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ABSTRACT
◥

Clear cell renal cell carcinoma (ccRCC) frequently features a high
level of tumor heterogeneity. Elucidating the chromatin landscape
of ccRCC at the single-cell level could provide a deeper under-
standing of the functional states and regulatory dynamics under-
lying the disease. Here, we performed single-cell RNA sequencing
(scRNA-seq) and single-cell assay for transposase-accessible chro-
matin using sequencing (scATAC-seq) on 19 ccRCC samples, and
whole-exome sequencing was used to understand the heterogeneity
between individuals. Single-cell transcriptome and chromatin
accessibility maps of ccRCC were constructed to reveal the regu-
latory characteristics of different tumor cell subtypes in ccRCC. Two

long noncoding RNAs (RP11-661C8.2 and CTB-164N12.1) were
identified that promoted the invasion and migration of ccRCC,
which was validated with in vitro experiments. Taken together, this
study comprehensively characterized the gene expression andDNA
regulation landscape of ccRCC, which could provide new insights
into the biology and treatment of ccRCC.

Significance: A comprehensive analysis of gene expression and
DNA regulation in ccRCC using scATAC-seq and scRNA-seq
reveals the DNA regulatory programs of ccRCC at the single-cell
level.

Introduction
Kidney cancer is one of the most common cancers in the urinary

system, accounting for 179,368 deaths worldwide in 2020 (1). In
addition to the large number of people dying from this disease, the
incidence of kidney cancer is increasing annually (2, 3). Clear cell
renal cell carcinoma (ccRCC) is the most common type of kidney
cancer, accounting for approximately 60% to 80% of all primary
cases (1, 3). In recent years, due to the extensive and in-depth research
on the molecular biology and genetics of ccRCC, as well as the
improved understanding of the mechanism of its occurrence and
development, ccRCC targeted therapy and immune checkpoint inhib-
itor therapy have achieved a number of breakthroughs and great
progress (4, 5). However, the overall improvement of disease-free

survival rate is still very limited; advanced renal cell carcinoma (RCC)
still confers a high mortality (4, 5).

ccRCC is a disease with a potentially high level of tumor hetero-
geneity and inherited predisposition (6, 7). ccRCC arises from genes
involved in regulating cellular metabolism, also known as the “War-
burg effect” (6). VHL gene mutation is the most frequent mutation of
ccRCC, which is closely associated with tumor pathogenesis (8). In
addition, genes such as PBRM1, BAP1, and SETD2 were found to be
altered in ccRCC (9–11). Here, The Cancer Genome Atlas (TCGA)
project on ccRCC, which studied a large cohort of patients with ccRCC
at the DNA, RNA, and protein levels and important molecular path-
ways, has illustrated well the genetic characteristics of ccRCC (12).
Although TCGA project on ccRCC showed significant findings at that
time, it still appears to have limitations due to using the bulk tissue
samples, which caused difficulty in the replacement of individual
tumor cells. Considering the intratumor heterogeneity of ccRCC,
tumors evolve to become masses of cells with distinctive genomic
profiles (7). Therefore, in recent years, many single-cell RNA sequenc-
ing (scRNA-seq) studies of ccRCC have revealed the characteristics of
tumor cells, tumor-specific markers, and tumor immune microenvi-
ronment at the single-cell level (13–17). However, previous studies
mostly focused on the single-cell RNA level, neglecting the epigenetic
regulatory of ccRCC.

Variation between tumor cells or individuals is a common feature of
life, also known as tumor heterogeneity (18). Single-cell assay for
transposase-accessible chromatin using sequencing (scATAC-seq) is a
robust method to understand the fundamental mechanisms of vari-
ability from identical DNA sequences (19). In a previous study, the
human single-cell atlas of chromatin accessibility was established by
scATAC-seq, which provides a foundation for the analysis of gene
regulatory programs in human cell types across tissues (20). In
addition, the single-cell chromatin landscape of immune cells in
ccRCC has been mapped to provide a rich resource for understanding
the functional states and regulatory dynamics of immune cells (21).
However, few scATAC-seq studies have focused on tumor cells,
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especially on ccRCC. The DNA regulatory programs of ccRCC remain
elusive at the single-cell level. To address these challenges, we per-
formed single-cell multiomics studies on 19 ccRCC samples. In
this study, we revealed the epigenetic regulation characteristics of
ccRCC by integrating scATAC-seq and scRNA-seq of 19 ccRCC
samples (�164,000 cells in total), combined with whole-exome
sequencing (WES).

Materials and Methods
Ethics approval of ccRCC samples and cell lines

This study was approved by the Institutional Review Board of the
First AffiliatedHospital of GuangxiMedical University (Nanning, P.R.
China), and the authors obtained written informed consent from the
patients. The authors confirmed that the study was conducted in
accordance with Declaration of Helsinki.

The samples were obtained from 19 patients (Supplementary
Table S1) undergoing laparoscopic partial nephrectomy or radical
nephrectomy at the First Affiliated Hospital of Guangxi Medical
University in China. Postoperative pathologic results revealed
that all tumor samples were ccRCC. Considering tumor heterogeneity,
we adopted the multisampling method, and at least four tumor
tissues from different sites of each sample were selected. Human
ccRCC cell lines 786-O and Caki-2 were purchased from Procell.
The 786-O cells were cultured at 37�C and 5% CO2 atmosphere
with RPMI1640 (WISENT, 350-006-CL) plus 10% FBS (Gibco,
10099141). Caki-2 cells were cultured at 37�C and 5% CO2 atmo-
sphere with McCoy’s 5A (Procell, PM150710A) plus 10% FBS
(Gibco, 10099141). All ccRCC cell lines were confirmed within
6 months before use by using a short tandem repeat profiling and
confirmed negative for Mycoplasma contamination by MycoBlue
Mycoplasma Detector (Vazyme, D101-01).

Isolation of single-cell suspension
This step has been described in our previous study (22). Briefly,

fresh tumor samples were obtained from the hospital and trans-
ferred to the laboratory in cold transfer buffer Hanks’ Balanced Salt
Solution (HBSS; Gibco, 24020117; 5% FBS, Gibco, 10099141 and 1%
penicillin/streptomycin, Gibco, 15240062) within 30 minutes. Each
sample included at least four different tumor sites and avoided areas
of tumor necrosis.

After being washed with 4�C Dulbecco’s PBS (WISENT, 311-425-
CL), the tissues were cut into 2–4 mm pieces with sterile scissors,
washed and resuspended twice. The tissue specimens were digested for
30 minutes at 37�C in a digestion solution [1 mg/mL collagenase I
(Gibco, 5401020001) and 1 mg/mL DNaseI (Roche, 10104159001) in
HBSS]. The whole digestion process was terminated by DMEM
(WISENT, 319-006-CL) with 10% FBS (Gibco, 10099141). Then, we
used a 70 mm cell strainer (Falcon) to filter out large tissue fragments.
Red blood cells (RBC) were removed by RBC lysis buffer (10� diluted
to 1�; BioLegend, 420301). This process lasted for 5 minutes on ice.
The samples were filtered through a 40 mm cell strainer (Falcon).
Viable cells were counted after trypan blue (Gibco, 15250-061) stain-
ing. We ensured the cell viability of more than 80% in each sample.
Here, some of the living cells were used for scRNA-seq directly,
whereas some were subsequently isolated from single-cell nuclei. The
rest were cryopreserved.

Isolation of single-cell nuclei
We added single cells into a 1.5 mL microcentrifuge tube, which

were centrifuged at 300� g for 5minutes at 4�C.Then, we removed the

supernatant without disrupting the cell pellet. Lysis buffer [10 mmol/L
Tris-HCl (pH 7.4), 10 mmol/L NaCl, 3 mmol/L MgCl2, 0.1% Tween-
20, 0.1% Nonidet P40 Substitute, 0.01% digitonin, and 1% BSA]
and wash buffer [10 mmol/L Tris-HCl (pH 7.4), 10 mmol/L NaCl,
3mmol/LMgCl2, 0.1%Tween-20, and 1%BSA] should be prepared on
ice. About 100 mL of fresh lysis buffer was added to the pellet and
pipette mixed 10 times. Then, we incubated the fresh lysis buffer with
single cells on ice for 3–4.5 minutes. Here, we strongly recommend
designing four different time gradients (3, 3.5, 4, and 4.5 minutes)
because we found that the quality of nuclei was best in this range.
We could select the optimal group for downstream sequencing
according to the quality of the cell nucleus under the microscope.
After lysis, we added 1 mL of wash buffer to the lysed cells and fully
blended the samples. Next, the samples were centrifuged at 500� g for
5minutes at 4�C, and the supernatant was removedwithout disrupting
the nuclei pellet. Finally, the single-cell nuclei were resuspended in
chilled 1� Nuclei Buffer (10x Genomics, 2000153) at approximately
5,000–7,000 nuclei/mL.

cDNA library construction and sequencing for scRNA-seq
scRNA-seq was performed on the above single-cell suspensions

in accordance with the standard protocol of 10x Genomics “Chro-
mium Single Cell 30 Reagent Kits User Guide” (https://support.10x
genomics.com/single-cell-gene-expression/index/doc/user-guide-
chromium-single-cell-3-reagent-kits-user-guide-v3-chemistry).
Briefly, the concentration of the single-cell suspensions was
adjusted to 2,000 cells/mL by a hemocytometer. The number of
target cells captured in each sample was 10,000. Then, we followed
the steps of “Chromium Single Cell 30 Reagent Kits User Guide” to
construct the cDNA library.

