þ
meaning that the winding data takes value in the following set

fVg ¼ Z4 \ ker C
¼ f q1; q2; q3; q1 þ q2 � q3
� �T jq1; q2; q3 2 Zg � Z3 :

ð12Þ

Shifting the PBZ changes the winding data. In this 1+1D
example, if we shift the PBZ lower bound from Φk=−π to
Φk= π/4, the phase bands of return map become Fig. 2f, and
from Fig. 2f, we know the winding data becomeseV ¼ ð0;�1;�1; 0ÞT ¼ V � A1 : ð13Þ
Unlike the symmetry data, a 2π-shift of the PBZ Φk→Φk+ 2π
can also change the winding data

V ! V � 1; 1; 1; 1ð ÞT ; ð14Þ
suggesting that the 1+1D FGU U(k, t) can have an infinite
number of different winding data, which explicitly depend on the
artificial choice of PBZ.

The infinite PBZ dependence of the winding data makes it hard
to directly generalize the equivalence among symmetry data
(which only has a finite number of variants for a single FGU) to
define an equivalence among the winding data, since finding a
single proper PBZ among an infinite number of possible choices
is not straightforward. Nevertheless, the infinitely many winding
data are related by the symmetry data, as shown in Eq. (13) and
Eq. (14). This relation inspires us to define the quotient winding
data below, in order to resolve the infinity problem.

Quotient winding data. In this part, we define the quotient
winding data to resolve the infinity issue of the winding data. To
have a finite number of different quotient winding data, we define
the quotient winding data to be invariant under all PBZ shifts that
keep the symmetry data. For the 1+1D FGU U(k, t), all PBZ shifts
that keep the symmetry data are (or are equivalent to) the 2πn-
shifts of the PBZ, where n labels an arbitrary integer. Then, we
define the quotient winding data VQ as

VQ ¼ V mod �A ; ð15Þ
where

�A ¼ A1 þ A2 ¼ 1; 1; 1; 1ð ÞT : ð16Þ
As 2πn-shifts of the PBZ can only change V by multiples of �A
according to Eq. (14), VQ defined in Eq. (15) is indeed invariant
under 2πn-shifts of the PBZ, just like the symmetry data. As a
result, the 1+1D FGU U(k, t) only has two different quotient
winding data derived from the two winding data in Eqs. (9) and
(13) as

VQ ¼ V mod �A ¼ 0;�2;�1;�1ð ÞT for Φk ¼ �π ;eVQ ¼ eV mod �A ¼ 0;�1;�1; 0ð ÞT for Φk ¼ π=4 ;
ð17Þ

which are related byeVQ ¼ VQ � A1 mod �A : ð18Þ
(See more details in the Methods.)

To further remove the remaining PBZ-dependent ambiguity,
we define an equivalence among quotient winding data of
different FGUs. Recall that the quotient winding data is
introduced for a classification of FGUs with equivalent symmetry
data, since inequivalent symmetry data already infers topological
distinction. Let us suppose that the two different 1+1D FGUs
U(k, t) and U 0ðk; tÞ have equivalent symmetry data, meaning that
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we can always pick PBZ choices Φ0
k and Φk for U 0ðk; tÞ and

U(k, t), respectively, such that they have exactly the same
symmetry data A0 ¼ A. Then, we check whether the quotient
winding data of U 0ðk; tÞ for Φ0

k is the same as that of U(k, t) for
Φk; if so, U 0ðk; tÞ and U(k, t) are defined to have equivalent
quotient winding data.

Given two FGUs with equivalent symmetry data, the artificial
PBZ choice has no influence on whether they have equivalent
quotient winding data or not. In particular, they must have
equivalent quotient winding data if they are topologically
equivalent, meaning that inequivalent quotient winding data
infers topological distinction. Then, as long as the comparison of
VQ is done for the PBZ choices that yield the same symmetry
data, quotient winding data provides a topological classification
for all FGUs that have equivalent symmetry data to the 1+1D
U(k, t). Specifically, the classification is given by {V} in Eq. (12)
and �A in Eq. (16) as

fVQg ¼ f 0; q2; q3; q2 � q3
� �T jq2; q3 2 Zg � fVg

�AZ
� Z2 ; ð19Þ

where �AZ ¼ fq�A ¼ ðq; q; q; qÞT jq 2 Zg.
Up to now, we have discussed the relative topological

classification based on the symmetry data and the quotient
winding data, shown in Fig. 1a. Nevertheless, the (A,VQ)-based
classification fails to tell which FGU has obstruction to static
limits, i.e., topologically distinct from all static FGUs with the
same symmetries. (See the Methods for general definitions.) Yet,
determining obstruction to static limits is crucial, because it tells
whether the Floquet phase of interest has no static analog or
equivalently whether it is allowed to have any anomalous
dynamical phenomena. For this purpose, we construct the
DSI below.

