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Abstract: Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihyperten-
sive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of
Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell
factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is
a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic

biological technology, analyzes the current challenges, and proposes corresponding strategies.
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Introduction

Natural products synthesized by animals, plants, and microor-
ganisms are a class of organic small-molecule compounds with
structural and functional diversity, which are widely used in
domains such as agriculture and medicine due to their impor-
tant physiological functions and biological activities (Osbourn &
Lanzotti, 2009; Newman & Cragg, 2016). Natural products can be
primary or secondary metabolites. Natural products derived from
plants are mostly alkaloids, polysaccharides, volatile oils, phenols,
terpenoids, and lignans, whereas products derived from microor-
ganisms and metabolites are mostly polysaccharides, enzymes,
antibiotics, pigments, amino acids, organic acids, alcohols, and
ketones. Furthermore, marine natural products include mostly
sterols, unsaturated fatty acids, polysaccharides and glycosides,
macrolides, and polyketides and alkaloids (Aharoni & Galili, 2011;
Durazzo et al., 2018; Yan et al., 2018). Terpenoids with the molecu-
lar formula (CsHg)y, also known as isoprenoids, are the main plant
secondary metabolites. Currently, more than 55 000 terpenoids
are known (Harborne, 1995). Many plant-derived terpenoids have
applications in medicine, such as the anticancer drug taxol (Shu
et al., 2014) and the specific antimalarial drug artemisinin (Ansari
et al,, 2013). Some terpenoids are alternatives to aviation fuel,
such as bisabolene and pinene (Peralta-Yahya & Keasling, 2010;
Peralta-Yahya et al., 2011).

Forskolin is a labdane-type diterpenoid mainly found in the
cork tissue of the root of Coleus forskohlil. Its molecular formula
is CyH3407 (Fig. 1) (Ammon & Miiller, 1985). Its cyclic AMP (cCAMP)
booster effect makes it an effective treatment against glaucoma,
tumors, HIV, obesity, hypertension, heart diseases, asthma, and
cardiac complications (Yoneyama et al., 2002; Bodiwala et al.,
2009; Virgona et al.,, 2010; Doseyici et al., 2014; Ponnam et al.,,
2014; Majeed et al., 2015; Sapio et al.,, 2017). An example of a
forskolin derivative with good anticancer (Hylse et al., 2017) or
anti-HIV (Bodiwala et al., 2009) effects is NKH477 (approved in
japan as a heart failure treatment), which has been used to treat

surgical complications, heart failure, and cerebral vasospasm
(Kikura et al., 2004). 13R-manoyl oxide (13R-MO), the precursor
of forskolin, was found in the roots of C. forskohlii (Pateraki et al.,
2014). Fig. 1 shows the structures of 13R-MO and forskolin.

Generally, the production methods of terpenoids include tradi-
tional plant extraction (Bajer et al., 2016), chemical synthesis (Du
etal., 2015), and microbial heterologous synthesis (Liu et al., 2015).
Forskolin is mainly derived from the plant C. forskohlii, but with
a low extraction yield (0.013-0.728%) due to tedious separation
steps and low purity (Asada et al., 2012; Harde & Singhal, 2012;
Srivastava et al.,, 2017). The chemical synthesis of forskolin in-
volved multistep reactions and large amounts of organic reagents,
making the process more expensive and environmentally harmful
than extraction (Corey & Jardine, 1989; Colombo et al., 1992). With
the development of synthetic biology, the synthesis of terpenoids
by microorganisms has emerged as an attractive alternative. Re-
cently, 13R-MO and forskolin have been successfully expressed
and synthesized in microorganisms. Current research focuses on
how to efficiently obtain forskolin with high yield and high purity.

This paper introduces the research status of the heterolo-
gous synthesis of forskolin, its precursor 13R-MO, and 13R-MO
derivatives in different microorganisms, describes the speed lim-
iting steps of the efficient synthesis of forskolin, analyzes the
existing problems in current research, and puts forward the
corresponding strategies.