The samples were sequenced by NovaSeq 6000 (Illumina). We used
the following sequence parameters: read 1 for 150 cycles, read 2 for
150 cycles, and index for 14 cycles. Preliminary sequencing files (.bcl)
were converted to FASTQ files by CellRanger (version 3.1.0, https://
support.10xgenomics.com/single-cell-gene-expression/software/pipe
lines/latest/what-is-cell-ranger) with the cellranger mkfastq function.
FASTQ files were compared with the human genome reference
sequence GRCh38 by the cellranger count function. After using the
cellranger count function, the “filtered_feature_bc_matrix” file will be
generated for secondary analysis.

DNA library construction and sequencing for scATAC-seq
Suitable nuclei concentrations were adjusted from the above

experiment. As mentioned in the previous study (avoiding potential
cell duplets; ref. 23), the number of target nucleus captured
in each sample was 6,000. We adopted 10x Genomics “Chromium
Single Cell ATAC Reagent Kits User Guide” for library preparation
(https://support.10xgenomics.com/single-cell-atac/library-prep/doc/
technical-note-chromium-next-gem-single-cell-atac-v11-reagent-
workflow-and-software-updates). Briefly, the ATAC Buffer (10x
Genomics, 200122) and ATAC Enzyme (10x Genomics, 200123) were
added to the 5 mL nuclei, which was incubated for 60 minutes at 37�C.
We prepared “Master Mix,” including 56.5 mL of Barcoding Reagent B
(10x Genomics, 2000194), 1.5 mL of Reducing Agent B (10x Genomics,
2000087) and 2 mL of Barcoding Enzyme (10x Genomics, 2000125).
After mixing the nuclei with the Master Mix, we added it to the
Chromium Chip E (10x Genomics, 2000121). At the same time, we
added Partitioning Oil (10x Genomics, 220088) and Chromium Single
Cell ATAC Gel Beads (10x Genomics, 2000132) to the Chromium
Chip E. The Chromium Chip E was placed into a Chromium Single
Cell Controller instrument (10x Genomics) before attaching a 10x
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Gasket (10x Genomics, 3000072). Then, the Chromium Single Cell
Controller Instrument could be run.

The gel bead in emulsions (GEM) was generated after the
above steps. Subsequently, GEMs were incubated and cleaned
by using Dynabeads (10x Genomics, 2000048) and SPRIselect
(Beckman Coulter, B23318). scATAC-seq library construction
eliminates the process of reverse transcription compared with
scRNA-seq. PCR was performed after “Sample Index PCR Mix”
and Single Index Kit N Set A (10x Genomics, 1000212) were
added into the samples. The details of PCR parameters could
be referred to Chromium Single Cell ATAC Reagent Kits User
Guide. DNA libraries were sequenced by NovaSeq 6000 (Illumina).
Consistent with previous studies, we followed the 2� 50 paired-end
sequencing scheme: 50 bp read 1N, 8 bp i7 index, 16 bp i5
index, and 50 bp read 2N. Preliminary sequencing files (.bcl) were
converted to FASTQ files by CellRanger ATAC (version 1.2.0,
https://support.10xgenomics.com/single-cell-atac/software/pipelines/
latest/ what-is-cell-ranger-atac) with the cellranger-atac mkfastq func-
tion. Then, FASTQ files were compared with the human genome
reference sequence GRCh38 by the cellranger-atac count function.
Here, 10x CellRanger ATAC also performed peak calling step, where a
CellRanger peak merged distinct MACS2 (24) peaks into a single
region. Finally, data were generated for downstream analysis.

scRNA-seq data analysis
We used R (version 4.0.2, https://www.r-project.org/) for secondary

analysis of scRNA data. First, we used Seurat (25) R package for
data quality control (QC) and downstream analysis. In general,
one cell should be at least 500 genes, and the number of genes is less
than twice of the median number of detected genes (potential cell
duplets). The proportion ofmitochondrial genes was recommended to
be less than 10% (Supplementary Fig. S1). According to the above
conditions, we filtered the cells that were obtained from the primary
analysis and finally obtained high-quality cells for downstream
analysis (Supplementary Table S2).

Nineteen samples were merged together by using the merge com-
mand. After data normalization, the highly variable genes were
identified, and the top 2,000 genes were used for downstream analysis.
Considering the cell-cycle genes in tumor cells that interfere with cell
clustering, we need to remove this effect based on a previous study (26).
Before cell clustering, we should eliminate the batch effect between
19 samples. Here, we used the Harmony (27) package to eliminate
batch effect and generate uniform manifold approximation and
projection (UMAP). We calculated the significant principal com-
ponents from each sample by Jackstraw function. Thirty principal
components were chosen as the appropriate cell clustering param-
eter, which affected the distribution of UMAP. At a resolution of
0.5, all cells were clustered by the FindClusters function from Seurat.
We then used FindAllMarkers to calculate differentially expressed
genes (DEG) between each cell type (Supplementary Table S3).

Reconstructing cell differentiation trajectories by RNA velocity
and monocle3

Initially, RNA velocity (http://velocyto.org, version 0.6; ref. 28) was
used to estimate the direction and rate of differentiation of tumor cells.
Using the Bam file generated by CellRanger processing, we applied the
velocyto function to generate the .loom file. Then, the SeuratWrappers
package made it easy to integrate Seurat objects with .loom files.
Finally, the rate and direction of each cell were calculated by RunVe-
locity function. We chose the following parameters: deltaT to 1, kCells
to 25 and fit.quantile to 0.02.

The Monocle3 (29) R package (version 1.0.0) was used to recon-
struct the cell fate decisions and pseudotime trajectories of tumor cells.
After the tumor cell, subtypes (ccRCC 1, ccRCC 2, ccRCC 3, and
ccRCC 4) were classified by Seurat, the differentiation trajectory of
different cell subtypes was reconstructed. SeuratWrappers can convert
Seurat objects into Monocle3 objects using the as.cell_data_set func-
tion. On the basis of the root of tumor cells, which was found by RNA
velocity, we could reconstruct the trajectories of tumor cells using
orderCells function.

Copy-number variation analysis of single-cell data
The inferCNV (https://github.com/broadinstitute/inferCNV) was

used to perform copy-number variation (CNV) analysis on scRNA-seq
data. The inferCNV is a R package that can estimate the chromosome
copy-number characteristics from scRNA-seq data. In this study, we
estimated CNV from four tumor cell types, whereas monocytes served
as the control group. In general, the cut-off value of 0.1 was chosen for
10x Genomics scRNA-seq data.

Comparing present scRNA-seqdatawith those of previouswork
The scRNA-seq data of tumor adjacent normal kidney tissues came

from our previous study (GSE131685; ref. 30). Renal epithelial cells
were selected and compared with the tumor cells in this study.

The relationship between tumor cell subtypes and prognosis
First, we selected the top 100 DEGs of four tumor cell subpopula-

tions from Supplementary Table S3. TCGA database on ccRCC was
used to detect the association of these genes with prognosis. We
obtained three results: positive prognosis, negative prognosis, and no
correlation with prognosis. The genes associated with positive and
negative prognoses were counted. We compared the prognosis of
tumor cell subtypes by x2 test.

Gene ontology enrichment analysis on tumor cell
subpopulations

In accordance with the DEGs (Supplementary Table S3) calculated
using the Seurat FindAllMarkers function, the top 50 DEGs in each
tumor cell type (ccRCC 1, ccRCC 2, ccRCC 3, and ccRCC 4) were
selected for gene ontology (GO) enrichment analysis by DAVID
(https://david.ncifcrf.gov/). Finally, each tumor cell type underwent
enrichment analysis of biological process (BP), and the five most
significant BPs were shown.