DSI. In this part, we construct the DSI for the 1+1D example to
efficiently indicate its obstruction to static limits. To determine
the obstruction to static limits for the 1+1D FGU U(k, t) with G
spanned by inversion and lattice translation, we only need to
consider the G-invariant static FGUs that have symmetry data
equivalent to U(k, t), since U(k, t) must be topologically distinct
from all other G-invariant static FGUs. Then, we can check
whether any winding data of U(k, t) is forbidden in all static
FGUs with symmetry data equivalent to U(k, t); if so, then U(k, t)
must have obstruction to static limits. Therefore, although we
need to use the quotient winding data to give the relative clas-
sification, we can directly use winding data to determine the
obstruction. (See Supplementary Note 1 for details.)

The DSI is constructed by formalizing the above criterion. To
do so, we first derive a set {VSL} by winding each quasi-energy
band of the 1+1D U(k, t) along time, which reads

fVSLg ¼ fq1A1 þ q2A2 ¼ q1; q2; q1; q2
� �T jq1; q2 2 Zg ; ð20Þ

where A1 and A2 are two columns of A in Eq. (4). {VSL} is
invariant under the relabeling of the quasi-energy bands (i.e.
1↔ 2) due to a PBZ shift, and it contains all winding data of all
G-invariant static FGUs that have symmetry data equivalent to
U(k, t). (See details in Supplementary Note 1.) Then, according to
Eq. (9), the wind data V of U(k, t) for Φk=−π satisfies V∉ {VSL},
since νΓ,+− νX,+= 1 for V while νΓ,+− νX,+= 0 for all elements
in {VSL}. It means that V cannot exist in any of the static FGUs
that have symmetry data equivalent to U(k, t), and thus U(k, t)
must have obstruction to static limits.

It turns out that we are allowed to adopt any PBZ choice for
U(k, t) to check the above formalized criterion, and we will always
get the same result that U(k, t) has the obstruction to static limits,
because Eqs. (13) and (14) suggests U(k, t) always has νΓ,+−

νX,+= 1 regardless of the PBZ choice. We refer to the PBZ-
independent (νΓ,+− νX,+) as the DSI for U(k, t)—as well as for all
other FGUs that have symmetry data equivalent to U(k, t).
Formally, the DSI is defined to take values from the following set
X

X ¼ fVg
fVSLg

� fνΓ;þ � νX;þ 2 Zg ; ð21Þ

where we have used Eqs. (12) and (20). As shown above, the DSI
only involves two momenta in the 1BZ, and nonzero DSI means
all winding data of U(k, t) are not in {VSL}, thus sufficiently
indicating the obstruction to static limit.

The idea of using quotient group to mod out the trivial systems
(though not exclusively), which is used above, was previously
used to construct the static symmetry indicator in ref. 31. The
difference between ref. 31 and our work is that the quotient is
taken for the symmetry contents (like columns of symmetry data)
in the construction of the static symmetry indicator in ref. 31 to
characterize the static band topology, while the quotient is taken
for the winding data in the construction of the DSI to characterize
the periodic quantum dynamics here.

Now we discuss the DSIs for all possible 1+1D inversion-
invariant FGUs. To do so, we need to use the Hilbert bases27,99,
which intuitively speaking, are irreducible bases of the symmetry
data. (See Methods and Supplementary Note 3 for more details.)
For 1+1D inversion-invariant FGUs, there are four Hilbert bases
given by four ways of assigning ± parities to Γ/X, which read

a1 ¼ 1; 0; 1; 0ð ÞT ;
a2 ¼ 0; 1; 1; 0ð ÞT ;
a3 ¼ 1; 0; 0; 1ð ÞT ;
a4 ¼ 0; 1; 0; 1ð ÞT :

ð22Þ

Then, any column of any symmetry data of any 1+1D inversion-
invariant FGU is the linear combination of the four Hilbert bases
with non-negative integer coefficients.

Based on the Hilbert bases, symmetry data of FGUs can be split
into two types, irreducible and reducible. Specifically, we define a
symmetry data of a FGU to be irreducible iff all its columns are
Hilbert bases; otherwise reducible. According to the general
framework presented in Methods, DSI sets for reducible
symmetry data can be constructed from those for irreducible
symmetry data. Therefore, in the following, we focus on the DSI
sets for irreducible symmetry data.

For a 1+1D inversion-invariant FGU with irreducible
symmetry data, all its symmetry data are spanned by a unique
set of the Hilbert bases {aj} with j taking J ≤ 4 different values in
{1, 2, 3, 4}. According to the general framework discussed in the
Methods, we can directly obtain the DSI set for the FGU solely
based on the set {aj} and the compatibility matrix C in Eq. (6). For
the above 1+1D example U(k, t), the two columns of any
symmetry data (Eqs. (4) or (7)) are the Hilbert bases a1 and a4 in
Eq. (22), and thus are irreducible. Then, the unique set of the
Hilbert bases that span the symmetry data is {a1, a4}, and the DSI
set Eq. (21) can be directly derived from {a1, a4} and C based on
the general framework.