Biosynthesis of Forskolin

Key Enzymes Involved in Forskolin Biosynthesis

The general precursor for the synthesis of terpenoids is produced
by the mevalonate pathway (MVA) (Bloch, 1992) and 2-methyl-
4-phospho-p-erythroitol pathway (MEP) (Rohmer et al., 1993).
Dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophos-
phate (IPP) are the basic units for terpenoid synthesis (Katsuki &
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Fig. 1. Schematic diagram of 13R-MO and forskolin. (A) Structure of 13R-MO. (B) Structure of forskolin.
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Fig. 2. MEP and MVA pathways. (a) Related enzymes in the MEP pathway and MVA pathway. AACT, acetoacetyl CoA thiolase gene; HMGS, HMG-CoA
synthase gene; HMGR, HMG-CoA reductase gene; MK, mevalonate kinase gene; PMK, phosphomevalonate kinase gene; MDC, 5-pyrophosphate methyl
hydrovalerate decarboxylase gene; DXS, deoxyxylulose-5-phosphate synthase gene; DXR, deoxyxylulose-5-phosphate isomerase gene; MCT,
2-C-methyl-p-erythritol-4-cytidine monophosphate acyltransferase gene; CMK, 4-(5'-cytidine pyrophosphate)-2-C-methyl erythritol kinase gene; MDS,
2-C-methyl-erythritol-2,4-cyclic pyrophosphate synthetase gene; HDS, (E)-4-hydroxy-3-methylbutane-2-enyl diphosphate synthase gene; HDR,
(E)-4-hydroxy-3-methylbutan-2-enyl diphosphate reductase gene. (b) Enzymes in the synthesis pathway of terpenoids. IDI, isoprene pyrophosphate
isomerase; GPPS, geranyl diphosphate synthase gene; FPPS, farnesyl diphosphate synthase gene; GGPPS, geranylgeranyl diphosphate synthase gene;

SS, squalene synthase.

Bloch, 1967; Lynen, 1967). IPP and DMAPP are condensed head-to-
tail into geranyl diphosphate (GPP). GPP then combines with an-
other IPP to form 15-carbon farnesyl pyrophosphate (FPP), which
condenses with yet another IPP to form geranylgeranyl pyrophos-
phate (GGPP). FPP can also form squalene via squalene synthase
(ERG9). GPP, FPP, GGPP, and squalene are the precursors for the
synthesis of monoterpenoids, sesquiterpenoids, diterpenoids, and
triterpenoids, respectively. Exogenous terpene synthases cyclize
and modify these precursors, producing the corresponding target
terpenoids (Fig. 2).

In the early stages, researchers analyzed the extracts of the
fibrous root culture of C. forskohlii to isolate and identify the
possible precursors of forskolin biosynthesis (Bhat et al., 1977;
Asada et al.,, 2012). In 2013, Zerbe et al. (Zerbe et al., 2013) as-
sembled, classified, and analyzed the phylogenetic function of
genes related to the forskolin synthesis pathway in the root of

C. forskohlii via 454 and Illumina sequencing technology. Then
in 2014, Pateraki et al. (Pateraki et al,, 2014) analyzed the exist-
ing transcription group data and identified six candidate diter-
pene synthases (diTPS) CfTPS1 (KF444506), CfTPS2 (KF444507),
CfTPS3 (KF444508), CfTPS4 (KF444509), CfTPS14 (AGN70881.1), and
CfTPS15 (KF4710011). The six diTPS genes were heterologously ex-
pressed in Escherichia coli and Nicotiana benthamiana transient ex-
pression systems. GC-MS analysis showed that CfTPS1 and CfTPS2
are functionally different type II diTPS (the full-length sequence
of CfTPS15 cannot be retrieved and has not been tested). An en-
zyme coupling assay revealed that CfTPS2 (which synthesizes the
intermediate copal-8-ol diphosphate) combined with CfTPS3 re-
sulted in the stereospecific formation of 13R-MO. Besides, the
combination of CfTPS2 and CfTPS4 can also produce 13R-MO
and its epimer13S-MO, while the other combinations cannot pro-
duce manoyl oxide. The discovery of CfTPS2 and CfTPS3 laid the



foundation for subsequent research on other enzymes of the
forskolin pathway.