Ligand–receptor interactions
The ligand–receptor interactions were calculated by CellPhoneDB

(https://www.cellphonedb.org/; ref. 31). In brief, we created the
Seurat objects of endothelial, tumor, and immune cells. First, we
calculated the number of ligand–receptor interactions between
tumor cells and endothelial cells by CellPhoneDB. Then, we cal-
culated the number of ligand–receptor interactions between differ-
ent immune cell types and the significant ligand–receptor pairs.
According to a previous study (32), the ligand–receptor interaction
score between tumor-associated macrophages (TAM) and tumor
cells was calculated. We showed the ligand–receptor pairs with a
score greater than 1.

scATAC-seq data analysis
Here, Signac (https://github.com/timoast/signac; https://satijalab.

org/signac/; ref. 33) was applied for secondary analysis of scATAC-seq
data. Signac is an R toolkit for analyzing and visualizing single-cell
chromatin data in a way that allows interoperability with the Seurat R
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package, and is designed for analyzingmultimodal single-cell data (33).
First, we need to merge 19 samples, which we cannot use the merge
command directly, comparedwith scRNA-seq data. If peak calling was
performed on each dataset independently, the peaks are unlikely to be
exactly the same. Thus, we created a common set of peaks across all the
samples to be merged. After loading the cell metadata for each sample,
we created Fragment objects using the CreateFragmentObject func-
tion. Subsequently, we could create a matrix of peaks � cell for each
sample using the FeatureMatrix function and use the quantified
matrices to create a Seurat object for each sample, storing the Fragment
object for each sample in the assay. Finally, wemerged 19 scATAC-seq
samples into one object for downstream analysis. We examined the
chromatin accessibility region of each sample and demonstrated this
by randomly selecting three different chromosomal regions.We found
that the overall accessibility of each sample was similar (Supplemen-
tary Fig. S2A–S2C). Meanwhile, compared with the two different
results of bulk ATAC-seq, the same area of open accessibility existed,
but the accessible area of bulk ATAC was wider (Supplementary
Fig. S2A–S2C).

Then, we need to perform QC of the single-cell nuclei information
and remove the low-quality nuclei. Here, we need to calculate the peak
region fragments, ratio reads in genomic blacklist regions (blacklist
ratio), nucleosome signal, and transcription start site (TSS) enrich-
ment score of each nucleus (Supplementary Fig. S3A). According to
the filtration strategy of a previous study (34, 35), we followed the
parameters (1,000 < peak region fragments < 20,000, blacklist ratio <
0.05, nucleosome signal < 4 and TSS enrichment score > 1) to filter the
nuclei, resulting in high-quality nuclei (Supplementary Fig. S3B). We
analyzed the counts of different fragment lengths and found that most
fragments were less than 400 bp (Supplementary Fig. S3C), which was
consistent with a previous study (33). As a result, we obtained 61,693
high-quality single-cell nuclei for downstream analysis (Supplemen-
tary Table S4).We created objects that contained genomic coordinates
for each feature by GRanges function and gene annotations by “hg19”
from University of California Santa Cruz (Santa Cruz, CA). Next, we
performed data normalization, feature selection, and dimension
reduction (for details, refer to https://satijalab.org/signac/). In brief,
Signac performs term frequency–inverse document frequency (IDF)
normalization and runs singular value decomposition (SVD) on the
term frequency-inverse document frequency (TD-IDF) matrix using
the features (peaks) selected above. The combined steps of TD-IDF
followed by SVD are also called latent semantic indexing (36). We
selected the second to 40th dimensions and created a Seurat object,
which identified crude clusters using Seurat’s shared nearest neighbor
graph clustering with FindClusters function with a resolution of 0.4.

We considered the cell definition of scATAC-seq to be elusive and
uncertain compared with scRNA-seq. To further define cell subtypes,
we combined the following three methods: (i) creating a gene activity
matrix, in which gene coordinates are extracted and extended to
include the 2 kb upstream region; (ii) analysis of cell-type-specific
peaks, wherein the FindAllMarkers function was used to determine the
cell type–specific peaks and the gene location corresponding to those
peaks (Supplementary Table S5); (iii) transcription factor (TF)
analysis.

Integration of genome-wide association study and scATAC-seq
analysis

All the genome-wide association study (GWAS) loci associatedwith
RCC were downloaded from the GWAS catalog (downloaded Febru-
ary 20, 2022; ref. 37). Using RCC as the keyword, we searched in the
GWAS catalog and downloaded the data for downstream analysis. The

genes with P value greater than 5 � 10�8 were filtered out (Supple-
mentary Table S6). Then, we analyzed whether the chromatin loca-
tions of these susceptible loci overlapped with the accessibility of
single-cell chromatin.

Motif and TF footprinting analysis
Motif analysis was mainly based on the chromVAR (38) R package.

In brief, we run the AddMotifs function to add the DNA sequence
motif information required for motif analyses. Then, we could calcu-
late a per-cell motif activity score by running chromVAR and identify
differential activity scores between cell types.Motif activity scores were
normalized by z-scores, and the differential activity scores between cell
types were replaced with “avg_diff.” TF footprinting was gathered by
Footprint function and plotted by PlotFootprint function.

Integrating scATAC-seq and scRNA-seq analysis
Here, we mainly used Seurat and Signac to process scRNA-seq and

scATAC-seq data, respectively. Cells from scRNA-seq have been
previously annotated on the basis of transcriptomic state. We pre-
dicted annotations for the scATAC-seq cells. First, to identify anchors
between scRNA-seq and scATAC-seq experiments, we generated a
rough estimate of the transcriptional activity of each gene by quan-
tifying ATAC-seq counts in the 2 kb upstream region and gene body
using the GeneActivity function in the Signac package. The ensuing
gene activity scores from the scATAC-seq data were used as input for
canonical correlation analysis, along with gene expression quantifica-
tions from scRNA-seq. Then, we identified anchors between scRNA-
seq and scATAC-seq datasets using theFindTransferAnchors function.
We predicted annotations for the scATAC-seq cells. To perform
coembedding in UMAP plot, we imputed the RNA expression into
the scATAC-seq cells based on the previously computed anchors and
merged the datasets.

WES
WES was performed by Novogene, Ltd. These 19 samples corre-

sponded to the previous single-cell sequencing samples, among
which, three were tumor cell samples (RCC101, RCC106, and
RCC112) and the rest were tissue samples. These tissue samples
were restricted to those that contained at least 65% tumor nuclei
(median 80%) by pathologic review. In brief, after we extracted the
DNA samples, the following methods were used for detecting DNA
samples: (i) The degree of DNA degradation and RNA contami-
nation were analyzed by agarose gel electrophoresis; (ii) DNA purity
(OD260/280 ratio) was detected by using Nanodrop; (iii) DNA
concentration was accurately quantified using Qubit, in which DNA
samples had optical density values between 1.8 and 2.0. The content
above 1.5 mg was used for library construction.

The SureSelect Human All Exon kit (Agilent, 5191-7411) was used
for library construction and capture process. We performed the
experimental operation procedure according to the manufacturer’s
protocol. DNA fragments with length of 180–280 bp were randomly
interrupted by Covaris platform. DNA libraries were prepared by
connecting splicing at both ends of fragments after terminal repair and
a-tail addition. We used liquid chip capture system (Agilent) to
efficiently enrich human DNA in the whole-exon region and then
performed high-throughput and high-depth sequencing on Illumina
NovaSeq 6000. The sequencing depth of each sample was set at 10 Gb.
For the data obtained from sequencing, we carried out QC, requiring
the average Q30 ratio to be above 80% and the average error rate to be
below 0.1% (Supplementary Table S7). Subsequently, we used sam-
tools (version, 1.0) for SNP and insertion/deletion (INDEL) analysis.
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For the detected variants, we used ANNOVAR (39) software to
annotate the structure and function. Then, we used MuTect (40)
software to find the somatic single-nucleotide variant (SNV) locus,
and Strelka (41) software to detect the information of somatic INDEL
for each sample (Supplementary Tables S8 and S9). According to
the results of SNV and INDEL, we could detect the mutations of
the common mutated genes in these 19 samples (Supplementary
Table S10).