In particular, even if two 1+1D inversion-invariant FGUs have
inequivalent symmetry data, they have the same X , as long as
their irreducible symmetry data are spanned by the same set of
Hilbert bases. This simplification allows us to enumerate all
possible DSI sets for irreducible symmetry data by considering all
24− 1 nontrivial combinations of Hilbert bases. As a result, we
obtain two nontrivial DSI sets. One is for the Hilbert basis set
{a1, a4}, which is just the above 1+1D example U(k, t), and the
DSI is shown in Eq. (21). The other one is for the Hilbert basis set
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{a2, a3}, and the DSI set reads

X � fνΓ;þ � νX;� 2 Zg : ð23Þ
Besides indicating obstruction to static limit, DSI is also a

topological invariant—its different values infer topological
distinction for FGUs with equivalent symmetry data. Although
the classification given by DSIs is a subset of that given by
quotient winding data (like for the above 1+1D example), DSIs
have the advantage of being PBZ-independent.

2+1D DSI. The above discussion focused on the 1+1D
inversion-invariant case. We, in this part, discuss the DSIs for
2+1D systems. Based on the general framework in Methods, we
derive the DSI sets for all nontrivial combinations of Hilbert bases
for all spinless and spinful 2D plane groups, and list the numbers
of nontrivial DSI sets in Tables 1–2. These DSI sets are for 2+1D
FGUs with irreducible symmetry data, and serve as the building
blocks for all 2+1D DSI sets for plane groups. The nontrivial
DSIs in Tables 1–2 can indicate both first-order and higher-order
anomalous Floquet topological phases, as discussed below.

For the first-order phase, we focus on the Z3 set for spinless
plane group p2, which is spanned by the 2D lattice translations
and the two-fold rotation C2. We explicitly construct a 2+1D p2-
invariant spinless model that has nonzeroZ3 DSI (inspired by the
quantum-anomalous-Hall-effect model in ref. 2, and find that the
model has anomalous chiral edge modes in the absence of
nonzero Chern numbers, similar to the first-order anomalous
Floquet topological phase in ref. 64. (See Supplementary Note 4
for details.) Therefore, the Z3 DSI can indicate first-order
anomalous Floquet topological phases. In particular, all compo-
nents of the DSI take the same values as the winding number W
defined in ref. 64 in our specific p2-invariant model, but the
evaluation of the former is much more efficient than the latter,
since the former only involves four C2-invariant momenta while
the latter needs the whole 2D 1BZ. Then, although the winding
number W defined in ref. 64 does not rely on any crystalline

symmetries other than lattice translations, our model suggests
that in the presence of nontrivial crystalline symmetries, DSIs
might efficiently indicate the nontrivial dynamics of the first-
order anomalous Floquet topological phases characterized by the
W winding number.

For the higher-order phase, we find that the 2+1D anomalous
Floquet higher-order topological insulator phase proposed in
ref. 86 can be indicated by the Z DSI of spinful p4mm in Table 2.
(See Supplementary Note 5 for details.) In particular, to
determine the nontrivial dynamics in the model, the DSI only
requires three momenta in the 1BZ, saving us from evaluating the
quantized dynamical quadrupole momoent proposed in ref. 86,
which involves all momenta in the entire 2D 1BZ.

3+1D AFSOTI phase. In this part, we apply our framework to
the 3+1D inversion-invariant case (P1 space group), and predict
a new 3+1D AFSOTI phase. We will only present a brief dis-
cussion here, and details can be found in Supplementary Note 6.

For P1, we only need to care about the eight inversion-
invariant momenta—Γ(0, 0, 0), X(π, 0, 0), Y(0, π, 0), Z(0, 0, π),
V(π, π, 0), U(π, 0, π), T(0, π, π), and R(π, π, π)30—and we have
parities ± at each inversion-invariant momentum. Then, we
choose the winding data to have the form

νK1;þ; νK1;�; :::; νK8;þ; νK8;�
� 	T ð24Þ

with Ki ¼ ðΓ;X;Y;Z;V;U ;T;RÞ
i
, and ν is the winding number.

Replacing ν by the number of irreducible representations (irreps)
labeled by parities in the above expression gives columns of the
symmetry data.

P1 has 256 Hilbert bases, given by assigning ± to the eight
inversion-invariant momenta in the 3D 1BZ, and thus the
number of nontrivial combinations of the Hilbert bases is
2256− 1, which is very large. For simplicity, we only compute the
DSI sets for the 32896 combinations that only include one or two
Hilbert bases, resulting in Z ð3584Þ, Z2 ð7168Þ, Z3 ð8960Þ,

Table 1 Numbers of Hilbert bases and nontrivial DSIs for all spinless 2D plane groups.