The function of cytochrome P450 enzymes (P450s) and acetyl-
transferases were identified and studied via metabolomics, single-
cell transcriptome research, and synthetic biological modular
methods in 2017 (Pateraki et al., 2017). In-depth RNA sequenc-
ing and analysis of the root cork of C. forskohlii allowed the
identification of 263 652 cDNA genes. A total of 29 cytochrome
P450 candidate genes were screened and found based on the cy-
tochrome P450 transcriptome relative expression levels in the
root cork, and seven belonged to the CYP76AH subfamily, namely
CfCYP76AHS (KT382348), CfCYP76AH9 (KT382347), CfCYP76AH10
(KT382346), CfCYP76AH11 (KT382349), CfCYP76AH15 (KT382358),
CfCYP76AH16 (KT382359), and CfCYP76AH17 (KT382360). Two
acetyltransferase (ACT) candidate genes were also screened and
found, CfACT1-6 (KT382361) and CfACT1-8 (KT382363). Among
the candidates, five were full-length sequences (CfCYP76AHS,
CfCYP76AHY, CfCYP76AH10, CfCYP76AH11, and CfCYP76AH17),
whereas two (CfCYP76AH15 and CfCYP76AH16) were only partial
cDNAs. Then, the cytochrome P450s and acetyltransferase can-
didates in C. forskohlii were functionally characterized via tran-
sient expression in N. benthamiana, and the intermediates were
identified by GC-MS or HPLC-HRMS-SPE-NMR. CfCYP76AH15,
CfCYP76AHS, and CfCYP76AH17 can catalyze 13R-MO to form the
main product 11-oxo-manoyl oxide. CfCYP76AH15 is the most
efficient and specific; however, CfCYP76AH8 and CfCYP76AH17
also effectively monooxidize the C-1 site. CfCYP76AH11 catalyzes
the conversion of 13R-MO into 9-deoxy-7-deacetylforskolin.
CfCYP76AH16 catalyzes the conversion of 13R-MO into 9-hydroxy-
manoyl oxide. CfCYP76AH15 in combination with CfCYP76AH11
and CfCYP76AH16 can catalyze the conversion of 13R-MO into
7-deacetylforskolin. Thus, this combination of multifunctional
cytochrome P450s appeared to constitute the optimal biosyn-
thetic pathway for the specific formation of 7-deacetylforskolin
from 13R-MO. The last enzyme catalyzes the acetylation of 7-
deacylforskolin to form forskolin. Two ACT candidates, CfACT1-
6 and CfACT1-8, catalyze the acetylation of 7-deacylforskolin.
CfACT1-6 lacks specificity, thus its expression formed a wide
range of acetylation products and only a small proportion of
forskolin. In contrast, CfACT1-8 exhibited high activity and speci-
ficity, and effectively converted 7-deacylforskolin into forskolin
without forming detectable byproducts.

Through joint efforts, the scientific researchers have identified
the enzymes required for the biosynthesis pathway of forskolin.

Key Synthetic Pathway Involved in Forskolin
Heterologous Biosynthesis

Transforming the metabolic network of chassis microorganisms
to efficiently produce food, fuel, medicine, and health products
is the current research hotspot in metabolic engineering and
synthetic biology (Lee et al., 2018; Park et al., 2018). So far, E.
coli, Cyanobacteria, and S. cerevisiae have been tried for forskolin
biosynthesis.

The Synthetic Pathway of 13R-MO and its
Optimization

As one of the model microorganisms, E. coli became the most
widely used chassis strain and has been successfully used to
synthesize a variety of diterpenes (Morrone et al., 2010). Nielsen
et al. (Nielsen et al., 2014) engineered E. coli to produce 13R-
MO by introducing the GGPP synthase AgGGPPS from Abies gran-
dis, and CfTPS2 and CfTPS3 from C. forskohlii. They optimized
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the MEP pathway and achieved a production of 10 mg/l. This
is also the first relevant report on the synthesis of 13R-MO in
microorganisms.

Cyanobacteria have been successfully used to synthesize some
simple compounds such as alcohols, sugars, and fatty acids
(Savakis & Hellingwerf, 2015). Cyanobacteria have their own MEP
pathway, which is very suitable for the production of terpenoids
(Pattanaik & Lindberg, 2015). Synechocystis sp. PCC 6803 became
a relatively mature model microorganism as it was the first
cyanobacteria to have its whole genome sequenced (Ikeuchi &
Tabata, 2001). Reconstructing the 13R-MO metabolic pathway in
Synechocystis sp. PCC 6803, optimizing the MEP pathway and ex-
ploring the optimal induction conditions let to the production of
13R-MO with a yield of 0.45 mg/g DCW (Englund et al., 2015).