Bulk ATAC-seq
Here, two single-cell samples of ccRCC (ID: ccRCC 61 and ccRCC

76) were selected for bulk ATAC-seq. Briefly, we prepared these two
single-cell suspensions (ccRCC 61 and ccRCC 76) as described above.
A total of 10,000 cells were lysed in lysis buffer [10 mmol/L Tris-HCl
(pH 7.4), 10 mmol/L NaCl, 3 mmol/L MgCl2, 0.1% Tween-20, 0.1%
Nonidet P40 Substitute, 0.01% digitonin, and 1% BSA] for 4 minutes
on ice to isolate the nuclei. To perform Tn5 transposition, the nuclei
collected by centrifugation for 500 � g for 5 minutes at 4�C were
incubated with the reaction mix (10 mL of 5�TTBL, 5 mL of TTE Mix
V50, 35 mL of ddH2O; TruePrep DNA Library Prep Kit V2 for
Illumina, Vazyme, TD501-01) at 37�C for 30 minutes. After using
2� VAHTS DNA Clean Beads (Vazyme, N411) for purification, the
DNA was added in the TruePrep Index Kit V2 for Illumina (Vazyme,
TD202) and then amplified by PCR using the following PCR condi-
tions (72�C for 3 minutes; 98�C for 30 seconds; and 15 cycles at 98�C
for 15 seconds, 60�C for 30 seconds, and 72�C for 30 seconds; 72�C 5
minutes; 4�C hold). Finally, DNA libraries were purified with the 1.2�
VAHTS DNA Clean beads and subjected to sequencing (Illumina
NovaSeq 6000). The authors used cutadapt (version, 3.1) tool to filter
raw data (.fastq files). Quality control included the removal of
sequencing primers and adaptors, low-quality bases at both ends of
reads, reads with extremely high number of N bases and reads with
truncated single-end reads less than 75 bp in length. Then, samtools
(version, 1.10) software was used to calculate the sequencing depth,
coverage, alignment rate, repetition rate, etc. This process generated
the .bam files. Then, we converted the .bam files to .bed files by using
bedtools (version, 2.27.1) software. The bamCoverage (version, 3.1.1)
software was used to convert .bam files into .bw files, which could be
visualised by IGV (version, 2.11.9) software.

Separate nuclear/cytoplasm and qRT-PCR
To determine the subcellular localization of long noncoding

RNA (lncRNA; RP11-661C8.2, CTB-164N12.1, RP11-267A15.1, and
CTB-32H22.1), we isolated nuclear and cytoplasm fractions and
then performed qRT-PCR. The Ambion PARIS kit (Invitrogen,
AM1921) was used to isolate nuclear and cytoplasmic RNA accord-
ing to the manufacturer’s protocol. Nuclear/cytoplasmic RNA was
separately reverse transcribed by HiScript II Q RT SuperMix for
qPCR (þgDNA wiper; Vazyme, R223). Then, diluted cDNA was
used for qRT-PCR using FastStart Essential DNA Green Master
(Roche, 6924204001) on a Light Cycler 96 (Roche) in line with the
guidelines. The relative expression was calculated using the 2�DDCt

method and normalized by GAPDH.

Design and construction of antisense oligonucleotide
According to the results of scATAC-seq and subcellular localization

of lncRNA, we discovered four tumor cell–specific lncRNAs, which
were expressed in the nucleus. Therefore, antisense oligonucleotide
(ASO) was designed to interfere with two lncRNAs (RP11-661C8.2
and CTB-164N12) in ccRCC cell lines (Caki-2 and 786-O). Here, we
used ASO-5717 (RiBoBio, ASO-h-ENST00000518605_001, target

sequence: CACAGGCATTATCGGGACTA) and ASO-5608 (RiBo-
Bio, ASO-h-ENST00000507989_001, target sequence: GTCCCA-
GAAAGAACGGCAGC) to interfere with the expression of CTB-
164N12.1 and RP11-661C8.2, respectively. We verified that ASO-
5717 hit the CTB-164N12.1 specifically, while ASO-5608 hit the
RP11-661C8.2 by qRT-PCR.

Cell counting kit-8 and 5-ethynyl-20-deoxyuridine assay of RCC
lines after ASO treatment

The viability of cells was assessed by cell counting kit-8 (CCK-8)
assay (Vazyme, A311-01). The Caki-2 (Procell, CL-0326, RRID:
CVCL_0235) and 786-O (Procell, CL-0010, RRID: CVCL_1051) cells
were incubated in a 96-well plate and then treated with ASO Negative
Control (ASO-control; RiBoBio, lnc6N0000001-1-10), RP11-661C8.2
ASO (ASO-5608), and CTB-164N12.1 ASO (ASO-5717) for 48 hours.
Subsequently, the medium was replaced, and CCK-8 solution was
added to each well. After incubation for 2 hours at 37�C, the absor-
bance of cells was measured at 450 nm using a microplate reader
(BioTek Inc.).

After 48 hours ASO treatment, the proliferation of transfected cells
was determined by 5-ethynyl-20-deoxyuridine (EdU) assay. EdU assay
was performed using Cell Light EdUApollo 488 In VitroKit (RiBoBio,
C10338-1) according to the manufacturer’s instructions. The prolif-
eration rate was calculated as the ratio of the number of EdU-positive
cells to the number of 40,6-diamidino-2-phenylindole (DAPI)-stained
cells. EdU assay was used to determine the proliferation of cells. The
transfected cells were incubated with EdU work solution for 2 hours at
37�C. Then, the cells were fixed with 4% paraformaldehyde for 30
minutes and treated with 0.1% Triton X-100 for 10 minutes. After
rinsingwith PBS three times, the cells were exposed to staining reaction
solution for 30 minutes and then incubated with DAPI or Hoechst
33342 to stain the cell nuclei for 30 minutes. Images were captured
using a microscope (Olympus). The ratio of EdU-positive cells (Apol-
lo488þcell) was defined as the proliferation rate.

Annexin V-FITC/PI and cell-cycle analysis (propidium iodide
staining) detection by flow cytometry

An Annexin V-FITC/PI Apoptosis Detection Kit (BD, 556547) was
used to examine cell apoptosis by flow cytometry (FC; BD, C6 Plus).
The Caki-2 and 786-O cells after ASO treatment were collected by
centrifugation at 300� g for 5 minutes at 4�C and then stained with 5
mL of Annexin V-FITC and 5 mL of propidium iodide (PI; 100 mL/1�
10e5 cells) for 15 min at room temperature in the dark. The samples
were analyzed by FC within 1 hour.

After the ASO treatments, cell-cycle distribution was detected by
Cell Cycle Staining Kit (MultiSciences, 70-CCS012) according to the
manufacturer’s protocol. Briefly, the transfected cells were har-
vested and fixed with 70% cold ethanol. After fixation, the PI
staining solution with RNase A was added and incubated in the
dark at 37�C for 30minutes. The stained samples were tested by FC
(BD C6 Plus).

Wound healing of cell migration and transwell assay
Here, migration and transwell assays were performed on two

different ccRCC cell lines, namely, Caki-2 (Procell, CL-0326) and
786-O (Procell, CL-0010). Each cell line was divided into three
observation groups: negative control (NC) group, ASO-5717 treat-
ment group and ASO-5608 treatment group. A total of 2 � 10e4
cells were seeded in 6-well plates and reached 90% confluence after
48 hours of ASO transfection. A scratch of uniform width was made
with a sterile pipette tip. The same portion of the scratch was
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photographed at 0, 24, and 48 hours to assess the scratch width, and
the scratch area was measured. These differences were statistically
analyzed by t test.

Approximately 6 � 10e4 786-O or Caki-2 cells were incubated in
0.1%FBSmedium in a transwell chamber (Corning, 3422) for 24hours.
Invasion measurements were made according to the manufacturer’s
instructions. Cells were incubated in 150 mL of 0.1% FBS medium in
the upper compartment, and 500 mL of complete culture medium was
added to the lower compartment. After 24 hours invasion, the cells
were washed with PBS, and under 100% methanol for 20 minutes.
Subsequently, the cells were washed with PBS and stained at room
temperature with Crystal Violet Stain solution (0.1%, Solarbio, G1063)
for 20 minutes. The cells on the upper surface of the membrane were
washed with PBS, and the cells on the lower surface of the membrane
were erased. Five locations were randomly selected using an optical
microscope (Mingmei, China) to count the cells stained on the
submembrane.

RNA pulldown and protein mass spectrometry
An RNA pulldown kit (BersinBio, Bes5102) was used for efficient

enrichment and identification of RNA-binding proteins by desthio-
biotin end-labeled RNA and streptavidin-labeled magnetic beads.
Desthiobiotin-labeled specific RNA probes were designed for the two
lncRNA sequences (RP11-661C8.2 and CTB-164N12.1) and incubated
with 786-O cell protein extracts. The target RNA probe–protein
complexes were obtained by coupling magnetic beads and elution.
Then, we identified these two proteins (RP11-661C8.2 and CTB-
164N12.1) by silver staining.