P.G. H.B.N. Nontrivial DSI Sets

p1 1 None
p2 16 Z ð2980Þ, Z2 ð268Þ, Z3 ð8Þ, Z2 ð666Þ, Z2 ´Z ð24Þ, Z3 ð16Þ
pm 4 Z ð2Þ
pg 1 None
cm 2 None
p2mm 24 Z ð1657492Þ; Z2 ð372286Þ; Z3 ð78060Þ; Z4 ð11904Þ; Z5 ð1200Þ; Z6 ð94Þ; Z7 ð4Þ; Z2 ð354594Þ;

Z2 ´Z ð63296Þ; Z2 ´Z
2 ð10320Þ; Z2 ´Z

3 ð1264Þ; Z2 ´Z
4 ð65Þ; Z3 ð10392Þ; Z3 ´Z ð1024Þ;

Z3 ´Z
2 ð112Þ; Z3 ´Z

3 ð8Þ; Z4 ð3424Þ; Z4 ´Z ð16Þ; Z5 ð16Þ; Z6 ð64Þ
p2mg 6 Z ð15Þ, Z2 ð3Þ
p2gg 4 Z ð2Þ
c2mm 14 Z ð3113Þ; Z2 ð686Þ; Z3 ð99Þ; Z4 ð7Þ; Z2 ð476Þ; Z2 ´Z ð168Þ; Z2 ´Z

2 ð56Þ; Z2 ´Z
3 ð7Þ; Z3 ð12Þ; Z4 ð2Þ

p4 32 Zð17587274Þ; Z2ð491020Þ; Z3ð20760Þ; Z4ð336Þ; Z2ð2175362Þ; Z2 ´Zð56952Þ;
Z2 ´Z

2ð576Þ; Z3ð27120Þ; Z3 ´Zð384Þ; Z4ð144Þ
p4mm 26 Z ð6044617Þ; Z2 ð859049Þ; Z3 ð116266Þ; Z4 ð11202Þ; Z5 ð597Þ; Z6 ð14Þ; Z2 ð422534Þ; Z2 ´Z ð81467Þ;

Z2 ´Z
2 ð11010Þ; Z2 ´Z

3 ð869Þ; Z2 ´Z
4 ð22Þ; Z3 ð3200Þ; Z3 ´Z ð480Þ; Z3 ´Z

2 ð56Þ;Z3 ´Z
3 ð4Þ;

Z4 ð2400Þ; Z4 ´Z ð450Þ; Z4 ´Z
2 ð42Þ; Z8 ð8Þ; Z8 ´Z ð1Þ

p4gm 11 Z ð615Þ, Z2 ð99Þ, Z3 ð7Þ, Z2 ð1Þ
p3 27 Z ð973458Þ; Z2 ð48762Þ; Z3 ð2376Þ; Z4 ð36Þ; Z2 ð201690Þ; Z2 ´Z ð4968Þ; Z2 ´Z

2 ð54Þ;
Z3 ð2604Þ; Z4 ð324Þ

p3m1 12 Z ð378Þ, Z2 ð27Þ, Z2 ð360Þ, Z2 ´Z ð21Þ, Z4 ð16Þ
p31m 9 Z ð148Þ, Z2 ð33Þ, Z3 ð3Þ, Z2 ð3Þ, Z2 ´Z ð1Þ
p6 36 Z ð110427458Þ, Z2 ð2196588Þ, Z3 ð68760Þ, Z2 ð16472556Þ, Z2 ´Z ð254520Þ, Z3 ð148920Þ
p6mm 20 Z ð189005Þ; Z2 ð32809Þ; Z3 ð3301Þ; Z4 ð168Þ; Z2 ð6509Þ; Z2 ´Z ð1691Þ; Z2 ´Z

2 ð172Þ; Z3 ð22Þ

Here we only consider the DSIs for FGUs with irreducible symmetry data. P.G. means plane group, and H.B.N. means the number of Hilbert bases for each plane group. In the column for nontrivial DSI
sets, None means there are no combinations of Hilbert bases that give nontrivial DSIs, and the number in the bracket is the number of Hilbert-bases combinations that give the DSI set in front of the
bracket.
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Z4 ð7168Þ, Z5 ð3584Þ, Z6 ð1024Þ, and, Z7 ð128Þ, where Zn labels
the DSI set and the number in the bracket labels how many
nontrivial combinations of Hilbert bases lead to the DSI set. For
concreteness, we in the following focus on the Z7 DSI set that
corresponds to the combination of the following two Hilbert
bases ea1 ¼ 1; 0; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 1; 0ð ÞTea2 ¼ 0; 1; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 0; 1ð ÞT ; ð25Þ

and the DSI is a seven-component vector that reads

ðνΓ;þ � νX;�; νΓ;þ � νY ;�; νΓ;þ � νZ;�; νΓ;þ � νV ;�;

νΓ;þ � νU ;�; νΓ;þ � νT;�; νR;� � νΓ;�Þ :
ð26Þ

To demonstrate the dynamical phase indicated by the Z7 DSI,
we explicitly construct a 3+1D dynamical tight-binding model
with P1 space group on a cubic lattice with the lattice constant
being 1. It has four bulk quasi-energy bands, which are split into
two isolated sets by two relevant gaps, one 0-gap and one π-gap
(see Fig. 3a, b). According to the Methods, each isolated set (that
consists of two bands) corresponds to one column in the
symmetry data, resulting in a two-column symmetry data
A= (A1 A2). Direct calculation shows that A1 ¼ 2ea1 and
A2 ¼ 2ea2, meaning that the symmetry data is reducible. Never-
theless, the Hilbert basis set that spans the symmetry data is
uniquely fea1;ea2g, and thus the model is characterized by the DSI
in Eq. (26), which is evaluated to (2, 2, 2, 2, 2, 2, 2). As a result of
the nontrivial dynamics characterized by the nonzero DSI, the
system has chiral hinge modes in each bulk relevant gap, as
shown in Fig. 3. The chiral hinge modes are anomalous, because
the static topological invariant, axion angle, for the inversion-
protected chiral hinge modes100 is zero for both isolated sets of
quasi-energy bands according to the symmetry data11,12.