S. cerevisiae is also a model microorganism. As an industrial cell
factory, it has a clear genetic background, and it has performed
well in the industrial production of medicines, food additives, and
bioenergy. Because of its mature eukaryotic expression system,
it is more suitable for the expression of heterologous eukaryotic
proteins. S. cerevisiae has an endogenous MVA pathway and can
directly provide precursors for plant-derived terpenes (Vranova
et al., 2013). Compared to E. coli, S. cerevisiade has the advantage
of naturally expressing plant cytochrome P450s (Renault et al.,
2014). Optimizing the precursor GGPP supply and knocking out
the MCT1, WHI2, and GDH1 genes increased the yield of 13R-
MO from 40 to 80 mg/l, but 135-MO still existed as a by-product
(Ignea, Athanasakoglou, et al., 2016a; Ignea, Ioannou, et al., 2016b).
Our team implemented the initial synthesis of 13R-MO in S. cere-
visiae by integrating the codon-optimized CfTPS2 and CfTPS3 and
improved the 13R-MO yield to 167.1 mg/l by weakening ERG9
(MET3p-ERGY) and fed-batch fermenting in a shake flask (Guo
et al,, 2019). However, the performance of the chassis was lim-
ited and the biomass was too low even under the feed conditions,
which hindered the synthesis of 13R-MO. Because of these draw-
backs, our team applied a series of metabolic engineering strate-
gles to produce 3 g/l 13R-MO via fed-batch fermentationin a 51
bioreactor (Zhang et al., 2019). Our method included the overex-
pression of the MVA rate-limiting genes (tHMG1 and ERG20), the
regulation of ERGY expression at the transcription and protein lev-
els (Puxt1-ERG9-PEST), the fusion of key genes in the MVA pathway
(BTS1-GGGS-ERG20"¢C), and the excision of the N-terminal plas-
tid transit of CfTPS2 and CfTPS3 (Fig. 3).

The Synthetic Pathway of 13R-MO Derivatives
and its Optimization

Because of the substrate’s promiscuity, structural modification of
natural products is an effective way to obtain new natural prod-
ucts and improve their biological activity. Since enzymes involved
in the heterologous synthesis of terpenoids sometimes show re-
laxed substrate specificity (Ignea, Athanasakoglou, et al., 2016a;
Ignea, loannou, et al., 2016b), an option is to use alternative en-
zymes to produce intermediates in complex compound synthe-
sis pathways. CYP76AH24 from Salvia pomifera oxidizes the C-12
of abietatriene to produce ferruginol and then continues to oxi-
dize ferruginol at position C-11 to produce 11-hydroxy-ferruginol.
Given that CYP76AH24 has more relaxed substrate specificity, it
can hydroxylate the C-118 position of manoyl oxide to generate
11B-hydroxy-manoyl oxide (Ignea, Athanasakoglou, et al., 2016a;
Ignea, loannou, et al., 2016b).

Exploring combinations of class I and class II diTPS from
different sources, some diterpenoids that are more difficult
to obtain from the environment were synthesized, such as
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3B-hydroxy-manoyl oxide and 13-epi-manoyl oxide (Ignea et al.,
2015). Reconstructing the synthetic pathway in yeast (using 8-
hydroxy copalyl diphosphate synthase CcCLS from Cistus creti-
cus combined with miltiradiene synthase SpMilS from S. pomifera
and PtAO from Pinus taeda) yielded 1.1 mg/1 of 38-hydroxy-manoyl
oxide.

The Synthetic Pathway of Forskolin and its
Optimization

Besides the expression of cytochrome P450s, S. cerevisiae showed
unique advantages for the conversion of 13R-MO into forskolin,
such as the suitable intracellular environment and a complete
membrane (Avalos et al., 2013).