Protein mass spectrometry was performed by IEMed Guangzhou
Biomedical Technology Co., Ltd. In brief, reductive alkylation and
enzymatic hydrolysis were performed on the proteins obtained by the
above process. Subsequently, polypeptide desalting and pristine detec-
tion were performed. The offline data of mass spectrometry need to be
searched in the protein database. The selection of the database is a key
step in the whole information analysis process, and the final protein
sequences are identified from the selected database. Here, the raw
files were directly imported to Proteome Discoverer (version 2.2) for
database retrieval. We only retained the trusted peptides and
proteins and performed FDR validation to remove the peptides
and proteins with FDR greater than 1% (Supplementary Tables S11
and S12). According to the results, we could enrich proteins that
closely interacted with RP11-661C8.2 and CTB-164N12.1. Here,
peptide coverage in protein amino acid sequence (Coverage) and
protein score (Score) were key parameters to measure the interac-
tion between proteins (Supplementary Tables S13 and S14). The
proteins identified above were annotated by GO (http://geneontol
ogy.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.kegg.jp/) to understand the functional properties of
different proteins (Supplementary Tables S15–S18).

Immunoblotting
Briefly, the ccRCC cell lines of Caki-2 (ASO-5717 treatment, 3 �

10e6 cells), Caki-2 (ASO-5608 treatment, 3� 10e6 cells), Caki-2 (NC,
3�10e6 cells), 786-O (ASO-5717 treatment, 3 � 10e6 cells), 786-O
(ASO-5608 treatment, 3� 10e6 cells), and 786-O (NC, 3� 10e6 cells)
were lysed with RIPA lysis buffer (Beyotime, P0013B) containing both
protease inhibitor (Beyotime, P1045-1) and phosphatase inhibitor
(Beyotime, P1045-2) on ice. After centrifugation at 12,000 rpm for
5 minutes, the supernatants were harvested, and the protein concen-
trations were determined using a BSA Quantification Kit (Beyotime,
P0010S). Protein samples (100 mL) from supernatants were separated,

and then SDS-PAGE was performed using an SDS-PAGE Kit (Sangon
Biotech, C631100). After washing thrice with transferred buffer (San-
gon Biotech, C520039), samples were transferred onto polyvinylidene
difluoride membrane (Biosharp, BS-PVDF-22). The membrane was
blocked for 30 minutes with blocking buffer (Beyotime, P0252). After
washing thrice with Tris-buffered saline/Tween 20 (TBST, Sangon
Biotech, C520009), the membranes were incubated at 4�C overnight
with primary antibodies. The primary antibodies were anti-E-cadherin
(rabbit anti-human, 1:5,000, Thermo Fisher Scientific, 701134, RRID:
AB_2532405) and anti-GAPDH (mouse anti-human/mouse/rat,
1:5000, Abcam, ab8245, RRID: AB_2107448). The membranes were
washed thrice with TBST and incubated with horseradish peroxidase–
conjugated secondary antibody (goat anti-rabbit, 1:1,000, Cell Signal-
ing Technology, 7074, RRID: AB_2099233; goat anti-mouse, 1:1,000,
Solarbio, SE131, RRID: AB_2797595) at room temperature for 1 hour.
Then, they were washed thrice again. Immunoreactivity using the ECL
Kit for Western blot analysis (Thermo Fisher Scientific, 34577) was
visualized by an imager (GE Healthcare, ImageQuant LAS 500).
GAPDH was used as a loading control. The presented results are
from at least three repetitions of Western blot analysis.

Data availability
The raw data of protein mass spectrometry can be accessed in

Figshare (http://www.doi.org/10.6084/m9.figshare.19603750). The
results of Flow Cytometry experiments can be accessed in FlowRe-
pository (http://flowrepository.org/id/FR-FCM-Z5JS). The scRNA-
seq and scATAC-seq raw data after processing in this article can be
accessed in Gene Expression Omnibus datasets (GSE207493). Bulk
ATAC-seq data are available through NCBI BioProject, accession
number PRJNA866658. WES data have been deposited in the NCBI
BioProject under project PRJNA861705.

Code availability
All the code used to perform the analysis is available at Figshare

(http://www.doi.org/10.6084/m9.figshare.19603750) and github
(https://github.com/lessonskit/Single-cell-multi-omics-profiling-
of-ccRCC.git).

Results
Single-cell multiomics studies mapping the human ccRCC
transcriptome landscape

Considering the number of previous single-cell transcriptome
studies in ccRCC (13–16), we hope to further discover the epigenetic
regulatory mechanisms through single-cell multiomics scheme
(Fig. 1A). In this study, we collected fresh surgical resections from
19 patients who suffered from localized ccRCC (Supplementary
Table S1). Single-cell suspensions were prepared by enzyme lysis
(Materials and Methods). Part of the single-cell suspension was used
for scRNA-seq, while the rest was used for scATAC-seq by 10x
Genomics platform (Fig. 1A). Additional tissue or single-cell suspen-
sions were used for bulk ATAC-seq orWES, where available (Fig. 1A).

After QC by Seurat (Supplementary Fig. S1,Materials andMethods;
ref. 25), we captured 102,723 high-quality single-cell transcriptome
information from ccRCC (Supplementary Table S2). To mitigate
possible batch effects, we used Harmony (27) to aggregate cells across
samples and jointly cluster them in an unsupervised manner. On the
basis of the expression of marker genes and cell annotation in our
previous studies (13, 22), we classified ccRCC into 22 independent cell
types, including four tumor cell subtypes (ccRCC1, ccRCC2, ccRCC 3,
and ccRCC4), four endothelial cell subtypes (Endo cells 1, Endo cells 2,
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Endo cells 3, and Endo cells 4), etc. (Fig. 1B and C). In ccRCC, we
found that T cells (30,339, 29.53%) were the most numerous followed
by tumor cells (19,819, 19.29%; Fig. 1D). Compared with previous
single-cell studies of advanced ccRCC (15, 42), this study captured

more tumor cells and classified tumor cells into subpopulations
(Fig. 1B). In addition, endothelial cells were also more diverse and
abundant than that in previous studies (14, 15, 42). Because of the
tumor heterogeneity of ccRCC (7), we performed scRNA-seq on

Figure 1.

Overview of single-cell transcriptomic atlas of ccRCC sample.A, Schematic of the experimental design for this study. The same images from Fig. 6G and Jwere used
for the right panel in A. B, UMAP plot representation of ccRCC with 22 distinct cell types. The exhausted (Exhau) CD8þ T cells, TAMs, CAFs, DCs, proliferative
(Pro) CD8þ T cells, and exhausted-proliferative (E-P) CD8þ T cells. C, Bubble chart showing the marker genes of each cluster. Dot size represents the
proportion of cells, and the color represents gene expression with high or low. D, Pie graph showing the fraction of main cell types. E, Proportion of 19 ccRCC
samples in each cell type.
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tumor samples from 19 different individuals. We found that most
cell types were derived from each sample, whereas individual
differences between tumor cells and endothelial cells were more
pronounced (Fig. 1E). For example, tumor cells (ccRCC 4) were
only derived from patient RCC84, and Endo cells 4 were derived
from only three individuals (Fig. 1E). Consistent with previous
studies (14, 15, 42), extensive infiltration of immune cells, especially
T cells and TAMs, characterized the immune microenvironment of
ccRCC (Fig. 1B and D). In addition, CD8þ T cells infiltration was
more remarkable in the ccRCC tissue, as reported in previous
studies (15, 42, 43).

Characterization of the tumor cell molecular subtypes by
scRNA-seq

Considering the inherited predisposition of ccRCC (6), we
performed WES on all ccRCC samples to understand the DNA
variations between individuals (Supplementary Tables S8 and S9).
We found that variations in these common mutated genes were
similar to those found in previous studies (Fig. 2A; refs. 12, 15).
VHL was the most common mutated gene, whose mutation rate was
84.2% in this study (Fig. 2A). Interestingly, we discovered that CA9
(15.8%), KRT14 (15.8%), and CD24 (47.3%) also showed a high
mutation rate, which were missense (Fig. 2A). We classified tumor
cells into VHL, CA9, KRT14, and CD24 mutated or nonmutated
groups and compared their gene expression differences (Fig. 2B–E).
We found that gene expressions in the mutated and nonmutated
tumor cells were very similar, with a Pearson correlation coefficient
greater than 0.98 (Fig. 2B–E). Thus, this also indicated that a single
mutated gene in ccRCC did not cause great changes in all gene
expression of tumor cells.