We emphasize that although hinge modes in 3+1D Floquet
insulators were discussed in ref. 77 and ref. 97, our model is
fundamentally different from theirs. First, the hinge modes

Table 2 Numbers of Hilbert bases and nontrivial DSIs for all spinful 2D plane groups.

P.G. H.B.N. Nontrivial DSI Sets

p1 1 None
p2 16 Z ð2980Þ, Z2 ð268Þ, Z3 ð8Þ, Z2 ð666Þ, Z2 ´Z ð24Þ, Z3 ð16Þ
pm 4 Z ð2Þ
pg 1 None
cm 2 None
p2mm 1 None
p2mg 6 Z ð15Þ, Z2 ð3Þ
p2gg 4 Z ð2Þ
c2mm 3 Z ð1Þ; Z2 ð1Þ
p4 32 Zð17587274Þ; Z2ð491020Þ; Z3ð20760Þ; Z4ð336Þ; Z2ð2175362Þ; Z2 ´Zð56952Þ;

Z2 ´Z
2ð576Þ; Z3ð27120Þ; Z3 ´Zð384Þ; Z4ð144Þ

p4mm 4 Z ð2Þ
p4gm 8 Z ð50Þ, Z2 ð4Þ, Z2 ð2Þ
p3 27 Z ð973458Þ; Z2 ð48762Þ; Z3 ð2376Þ; Z4 ð36Þ; Z2 ð201690Þ; Z2 ´Z ð4968Þ; Z2 ´Z

2 ð54Þ;
Z3 ð2604Þ; Z4 ð324Þ

p3m1 12 Z ð378Þ, Z2 ð27Þ, Z2 ð360Þ, Z2 ´Z ð21Þ, Z4 ð16Þ
p31m 9 Z ð148Þ, Z2 ð33Þ, Z3 ð3Þ, Z2 ð3Þ, Z2 ´Z ð1Þ
p6 36 Z ð110427458Þ, Z2 ð2196588Þ, Z3 ð68760Þ, Z2 ð16472556Þ, Z2 ´Z ð254520Þ, Z3 ð148920Þ
p6mm 6 Z ð12Þ
Here we only consider the DSIs for FGUs with irreducible symmetry data. P.G. means plane group, and H.B.N. means the number of Hilbert bases for each plane group. In the column for nontrivial DSI
sets, None means there are no combinations of Hilbert bases that give nontrivial DSIs, and the number in the bracket is the number of Hilbert-bases combinations that give the DSI set in front of the
bracket.

a b Φ = −

ℇ

(infinite)

c

ℇ ∼ 0 ℇ ∼

I.S. 2

I.S. 1

R.G.

R.G.

Fig. 3 The 3+1D AFSOTI with anomalous chiral hinge modes. In a, we
show an inversion-preserving configuration of the 3+1D AFSOTI that is
finite along x, y and infinite along z. The purple and red lines indicate the
hinges that host anomalous chiral hinge modes. In b, we plot the quasi-
energy band structure of the 3+1D AFSOTI for the configuration in a. E and
T label the quasi-energy and time period, respectively. The gray lines are
the bulk bands (as well as the dangling surface bands). I.S. labels isolated
set of bulk quasi-energy bands, and each isolated set contains two bulk
quasi-energy bands. R.G. stands for the bulk relevant gap, and there are two
relevant gaps, one at ET ¼ 0 (called 0-gap) and the other at ET ¼ π (called
π-gap). The purple and red lines mark the anomalous chiral hinge modes
localized at the purple and red hinges in a, respectively. The orange dashed
lines mark the boundary of PBZ. In c, we consider an inversion-preserving
configuration of the 3+1D AFSOTI that is finite along all three spatial
directions, and plot total probability density of the two eigenmodes with
quasi-energies closest to 0 or π ( mod 2π). Details on the parameter values
can be found in Supplementary Note 6.
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originate from the time glide symmetry in ref. 77 and from the
effective spectral symmetry in ref. 97, both of which are not static
crystalline symmetries, while our model is protected by static
inversion symmetry. Second, trivial static topology has not been
explicitly confirmed for the bulk quasi-energy bands in ref. 77 and
ref. 97, while the relevant static topological invariants in our
model are confirmed to be trivial. Therefore, our model, which is
constructed based on the DSI, is the first AFSOTI solely protected
by the static crystalline symmetries.