Transferring four genes (CfCYP76AH15, CfCYP76AH11,
CfCYP76AH16, and CfACT1-8), along with the cytochrome
P450 reductase CfPOR (GenBank accession number KX151181)
into S. cerevisiae EFSC4498 produced 350 mg/l of 13R-MO with
fed-batch fermentation, resulting in 40 mg/l forskolin. This was
the first total synthesis of forskolin in yeast (Pateraki et al.,
2017). The limiting step in the forskolin production is obviously
the expression of CfCYP76AHs. Recently, the expression of cy-
tochrome P450s was optimized by protein engineering to improve
the catalytic efficiency of plant-derived cytochrome P450s in
microorganisms and increase the metabolic flow. In 2018, Forman
et al. (Forman et al, 2018) identified the substrate recognition
site of CfCYP76AH15 and developed an optimal mutant A99I via
homology modeling and a semirational site-directed mutagenesis
approach (Fig. 3). The activity of the mutant in engineered yeast
increased by 5.6 times, and the yield of 11-oxo-manoyl oxide was
twice that of the natural enzyme.

In summary, the MEP or MVA pathways produce the diterpe-
neoids universal precursor GGPP produced, the diterpeneoids
synthase CfTPS2 and CfTPS3 convert it into the precursor 13R-
MO, which undergoes six stereospecific oxidations to produce
7-deacetylforskolin via a series of cytochrome P450 monooxy-

genases (CfCYP76AH15, CfCYP76AH11, and CfCYP76AH16),
cytochrome P450 reductase CfPOR (GenBank accession number
KX151181), and finally the acetyltransferase CfACT1-8 acety-
lates the C-7 position of 7-deacetylforskolin to give forskolin.
The product spectrum includes 13R-MO, 13R-MO derivatives,
and forskolin (Table 1). There are two aspects of the current
synthesis of forskolin in microbial hosts that can be improved:
one is the amount of precursor 13R-MO produced. As mentioned
above, our team has improved the yield of 13R-MO produc-
tion. The second is the cytochrome P450s catalytic efficiency
in microorganisms. As mentioned before, alternative enzymes
such as CYP76AH24 have a more efficient catalytic effect on
13R-MO (Ignea, Athanasakoglou, et al., 2016a; Ignea, Ioannou,
et al,, 2016b). Besides, a semirational site-directed mutagenesis
approach can improve the activity of cytochrome P450s, as exem-
plified by the site-directed mutagenesis of CfCYP76AH15 (Forman
etal, 2018).

Problems and Solutions in Forskolin
Heterologous Biosynthesis

The engineering of S. cerevisiae allowed the biosynthesis of
forskolin, in a synthetic pathway that involves the synergistic
catalysis of multiple P450s. However, some issues remain. First,
CfCYP76AH11, CfCYP76AH15, and CfCYP76AH16 can catalyze the
oxidation of 13R-MO and the exact sequence of the catalytic
oxidation of 13R-MO into forskolin is still unknown. Second, in
the recent studies of the total putative synthesis pathway of
forskolin, a large amount of the precursor 13R-MO and the inter-
mediate 9-hydroxy-manoyl oxide accumulated, which hindered
the subsequent catalytic oxidation of cytochrome P450 monooxy-
genase (Pateraki et al., 2017; Forman et al., 2018). Third, re-
search on forskolin biosynthesis may need to identify and screen
more cytochrome P450 monooxygenases. By analyzing the phy-
logeny of known functional P450s, cloning and expressing re-
lated P450 monooxygenase genes, and verifying their functions,
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Table 1. Overview of 13R-MO, 13R-MO Derivatives, and Forskolin Studies in Biosynthesis