According to the gene expression characteristics, tumor cells
were unbiased clustering into four cell subtypes (ccRCC 1, ccRCC 2,
ccRCC 3, and ccRCC 4) by scRNA-seq (Fig. 3A). Except for ccRCC
4, the remaining three tumor cell subtypes were derived from each
patient (Fig. 3B). Although individual differences still existed, there
was a good representation of cell subpopulation classification in
tumor cells. Initially, to objectively reveal the specific gene expres-
sion of tumor cells, we compared that with adjacent normal
epithelial cells, which were obtained from our previous study (30).
We classified these adjacent normal epithelial cells into proximal
tubular cells, proximal straight tubule cells, proximal convoluted
tubule cells, glomerular parietal epithelial cells, distal tubule cells,
collecting duct principal cells and collecting duct intercalated cells,
which integrated with four tumor cell subtypes in this study
(Supplementary Fig. S4A). We discovered that some genes, such
as CRYAB, CYB5A, CD24, SPP1, KRT18, KRT8, and GPX3, were
conserved, which expressed in both normal epithelial cells and
tumor cells (Supplementary Fig. S4B). Distinct differences in gene
expression were found in different tumor cell subtypes. We found
that ccRCC 1 highly expressed CA9 and NDUF4AL2, whereas
ccRCC 2 highly expressed KCNQ1OT1 and CP (Fig. 3C). ccRCC
3 highly expressed NDUF4AL2 and CYB5A, whereas ccRCC 4
expressed most of the highly expressed genes in tumor cells
(Fig. 3C). CA9 and NDUF4AL2 have been identified as marker
genes for ccRCC in previous studies (12). CP was confirmed as a
specific marker of ccRCC in our previous single-cell study (13),
which was confirmed from a larger sample of ccRCC in this study.
KCNQ1OT1 is an oncogenic lncRNA, which has been reported in a
previous study (44). However, this is the first time that KCNQ1OT1
was found to be highly expressed in a specific cell subtype of ccRCC
by scRNA-seq.

According to the scRNA-seq data, we conducted CNV analysis and
found that there were different CNV characteristics in these tumor cell
subtypes (Fig. 3D).We found thatmost tumor cells were characterized
by losses on chromosome 3 (chr3) and gains of chromosome 5 (chr5),
consistent with TCGA project on ccRCC (12). This result was more
concentrated in ccRCC 1, but not in ccRCC 4 (Fig. 3D). This may be
caused by cloning or subcloning of tumor cells. Therefore, we can use
scRNA-seq results to predict the tumor cells in the root state and the
direction of tumor cell evolution. Here, we combined RNA veloci-
ty (28) and Monocle3 (29) to reconstruct the evolution trajectory of
tumor cells. First, we identified the root of tumor cells and the direction
of differentiation by RNA velocity (Supplementary Fig. S4C). Then, we
reconstructed the evolution trajectory of tumor cells by Monocle3
(Supplementary Fig. S4D). We found that ccRCC 4 was located in the
root, which suggests that it might be stem-like cells and could
differentiate into ccRCC 1, ccRCC 2, and ccRCC 3 (Supplementary
Fig. S4C and S4D).

To further evaluate the biological functions of each tumor cell type,
we performed GO enrichment analysis based on their DEGs by
DAVID (https://david.ncifcrf.gov/). The BPs of ccRCC 1 were con-
centrated in “response to hypoxia,” “cellular response to hypoxia,”
and “glycolytic process” (Supplementary Fig. S5A). A previous study
had reported that the pathogenesis of ccRCC is related to the hypoxia
caused by VHL mutation (45). CNV analysis showed that ccRCC 1 is
characterized by losses on chr3, where VHL is located. Therefore,
ccRCC1 may be associated with these processes. The BPs of ccRCC 3
were similar to those of ccRCC 1, namely, “cytoplasmic translation,”
“translation,” and “response to hypoxia” (Supplementary Fig. S5B).
The ccRCC 2 was mainly concentrated in “positive regulation of
angiogenesis” and “negative regulation of endopeptidase activity”
(Supplementary Fig. S5C), whereas ccRCC 4 was concentrated
in “epithelial cell differentiation” and “innate immune response”
(Supplementary Fig. S5D).

With the subtypes of ccRCC in our hands, we hope to predict the
prognosis of these four tumor cell types. On the basis of the results of
scRNA-seq, we can calculate the DEGs of each tumor cell type
(Supplementary Table S3). We selected the top 100 DEGs in each
cell subtype and determined the prognosis based on the survival
analysis results in TCGA database on ccRCC. We found that most
of the DEGs in ccRCC 1, ccRCC 2, and ccRCC 3 suggested positive
survival, whereas more DEGs in ccRCC 4 indicated poor prognosis,
which was significant compared with the three previous cell subtypes
(Fig. 3E).

scRNA-seq identified endothelial cell subtypes
Similar to tumor cells, endothelial cells also included four cell

subtypes in ccRCC, which were identified by the characteristics of
gene expression (Supplementary Fig. S6A and S6B). We found that
some marker genes of endothelial cells were highly expressed in them,
such as PECAM1, VWF, and CDH5 (Supplementary Fig. S6B). Inter-
estingly, we identified a subtype of endothelial cells (Endo cells 3) with
cancer-associated fibroblast (CAF) markers (TAGLN, PDGFRB,
COL1A2, and ACTA2), consistent with our previous study (Supple-
mentary Fig. S6B; ref. 13). Considering that a previous study has
reported that endothelial cells and fibroblasts can transition into each
other in the tumor microenvironment (46), our results supported the
possibility that this transition process existed in ccRCC. On the other
hand, as the number of ccRCC samples increased, there were more
subtypes of endothelial cells than in our previous studies (13, 22),
indicating the heterogeneity of endothelial cells. Ligand–receptor
interactions between endothelial and tumor cells were determined by
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using Cellphone DB (31). We found that most endothelial and
tumor cell subtypes interacted with a large number of ligand–
receptor pairs, especially in Endo cells 3 (Supplementary
Fig. S6C and S6D). All endothelial and tumor cell subtypes inter-
acted with some ligand–receptor pairs, such as “ITGB1-VEGFA”

and “ITGB1-SPP1” (Supplementary Fig. S6E–S6H). ITGB1 and
VEGFA played an important role in the interaction between endo-
thelial and tumor cells (Supplementary Fig. S6E–S6H). As reported
previously, drugs that inhibit VEGF and its receptor VEGFR are
effective therapeutics for metastatic ccRCC (47).

Figure 2.

scRNA-seq revealed the relationship between gene mutation and gene expression in ccRCC. A, WES for ccRCC samples. Each row represents a gene, and
the frequency of mutations is indicated on the right side of the bars. B–E, Left, cluster of tumor cells in VHL (B), CA9 (C), KRT14 (D), and CD24 (E) mutated
samples are shown. Middle, cluster of tumor cells in VHL (B), CA9 (C), KRT14 (D), and CD24 (E) nonmutated samples are shown. Right, scatterplot showing
the log1p of the average expression per gene of VHL (B), CA9 (C), KRT14 (D), and CD24 (E) mutated/nonmutated samples.
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Figure 3.

Heterogeneity of tumor cells in human ccRCC. A, UMAP plot of four subtypes of ccRCC tumor cells (ccRCC1, ccRCC2, ccRCC3, and ccRCC4). B, Proportion of
samples in each tumor cell type. C, Bubble chart showing DEGs in each tumor cluster (color represents the expression level, and dot sizes represent the
relative abundance). D, CNV landscape of tumor cells. Monocytes were used as the reference cells. Red, gains of copy number; blue, losses of copy number.
The annotated gene represents its chromosomal location (arrows). E, The number of genes associated with prognosis is found by integrating differentially
expressed genes from tumor cells into TCGA database on ccRCC. �, P < 0.05; ��� , P < 0.001.
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scRNA-seq revealed the characteristics of the immune
microenvironment in ccRCC

Previous studies have reported comprehensive immune micro-
environment characteristics of ccRCC, which provided more
insights for the treatment of ccRCC (14, 15, 42). In this study,
immune cells accounted for a high proportion in ccRCC tissues,
which were about 64.7% of all cells (Fig. 1D), consistent with
previous studies (14, 15, 42). Not only the number of immune cells
but cell types were also abundant, which could be classified into 13
cell types (Supplementary Fig. S7A). Moreover, in the tumor
microenvironment, the interaction of immune cells is very close,
especially TAM 1, dendritic cells (DC), and proliferative CD8þ T
cells (Supplementary Fig. S7B and S7C). Consistent with previous
studies (15, 42), we found that these ligand–receptor pairs, such as
CD74-MIF, CD74-COPA, and CD74-APP, played a significant role
in TAM and other immune cells (Supplementary Fig. S7D). CD74 is
expressed on TAM, which promotes the secretion of growth factor
by TAM.