Discussion
To summarize, we have established a general and efficient theo-
retical framework for classifying and characterizing the topolo-
gical properties of Floquet crystals in the symmetry class A, which
is applicable to all crystalline symmetry groups in all spatial
dimensions (up to three).

One direct physical implication of the obstruction to static
limits is that symmetry breaking or relevant gap closing must
appear during any continuous deformation that makes static a
Floquet crystal with obstruction. Here the relevant gap closing
refers to the closing of the topologically relevant bulk quasi-
energy gaps, according to the definition of the topological
equivalence discussed in Methods. If all relevant symmetries are
preserved during the deformation, the gap closing will occur in at
least one of the relevant gaps in the bulk quasi-energy spectrum,
and is not required to appear in any irrelevant gaps. Therefore, an
experimental test of nonzero DSIs (though not conclusively)
would be to observe the quasi-energy gap closing or symmetry
breaking as continuously decreasing the driving amplitude to zero
while fixing the driving period. Gap closing in quasi-energy
spectrum has been observed in experiments like ref. 72.

As for more experimental signatures of our theory, it is worth
studying the link between nonzero DSIs and nontrivial boundary
signature in the future. A promising direction is p2 plane group,
for which the DSI is very likely to contain the information of
chiral edge modes. The intuition is based on the fact that the
difference in winding data for different PBZ choices consists of
the symmetry contents of quasi-energy bands, which have a mod-
2 relation to the Chern number11,12. The 2+1D p2-invariant
model presented above also suggests a relation between the DSI
and the winding number defined in ref. 64, where the latter has a
correspondence to the chiral edge modes. Furthermore, the 3+1D
AFSOTI presented above suggests that the 3+1D DSI might
indicate the anomalous chiral hinge modes in certain space
groups, perhaps related to a dynamical generalization of the static
bulk-boundary correspondence between the axion angle and the
static chiral hinge modes100.

As the symmetry-representation theories for static crystals
inspired the proposal of fragile topology22,23 that is beyond the
K-theory classification101, another interesting direction is to
generalize the concept of fragile topology to Floquet crystals102.
Besides, generalizing our theoretical frame work to Floquet
crystals with time-reversal, particle-hole, or chiral symmetries
is another interesting direction, since it would help identify
exotic physical phenomena like anomalous boundary Majorana
modes protected by particle-hole symmetries46,103–106. As our
framework focuses on operators, it is interesting to ask whether
it is possible to formalize an equivalent state-based formalism63.
Similar to the symmetry-representation theories30,31 for static
crystals, our classification is not necessarily complete, since two
Floquet crystals with equivalent symmetry and quotient wind-
ing data might still be topologically distinct, and the obstruc-
tion to static limits might still occur for zero DSI (Fig. 1).
Thereby, the complete topological classification for static and
Floquet crystals is a meaningful future direction. Note added in

proof: Recently, we noticed ref. 107, which proposed to clas-
sify Floquet topological phases by using dynamical symmetry
inversion points.

Methods
Basic definitions. In this part, we list the basic definitions used in this work.
Details can be found in Supplementary Note 2.

A Floquet crystal is defined to be a time-evolution operator ÛðtÞ equipped with
a time period T, a relevant gap choice, and a crystalline symmetry group G, which is
in short denoted by ÛðtÞ. In the definition of a Floquet crystal, we have implied that
ÛðtÞ is unitary and its matrix representation for any bases is continuous. A FGU is
defined to be a time-evolution matrix U(k, t) equipped with a time period T, a
relevant gap choice, a crystalline symmetry group G, and a symmetry
representation ug(k), which is in short denoted by U(k, t). Here k is the
momentum. In the definition of a FGU, we have implied that U(k, t) and ug(k) are
unitary, continuous (smooth for ug(k)), and invariant under the shift of k by
reciprocal lattice vectors. By choosing bases for a Floquet crystal, we naturally get a
FGU with the same time period, relevant gaps and crystalline symmetry group as
the Floquet crystal. FGUs given by the same Floquet crystal with different choices
of bases are related by gauge transformations.

Suppose we have two FGUs U(k, t) (with T, relevant gaps, G, and ug(k)) and
U 0ðk; tÞ (with T 0, relevant gaps, G, and u0ðkÞ). The two FGUs U(k, t) and U 0ðk; tÞ
are defined to be topologically equivalent under the crystalline symmetry group G
iff there exists a continuous deformation that connects them, preserves G and
preserves all relevant gaps. As long as the crystalline symmetry group G for the
topological equivalence is specified, we may refer to "topologically equivalent under
G" as "topologically equivalent" in short. Suppose we have two Floquet crystals ÛðtÞ
(with T, a relevant gap choice, and G) and Û 0ðtÞ (with T 0 , a relevant gap choice, and
G). The two Floquet crystals ÛðtÞ and Û 0ðtÞ are defined to be topologically
equivalent iff there exists a continuous deformation that connects them, preserves
G and preserves all relevant gaps. If two Floquet crystals are topologically
equivalent, they must have topologically equivalent FGUs for any bases choices.
Therefore, the topological distinction among FGUs must infer the topological
distinction among the underlying Floquet crystals, and all topological invariants of
FGUs can be applied to Floquet crystals. For this reason, we focus on the FGUs in
this work.