Key
Host pathways Key enzymes Product Titer References
E. coli MEP AgGGPPS, CfTPS2, CfTPS3 13R-manoyl oxide 10 mg/1 Nielsen et al. (2014)
Synechocystis MEP CfTPS2, CfTPS3 13R-manoyl oxide 0.45 mg/g Englund et al. (2015)
DCW
S. cerevisiae MVA CcCLS, SpMiLS, PtAO 3B-OH-manoyl oxide 4.87 mg/1 Ignea et al. (2015)
S. cerevisiae MVA CcCLS, SpMiLS 13R-manoyl oxide 80 mg/1 Ignea, Athanasakoglou, et al.
(2016a), Ignea, loannou,
et al. (2016b)
S. cerevisiae MVA CcCLS, SpMiLS, SpCYP76AH24 118-OH-manoyl 21.9 mg/l Ignea, Athanasakoglou, et al.
oxide (2016a), Ignea, loannou,
et al. (2016b)
S. cerevisiae MVA CfTPS2, CfTPS3 13R-manoyl oxide 350 mg/1 Andersen-Ranberg et al. (2016)
S. cerevisiae MVA CfTPS2, CfTPS3, CfCYP76AH15, Forskolin 40 mg/1 Pateraki et al. (2017)
CfCYP76AH11, CfCYP76AH16, CfPOR,
CfACT1-8
S. cerevisiae MVA CfTPS2, CfTPS3, CfCYP76AH1S (A99]) , Forskolin — Forman et al. (2018)
CfCYP76AH11, CfCYP76AH16 ,
CfPOR, CfACT1-8
S. cerevisiae MVA CfTPS2, CfTPS3, MET3p-ERGY 13R-manoyl oxide 167.1 mg/1 Guo et al. (2019)
S. cerevisiae MVA tCfTPS2, tCfTPS3, PHXT1-ERG9-PEST, 13R-manoyl oxide 3g/1 Zhang et al. (2019)
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Fig. 4. The promiscuity of cytochrome P450s in the forskolin biosynthesis pathway. The solid box indicates the related cytochrome P450s catalytic
substrates and products; the dotted box indicates that CfCYP76AH15 can also catalyze the oxidation of abietatriene in addition to that of 13R-MO.

we could identify P450 genes with higher catalytic specificity or
promiscuity (Fig. 4). For instance, RoCYP76AH4 (Zi & Peters, 2013)
from Rosemary officinalis can efficiently convert 13R-MO to 11-oxo-
manoy! oxide, whereas RoFS1 and SfFS (Bozic et al.,, 2015) from
Salvia fruticosa can produce 118-hydroxy-manoyl oxide and 11-
oxo-manoyl oxide. Fourth, the coordination of three cytochrome
P450 monooxygenases in host cells is still a challenge. It is diffi-
cult to control the redox electron distribution environment, so it
is necessary to continue to screen cytochrome P450s with higher
catalytic efficiency and substrate specificity from C. forskohlii to
shorten the total biosynthesis pathway of forskolin. Fifth, bal-
ancing the expression levels of cytochrome P450 reductase (CPR)
and multiple cytochrome P450s is also challenging. Only one
NADPH-dependent cytochrome P450 oxidoreductase was discov-

ered in the forskolin biosynthesis pathway. More cytochrome P450
oxidoreductases with specificity and efficiency need to be found
in C. forskohlii.

Obviously, the synergistic and efficient expression of multi-
ple cytochrome P450s becomes the rate-limiting step in forsko-
line biosynthesis. When plant-derived cytochrome P450s are ex-
pressed in microorganisms, CPR is needed to provide electrons to
complete the oxidation reaction (Gavira et al., 2013). The catalytic
activity of cytochrome P450s is often affected by the following
four aspects: (1) the catalytic properties of cytochrome P450s; (2)
the matching of cytochrome P450s and CPR; (3) the efficiency of
electron transfer from CPR to cytochrome P450s; and (4) the ex-
pression environment of cytochrome P450s and CPR. Therefore,
this paper will summarize some expression strategies of plant
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Fig. 5. Cytochrome P450s expression strategies diagram.

cytochrome P450 enzymes in microorganisms, which may be
beneficial to study the cytochromes P450 monooxygenases in-
volved in the forskolin biosynthesis pathway (Fig. 5).