T cells were the most abundant immune cells in ccRCC, accounting
for 29.53% of all cells (Fig. 1D). According to their corresponding
markers, T cells can be clustered into five cell subtypes, namely,
exhausted CD8þ T cells, CD4þ T cells, regulatory T cells, proliferative
CD8þ T cells, and exhausted proliferative CD8þ T cells (Supplemen-
tary Fig. S7E). PD-1 (PDCD1 encoding) is a key receptor of immune
checkpoint, which may be important for the effect of immunother-
apy (48). Because of scRNA-seq technology, we were able to calculate
the expression of PDCD1 in each T cell. Here, T cells with an average
expression of PDCD1 greater than 1 were considered as PD-1 positive.
We discovered that the positive rate of PD-1 in ccRCC was about
21.49% (Supplementary Fig. S7F). In ccRCC, macrophages mainly
exist in the form of TAM, which were characterized by the expression
of GPNMB, SLC40A1, and MSR1 in addition to the classical macro-
phage marker CD68 (Supplementary Fig. S7G; refs. 49, 50). Similar
to a previous study (13), TAM can be divided into two cell subtypes
(TAM 1 and TAM 2) in ccRCC, one of which had high expression of
CD163, CSF1R, and CD86, and the other had low expression of these
genes (Supplementary Fig. S7G). Next, we analyzed cell interactions
between TAM 1 and TAM 2 with all tumor cell subtypes. We found
that the cellular interactions between TAM and tumor cells were very
close, especially TAM 1 (Supplementary Fig. S7H -S7I). In addition to
the common ligand–receptor interactions of CD74-APP and CD63-
TIMP1, we also discovered an interesting ligand–receptor pair,
SLC40A1-CP (Supplementary Fig. S7H and S7I). SLC40A1 is a marker
for TAM (49), whereas CP is a marker for ccRCC tumor cells (13).
Thus, the biological effects of SLC40A1-CP binding are worthy of
further study.

Construction of single-cell chromatin accessibility
landscape in ccRCC

A previous study has constructed a single-cell map of dynamic
chromatin landscapes of immune cells in RCC, which provided a rich
resource for understanding the functional states and regulatory
dynamics of immune cells in ccRCC (21). However, a more compre-
hensive single-cell chromatin accessibility landscape of ccRCC with
large samples, including tumor cells, needs to be constructed, which
may reveal the regulatory characteristics of tumor cells. In this study,
we performed scATAC-seq on 19 ccRCC samples (Supplementary
Table S1) by 10xGenomics platform.AfterQCby Signac (33), a total of
61,693 high-quality nuclei and 190,916 unique peaks were captured
from 19 ccRCC samples (Supplementary Table S4). On the basis of the
LSI algorithm (Materials andMethods), we classified these cells into 29

different cell types and identified the sample source of each cell type
(Fig. 4A and B; Supplementary Fig. S8). For cell annotation of
scATAC-seq, we combined three strategies to identify: gene activity
scores, cell type–specific peaks and TF analysis. Here, we calculated the
marker gene activity scores of tumor cells (CA9 and KRT14), endo-
thelial cells (VWF and CDH5), CAF (RGS5), immune cells (PTPRC),
CD4þ T cells (IL7R), B cells (SDC1), and NK cells (KLRD1 and
KLRB1; Fig. 4C). Subsequently, cell type–specific peaks were analyzed,
and then the corresponding gene regions of these peaks were identified
(Fig. 4D). On the basis of the above, 29 different cell types in ccRCC
were defined relatively reliably (Fig. 4A).

We identified the coaccessible chromatin regions of all cell types,
such as in chr9 and chr17, by using scATAC-seq (Fig. 5A). These
coaccessible chromatin regions also indicated that their regulatory
processes were not cell type specific. Therefore, cell type–specific
regulation processes could be discovered by identifying the cell
type–specific coaccessible chromatin regions. In addition, our scA-
TAC-seq results showed that the chromatin accessibility of nontumor
cells, such as immune cells, endothelial cells and CAF, was consistent
across individuals (Fig. 5B). Each cell type had good sample univer-
sality and derived from almost all samples (Fig. 5B). However, our
results showed that tumor cells could be classified into 16 cell subtypes
based on chromatin accessibility (Fig. 5C). The majority of tumor cell
subtypes were derived from a single ccRCC sample (Fig. 5C). Similar
to previous study on basal cell carcinoma (23), there was significant
interindividual heterogeneity in chromatin accessibility of tumor cells
in ccRCC.

scATAC-seq revealed the characteristics of chromatin
regulation in ccRCC tumor cells

Although a previous study revealed the regulatory dynamics
of immune cells in ccRCC (21), the regulatory characteristics of
tumor cells remain unknown at single-cell level. To investigate
the characteristics of chromatin regulation in tumor cells, we
identified 16 tumor cell subtypes and the chromatin accessibility
regions of each cell subtype by using scATAC-seq (Fig. 5C; Sup-
plementary Table S5). The advantage of scATAC-seq was that these
chromatin accessibility regions could be pinpointed to cell types
(Supplementary Table S5). Here, we found that CA9 and KRT14
served as markers of accessible regions in ccRCC cells, which
maintained chromatin accessibility in each tumor cell subtype
(Fig. 5D and E). To better discover the heterogeneity amongst
tumor cell subtypes, we enriched the top 10 chromatin accessibility
regions in 16 cell subtypes and mapped these regions to genes
(Supplementary Fig. S9). We found that these chromatin accessi-
bility regions were both overlapping and different, presenting an
irregular state. This may also indicate inherited predisposition at
the DNA level in ccRCC.

In addition, these chromatin accessible regions included not only
protein encoding genes, lncRNA and rRNA in coding regions, but also
accessibility to noncoding regions, which cannot be revealed by
scRNA-seq. Tumor cell–specific chromatin accessibility regions were
discovered by scATAC-seq, such as IGSF21, ATRNL1, and HPSE2,
which were protein-coding regions (Supplementary Fig. S10A). Some
tumor cell–specific rRNAs were identified by scATAC-seq (Supple-
mentary Fig. S10B). AlthoughpreviousGWASofRCC identifiedmany
susceptibility loci (51, 52), many of themwere not in the coding region,
making it difficult to study their biological functions. We used GWAS
Catalog (52) to find the susceptibility loci of RCC (Materials and
Methods) and then integrated them into scATAC-seq data for analysis.
We found that the chromatin regions of most susceptible loci were not
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open, except for rs4903064, which is located at Chr14:72812712.
Moreover, the chromatin accessibility of this susceptibility locus was
also cell-type specific, which was only open in tumor cell subtypes
(Supplementary Fig. S10C).

Interestingly, we discovered four lncRNAs (RP11-661C8.2,
CTB-32H22.1, CTB-164N12.1, and RP11-267A15.1) that were
specifically accessible to tumor cell subtypes by scATAC-seq
(Fig. 6A). All of these lncRNAs had a common feature that was

Figure 4.

Single-cell chromatin accessibility landscape in ccRCC.A,UMAPplot shows the cell landscape of ccRCC identified by scATAC-seq.B, Proportion of 19 ccRCC samples
in each cell type. C, UMAP plots shows the gene activity scores of marker genes identified from each cell cluster. The color represents the grade. D, Heatmap
represents the top 10 peaks for each cell cluster identified by scATAC-seq.
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located on chromosome 5 (Fig. 6A). Through various mechan-
isms, cis-acting lncRNAs have been demonstrated to activate,
repress or otherwise modulate the expression of target genes (53).
Considering that TCGA results on ccRCC (12) and this study
have confirmed that ccRCC has the feature with gains of copy
number on chromosome 5, we hypothesized that these lncRNAs
may play a specific regulatory role in ccRCC. Thus, we selected
two lncRNAs (RP11-661C8.2 and CTB-164N12.1) for the follow-
ing experiments, which verified the biological functions of these
lncRNAs.

scATAC-seq revealed the biological function of lncRNA in
promoting ccRCC invasion and migration in vitro

First, we had to identify whether these four lncRNAs were mainly
expressed in the nucleus or cytoplasm, so that we could correctly
select interference mediators later. Through cytoplasmic/nuclear
separation experiments, we confirmed the expression of these four
lncRNAs in the nucleus (Supplementary Fig. S11A; Supplementary
Table S19). Here, we constructed ASO-5608 to interfere with the
expression of RP11-661C8.2 specifically, while ASO-5717 to CTB-
164N12.1, which verify their biological functions in reverse. Two

Figure 5.

Single-cell chromatin accessibility characteristics in ccRCC. A, Chromatin accessibility profiles of each cluster in chr 9 and chr 17. B, UMAP of nontumor cells
identifies cell clusters (left) and sample origin (right). C, UMAP of tumor cells identifies cell clusters (left) and sample origin (right). D and E, Specific chromatin
accessibility region of tumor cells identified by scATAC-seq.
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Figure 6.