The defined topological equivalence for FGUs is similar to the definition in Sec.
2 of ref. 68, except the following two differences. First, the definition in this work
allows the deformation to deviate from the topologically equivalent FGUs by gauge
transformations so that the defined topological equivalence is gauge invariant.
Second, the definition in this work allows the symmetry representation and time
period to vary along the deformation, and also allows the symmetry representation
to depend on momenta. Furthermore, the topological classification based on the
definition in this work may be different from the classification in refs. 69–71. The
topological equivalence defined in this work is immune to any global energy shift,
while the same global energy shift may change value of the topological invariant in
refs. 69–71.

Last but not least, a static limit is a Floquet crystal with static Hamiltonian; a
static FGU is a FGU with static matrix Hamiltonian. A Floquet crystal (a FGU)
with G is defined to have obstruction to static limits iff it is topologically distinct
from all static limits (static FGUs) with G.

Return map. The return map for the 1+1D U(k, t) is constructed as follows. We
first expand U(k, T) as

Uðk;TÞ ¼ ∑
2

m¼1
e�iEm;kTPk;mðTÞ ; ð27Þ

where Pk,m(T) is the projection matrix given by the eigenvector of U(k, T) for
e�iEm;kT . With the above expression, the return map reads

Uϵðk; tÞ ¼ Uðk; tÞ Uðk;TÞ½ ��t=T
ϵ ; ð28Þ

where

Uðk;TÞ½ ��t=T
ϵ ¼ ∑

2

m¼1
exp � t

T
log ϵk

ðe�iEm;kT Þ
h i

Pk;mðTÞ: ð29Þ

Here ϵk serves as the branch cut of the logarithm69 by requiring ilog ϵk
ðxÞ 2

½ϵk; ϵk þ 2πÞ for all x∈U(1). As we always set the branch cut to be equal to the
PBZ lower bound (i.e., ϵ=Φ), we have

i log ϵk¼Φk
ðe�iEm;kT Þ ¼ Em;kT: ð30Þ

For the general situation, we just need to generalize the expression of the return
map from the 1+ 1D two-band case to a N-band FGU U(k, t) with T. Specifically,
we replace k by k and replace 2 bands by N bands in Eqs. (27)–(29) to get the
return map

Uϵðk; tÞ ¼ Uðk; tÞ Uðk;TÞ½ ��t=T
ϵ ; ð31Þ
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where

Uðk;TÞ½ ��t=T
ϵ ¼ ∑

N

m¼1
exp � t

T
log ϵk

ðe�iEm;kT Þ
h i

Pk;mðTÞ ; ð32Þ

and Pk,m(T) is the projection matrix given by the eigenvector of U(k, T) for e�iEm;kT .

Winding data and modulo operation. The winding data of the 1+1D example is
mathematically constructed as the follows. The return map commutes with the
inversion symmetry representation at k0= Γ/X

uP ðk0ÞUϵ¼Φðk0; tÞuyP ðk0Þ ¼ Uϵ¼Φðk0; tÞ : ð33Þ
Combined with the representation of inversion symmetry in Eq. (1), the return
map at k0 has two blocks with opposite parties

Uϵ¼Φðk0; tÞ ¼
Uϵ¼Φ;k0 ;þðtÞ

Uϵ¼Φ;k0 ;�ðtÞ

 !
: ð34Þ

Then we can define the following U(1) winding number for each block

νk0 ;α ¼ i
2π

Z T

0
dtTr Uy

ϵ¼Φ;k0 ;α
ðtÞ∂tUϵ¼Φ;k0 ;α

ðtÞ
h i

2 Z ð35Þ

with α= ± again labeling the parity. In particular, the integer-valued nature of νk0 ;α
directly comes from time-periodic nature of the return map.

From the winding data V, a modulo operation V mod �A is required to give the
quotient winding data, as shown in Eq. (15). In practice, the modulo operation can
be taken for the first nonzero component of �A as discussed in the following. Eq.
(16) shows that the first nonzero element of �A is the its first element �AΓ;þ ¼ 1, and
then VQ ¼ V þ j�A with integer j satisfying

VQ;Γ;þ ¼ vΓ;þ þ j�AΓ;þ ¼ vΓ;þ mod �AΓ;þ ¼ 0 : ð36Þ
The generalization from the 1+1D example to a generic FGU is discussed in

Supplementary Note 3.

General framework. In this part, we briefly introduce the general framework.
Details can be found in Supplementary Note 3.