The Choice of CPR and Balanced Expression
Levels of P450s and CPR

CPR can influence the activity of cytochrome P450s by affecting
the process of electron transfer (Pryor, 1996). Interaction with cy-
tochrome P450s can also change the conformation of cytochrome
P450s and affect the reaction process, thereby affecting the cat-
alytic performance of cytochrome P450s (Sagadin et al., 2003). For
example, some researchers tried to adapt to CPR from different
sources (Zhu et al., 2018). To identify the best KO-KAH-CPR com-
bination, two types of kaurene oxidase (KO), two types of kau-
renoic acid hydroxylase (KAH), and five types of CPR were se-
lected. Adjusting the copy number of KO-KAH-CPR led to an opti-
mal combination that accumulated the final product and reduced
the byproducts (Gold et al., 2018). Some researchers also screened
mammalian cytochrome P450s and expressed new and interest-
ing molecules in S. cerevisiae, providing guidance for the produc-
tion of other terpenoids (Sarrade-Loucheur et al., 2020). By intro-
ducing highly effective cytochrome P450s and pairing them with
various plant-derived CPR, the production of 11-oxo-g-amyrin
and glycyrrhetinic acid GA was multiplied by nearly 1422 and
946.5, respectively (Wang et al., 2019). Screening 25 combinations
of cytochrome P450s and CPR from five different sources greatly
increased the yield of betulinic acid production (Jin et al., 2019).
Balancing the expression levels of cytochrome P450s and
CPR is also important (Brown et al., 2015). The P450:CPR,
P450:cytochrome b5 (CYB5), and P450:CPR:CYBS ratios have an
impact on the catalytic activity of cytochrome P450s (Zhanget al,,
2007). In 2019, Lan et al. (Lan et al., 2019) constructed a dual-
controllable system to balance the expression of cytochrome
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P450s and CPR and remarkably optimized the expression of
cytochrome P450s and CPR, ultimately multiplying the yield of
ganoderic acid production by 10.7. Thus, balancing the expression
levels of CPR and cytochrome P450s with the least damage and the
least loss is a key direction for future research.

Manual Design

Constructing an artificial cytochrome P450-CPR fusion protein
can improve electron transfer efficiency (Li et al., 2007; Schueckel
et al., 2012; Scheps et al., 2013). In our previous study, we con-
structed a cytochrome P450s-CPR fusion protein by simulat-
ing natural cytochrome P450 fusion protein to synthesize pro-
topanaxadiol. This strategy improved the catalytic activity of
cytochrome P450s by four- to fivefold (Zhao et al., 2016). The
strain was restricted by electron transfer during the production
of oleanolic acid in Yarrowia lipolytica, so the cytochrome P450
CYP716A12 was fused with the NADPH-P450 reductase ATR1 and
the yield of oleanolic acid increased from 92.1 to 129.9 mg/1 (Li
etal., 2020). In Y. lipolytica, the fusion of CYP706M1 with t46AtCPR1
(a 46-amino acid N-terminal truncation of AtCPR1) improved the
conversion efficiency of the precursor and multiplied the yield of
(+)-nootkatone production by nearly 6 times (Guo et al., 2018).

Rational Design of Proteins

By analyzing the structure of these enzymes and the amino acid
residues in their active site using molecular modeling and pro-
tein engineering, we may obtain a highly efficient and substrate-
specific cytochrome P450 monooxygenase. Chun Li et al. (Sun
et al,, 2020) predicted the key residues of CYP72A63 via homology
modeling and molecular docking and speculated on the amino
acid residues that affect the interaction between CYP72A63 and
its substrate. Then, they mutated the amino acid residues of



the predicted active center and improved the catalytic activity
of the CYP72A63 mutant by improving proton transfer. As men-
tioned before, homology modeling and site-directed mutagenesis
of CfCYP76AH15 improve the yield of 11-oxo-manoyl oxide pro-
duction by twofold (Forman et al., 2018).

CPR Replacement

According to research reports, CYBS5 can also provide electrons for
cytochrome P450 oxidation, and the expression of CYBS instead
of CPR reduces ROS toxicity (Gilep et al., 2001; Zhang et al., 2007).
CYBS from Glycyrrhiza uralensis can increase the efficiency of gly-
cyrrhetinic acid production by eightfold (Wang et al., 2019). IA low
CPR level can improve cell health, while the interaction between
cytochrome P450s and CYB5 can improve the reaction rate of cy-
tochrome P450s and reduce the release of reactive oxygen. Ex-
pressing the new CYB5 identified from Artemisia annua improved
the synthesis rate of artemisinin (Paddon et al., 2013).