We consider a generic FGU with a generic crystalline symmetry group G, and
discuss its symmetry data first. The quasi-energy bands of the FGU are separated
by relevant gaps into isolated sets of quasi-energy bands, and certain sets may
contain more than one bands. Then, the symmetry contents, columns of the
symmetry data, are defined for the isolated sets of quasi-energy bands. Each
component of a symmetry content is the copy number of the corresponding irrep
(like parity in the 1+1D example) of the little group at the corresponding high-
symmetry momentum (like the inversion-invariant momentum in the 1+1D
example). Nevertheless, the compatibility relation of all symmetry contents can
always be expressed in terms of a compatibility matrix C just like Eq. (5), and all the
symmetry contents belong to

fBSg � NK \ ker C ; ð37Þ
where N is the set of non-negative integers. Here K is the number of components
of each symmetry content (which is 4 for the 1+1D example), and both K and the
compatibility matrix C can be determined solely based on G. The PBZ-dependence
of the symmetry data can still be removed by the equivalence among symmetry
data defined in Results, and inequivalent symmetry data still infers topological
distinction. Therefore, we can perform a topological classification for FGUs—also
for Floquet crystals—solely based on the symmetry data, similar to what we did for
static crystals.

Now we discuss the winding data of the generic FGU. The winding data is still a
vector that consists of the winding numbers resolved by the high-symmetry
momenta and irreps. We demonstrate that we can always choose the same set of
high-symmetry momenta and irreps for the winding data and symmetry data, and
the winding data always obeys the same compatibility relation as the symmetry
content. In addition, if an irrep at certain momentum is missing, the corresponding
winding number must be zero, which is an extra constraint imposed on the
winding data by the symmetry data. We can always express this extra constraint in
terms of a diagonal matrix D as

DV ¼ 0 : ð38Þ
Then, the winding data takes value from the following group {V}

fVg � ZK \ ker C \ kerD : ð39Þ
In the 1+ 1D example (Eq. (4)), all inequivalent irreps appear at all high-symmetry
momenta, resulting in D ¼ 0 and Eq. (12). Similar to the 1+ 1D example, a
generic FGU also has an infinite number of winding data, given by varying PBZ.

To solve the infinity issue, we construct the quotient winding data. For the
generic FGU, the quotient winding data is still defined as Eq. (15), but �A needs to
be chosen carefully as discussed below. In the 1+1D example, �A is the sum of all
columns of the symmetry data just because all PBZ shifts that keep the symmetry
data are (or are equivalent to) the 2πn-shifts of the PBZ. For the generic FGU with
in total L isolated sets of quasi-energy bands, 2π-shift of the PBZ is equivalent to

shifting the PBZ lower bound through L isolated sets, which certainly leaves the
symmetry data invariant. Nevertheless, in certain cases, the symmetry data is kept
invariant even if we shift the PBZ lower bound through 0<eL< L isolated sets, and
then we should choose �A ¼ ∑LKSD

l¼1 Al for the construction of the quotient winding

data, where LKSD is the smallest eL and Al’s are columns of the symmetry data. After
choosing proper �A, the equivalence between quotient winding data defined in
Results still holds in the general framework.

Now let us turn to the DSI for the generic FGU. As mentioned in Results, we
need to use Hilbert bases, which will be discussed with more details below. As
shown in Eq. (37), the symmetry contents compatible with G always take value
from the set {BS}. Mathematically speaking, {BS} is a monoid rather than a group,
since the components of a symmetry content are always non-negative, preventing
nonzero elements in {BS} from having inverse. We call a nonzero element in {BS}
irreducible99 if it cannot be expressed as the sum of any two other elements in {BS};
otherwise, it is called reducible. In particular, the irreducible symmetry contents
form a unique set of bases of {BS}27,99, called the Hilbert bases, which we label as ai
with i= 1, 2, . . . , I.

As discussed in Results, the symmetry data can be classified as irreducible or
reducible. We first discuss the DSI set for generic FGUs with irreducible symmetry
data. When the symmetry data is irreducible (like the 1+1D example), the
symmetry data is spanned by a unique set of Hilbert bases {aj} with j taking J
different values in {1, 2, . . . , I}. In this case, the static winding data set {VSL} for
constructing the DSI set X simply reads

fVSLg ¼ ∑
j
ajqjjqj 2 Z


 �
: ð40Þ

From {aj}, we can also determine the K (as the number of components of aj) and D
(as shown in Supplementary Note 3) in Eq. (39). Then, combined with
compatibility matrix C, X can be directly derived based on Eq. (39) and the first
equality in Eq. (21), meaning that X is uniquely determined by {aj} and C. In
particular, if two FGUs have the same G and have irreducible symmetry data that
involve the same set of Hilbert bases, they have the same X , no matter whether the
two FGUs have equivalent symmetry data. As mentioned in Results, this
simplification allows us to enumerate all possible DSI sets for irreducible symmetry
data by considering all 2I− 1 nontrivial combinations of Hilbert bases of a given
crystalline symmetry group G.

When the symmetry data is reducible, then it is possible that more than one sets
of Hilbert bases can span the symmetry data. Nevertheless, the DSI set in this case
can be constructed from the tensor product of the DSI sets for irreducible
symmetry data. Therefore, the DSI sets for irreducible symmetry data serve as the
elementary building blocks for all DSI sets.

Data availability
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