Adapting to Different Chassis Cells

Plant-derived cytochrome P450s have been expressed in different
chassis cells. For example, cytochrome P450-mediated catalysis
was designed to optimize the synthesis of taxol precursors in E.
coli. Regulating the expression of CYP725A4 and CPR lead to the
biosynthesis of taxol. E. coli is also a suitable host to study P450-
mediated chemistry (Biggs et al., 2016). However, the expression of
cytochrome P450s in E. coli has certain limitations. For instance, E.
coli lacks the complicated membrane structure compartments of
eukaryotic cells, does not have a good cytochrome P450 enzyme
and reductase expression system. Furthermore, it lacks good gly-
cosylation modification function. Besides, cytochrome P450 en-
zyme binds to the E. coli cell membrane to form inclusion bod-
ies and loses activity. These features increase the difficulty of
expression of this type of enzyme in the E. coli system, result-
ing in low or inexistent expression levels (Zelasko et al., 2013;
Ichinose et al.,, 2015). Our team also tried to express cytochrome
P450s in E. coli, but it was unsuccessful. Therefore, the expression
of cytochrome P450s in a prokaryotic system is still inadequate
(Renault et al., 2014). Y. lipolytica, as a GRAS (generally regarded as
safe) unconventional yeast, has become a potential platform for
the production of highly hydrophobic compounds (Xu et al., 2016).
When plant cytochrome P450s were coexpressed with endoge-
nous CPR, no product accumulated in Y. lipolytica. Therefore, it may
be necessary to coexpress heterologous CPR to produce exogenous
terpenoids, which is different from its expression in S. cerevisiae.
Studies have shown that plant cytochrome P450s and yeast en-
dogenous CPRs can be well matched in S. cerevisiae (Li & Zhang,
2015). Generally, plant-derived cytochrome P450 oxidase and re-
ductase have transmembrane domains, and the complete and
complex membrane structure compartment of S. cerevisiae makes
it suitable to synthesize terpenoids via cytochrome P450s. The
most famous case is the final yield of artemisinic acid, which was
as high as 25 g/l by balancing the expression levels of CYP71AV1
and CPR in S. cerevisiae (Sun et al., 2020).

Concluding Remarks and Perspectives

The significant medicinal value of forskolin is obvious and produc-
ing forskolin via heterologous expression is the current research
hotspot. The total biosynthesis pathway of forskolin has been
resolved, but there are still many challenges to achieve a high
yield. The catalytic properties of cytochrome P450s themselves
limit their expression in microorganisms. Besides, the synergy of
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multiple cytochrome P450s and the efficiency of electron transfer
between cytochrome P450s and CPR also affect the efficiency of
forskolin synthesis. In response to the cytochrome P450s expres-
sion problems involved in the forskolin pathway, this paper sum-
marizes some common strategies to express plant cytochrome
P450s in microorganisms. First, it would be best to determine the
definite sequence of catalyzing 13R-MO to synthesize forskolin via
molecular modeling and protein engineering or find a cytochrome
P450 gene with higher catalytic specificity or promiscuity. Second,
to improve the substrate specificity of the cytochrome P450s, re-
duce the accumulation of intermediate 9-hydroxy-manoyl oxide,
and direct the metabolic flow to forskolin as much as possible, we
can use molecular modeling to analyze the amino acid residues
of the cytochrome P450s active sites, and protein engineering to
make mutations and other modifications. Third, we can match
different sources of CPR with cytochrome P450s and balance the
expression levels of cytochrome P450s and CPRs from different
sources, construct artificial cytochrome P450-CPR fusion proteins
to improve the electron transfer rate, or continue to screen other
CPRs from C. forskohlii. Finally, carrying out rational protein de-
sign is a popular choice, and looking for CPR replacements such
as CYB5, which can promote electron transfer, has demonstrated
its validity.

In short, based on the structural complexity, therapeutic value,
and imperfect biosynthetic pathway of forskolin, the produc-
tion of forskolin in microorganisms still needs to overcome
great difficulties to achieve efficiency. The multiple cytochrome
P450 CfCYP76AHs involved in the forskolin biosynthesis pathway
should be well designed via synthetic biology, metabolic engi-
neering, and protein engineering techniques to promote the ef-
fective conversion of 13R-MO to forskolin. Establishing a micro-
bial cell factory with high production of forskolin is necessary to
achieve its industrialization. Obviously, the subtle adaptation of
the metabolic pathway with plant-derived cytochrome P450s to
the microorganisms will be an important step in improving the
synthesis of forskolin and other natural products.
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