Discovery and validation of specific lncRNAs in ccRCC tumor cells. A, Specific lncRNAs in ccRCC tumor cells were identified by scATAC-seq. B, ASO-5717 hit the
CTB-164N12.1 specifically, while ASO-5608 hit the RP11-661C8.2. Cell proliferation was assessed by immunofluorescence using the EdU incorporation assay.
C,Absorbanceof 786-O andCaki-2 cell lineswasmeasured at 450nmafter ASO treatment.D andE,Wound-healing assay reflected themigration of ccRCCafter ASO
treatment. Scale bar, 500 mm. F, Results of wound-healing assay were statistically analyzed. G, Transwell assay reflected the invasion of ccRCC after ASO
treatment. Scale bar, 250 mm. H, Results of transwell assay were statistically analyzed. I,Western blotting analysis after ASO treatment in 786-O and Caki-2 cells.
J, Integrating protein mass spectrometry (top) and scRNA-seq results (bottom), mapping the closely binding proteins found by protein mass spectrometry to
gene expression in cell types identified by scRNA-seq. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001.
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cell lines of ccRCC, 786-O and Caki-2, were used as cell models.
After 48 hours of treatment by ASO-5608 and ASO-5717, we found
that the expression of RP11-661C8.2 and CTB-164N12.1 in 786-O
and Caki-2 decreased significantly compared with the NC group
(Supplementary Fig. S11B; Supplementary Table S20). This result
also indicated that the inhibitory effect of ASO-5608 and ASO-5717
was credible.

Next, EdU detections were performed on ccRCC cell lines. We
found that the proliferation activity of ccRCC cell lines after ASO
treatment was significantly decreased, including 786-O group and
Caki-2 group (Fig. 6B; Supplementary Fig. S11C and S11D). The
CCK-8 experiment also supported the result that the proliferation of
ccRCC cell lines after ASO treatment was inhibited in 24, 48, and
72 hours compared with the NC group (Fig. 6C). Subsequently, we
carried out cell scratch experiment to observe the wound healing of
ccRCC cell lines after being scratched in 0, 24, and 48 hours. We
discovered that the wound healing of the NC group was better than
that of the ASO treatment group, both in 786-O and Caki-2 (Fig. 6D–
F). In addition, transwell assay was performed to indicate changes in
migration function of ccRCC cell lines after ASO treatment. These
results indicated that the migrations of 786-O and Caki-2 were
significantly decreased after ASO treatment (Fig. 6G and H). The
epithelial cell–cell adhesionmolecule cadherin 1 (E-cadherin) is awell-
known growth and invasion suppressor, which is known to suppress
tumorigenicity and tumor dissemination via complex mechan-
isms (54). We discovered that after ASO treatment, the expressions
of E-cadherin in ccRCC cell lines were significantly increased
compared with those in the NC group by Western blot analysis
(Fig. 6I). Although there were no significant changes in apoptosis
and cell cycle of ccRCC cell lines after ASO treatment by FC
(Supplementary Fig. S12A–S12D), this may be the characteristic
of these lncRNAs. Thus, these results confirmed the function of
RP11-661C8.2 and CTB-164N12.1, which promoted ccRCC inva-
sion and migration in vitro.

Regulation of RP11-661C8.2 and CTB-164N12.1 was identified as
cell-type specific by protein mass spectrometry

On the basis of the above results, we have confirmed some functions
of RP11-661C8.2 and CTB-164N12.1. However, the regulatory
mechanisms of these lncRNAs still remain unknown. We hope to
explore them in future studies. Here, proteins interacting with RP11-
661C8.2 and CTB-164N12.1 were identified by protein mass spec-
trometry. First, the proteins interacting with RP11-661C8.2 and CTB-
164N12.1 were obtained by RNA pulldown (Materials and Methods).
We confirmed these two kinds of proteins by silver staining (Supple-
mentary Fig. S13A). Then, we performed protein mass spectrometry
for the two kinds of proteins. By using Proteome Discoverer (version
2.2) software to analyze the results of mass spectrometry, we only
retained the trusted peptides and proteins and performed FDR val-
idation to remove the peptides and proteins with FDR greater than 1%
(Supplementary Tables S11 and S12). According to the trusted pep-
tides and proteins, we enriched proteins that closely interact with
RP11-661C8.2 and CTB-164N12.1 (Supplementary Tables S13 and
S14). Therefore, we discoveredmany proteins closely bound to the two
lncRNAs and showed the most significant proteins, such as TPM1,
TPM4,MYH9,HSPB1, CNBP,MYL6, PUF60, and KRT8 (Fig. 6J). We
found that the proteins bound by the two lncRNAs were very similar,
except for CNBP, which was more closely bound by RP11-661C8.2
(Fig. 6J). Subsequently, the genes encoding these proteins were placed
into scRNA-seq data to estimate their expression in each cell subtype.
Interestingly, these genes were almost highly expressed in CAF and

Endo cells 3 (Fig. 6J). Some genes, such as TPM1, HSPB1, and KRT8,
were highly expressed in tumor cells (Fig. 6J). Thus,we considered that
the regulatory function of RP11-661C8.2 and CTB-164N12.1 was cell-
type specific, mainly regulating CAF, endothelial cells, and tumor cells.

Next, to further understand the biological processes of the
proteins, GO analysis was performed on the genes encoding the
proteins closely bound to RP11-661C8.2 and CTB-164N12.1. We
found that the biological processes of the genes encoding the
proteins bound to these two lncRNAs were very similar, mainly
reflected in “RNA splicing,” “ribonucleoprotein complex,” “biogen-
esis,” etc. (Supplementary Fig. S13B and S13C; Supplementary
Tables S15 and S16). In addition, to understand the pathways, we
performed KEGG analysis on the two gene clusters. We found that
it was enriched in the pathways of “Spliceosome,” “Ribosome,”
“Salmonella infection,” etc. (Supplementary Fig. S13D and S13E;
Supplementary Tables S17 and S18).

scATAC-seq revealed transcriptional regulation factors in
ccRCC

Another advantage of scATAC-seq was the discovery of specific
regulatory processes, especially TFs. Because of the single-cell study, it
was possible to pinpoint these TFs specifically to cell types. Fortu-
nately, in this study, we discovered many TFs with cell-type specificity
and TF binding motifs (Supplementary Table S21). Consistent
with a previous study (23), we found that SPIC and EOMES were
specific TFs in B cells and natural killer (NK) cells, respectively
(Fig. 7A). The DNA base sequence of motifs was also very similar
compared with a previous study (Fig. 7A; ref. 23). Interestingly, we
discovered that ZEB1 acts as a TF that binds tumor cells universally,
whereas ETV4 is universally bound by nontumor cells (Fig. 7A;
Supplementary Fig. S14A). In addition, we identified the specific
TFs and motifs of endothelial cells (SOX8), CAF (EBF2), and T cells
(ETS1) by scATAC-seq (Fig. 7A). By enriching the top 10 most
significant TFs in each cell type, we found that these TFs had cell
type specificity, especially between tumor cells and immune cells
(Fig. 7B). Therefore, we also mentioned earlier that TFs need to be
considered when defining cell types in scATAC-seq.

To predict the exact binding location of these cell type–specific TFs,
TF footprint analysis was performed (Fig. 7C). In addition, we
identified many tumor cell–specific binding TFs in ccRCC, such as
the HNF family, NFIB and TEAD3 (Supplementary Fig. S14B–S14G;
Supplementary Fig. S15A–S15G). The TF hepatocyte nuclear factor 1b
(HNF1B) represents the most commonly known monogenic cause of
developmental kidney disease (55). HNF1B has also been reported to
be associated with a rare type of RCC, whose mechanism is
unclear (56). Thus, our results should provide many new ideas for
studying the pathogenesis of ccRCC.

Integrating scATAC-seq and scRNA-seq analysis revealed the
regulatory characteristics of tumor cells

The regulation of gene expression is a very complex process, and
it is influenced by epigenetic regulation, lncRNAs, enhancers,
promoters, and other factors (53). In this study, we aimed to
discover the regulation rules of ccRCC by integrating the results
of scATAC-seq and scRNA-seq. A map including the correspon-
dence for all cell types between scATAC-seq and scRNA-seq was
established (Supplementary Fig. S16A). The major cell types in
scATAC-seq, such as tumor, T, NK, and endothelial cells and CAF,
were predicted correctly based on the annotation of scRNA-seq
(Supplementary Fig. S16B). Subsequently, we constructed the sin-
gle-cell chromatin accessibility and single-cell transcriptome
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Figure 7.

Characteristics of TFs in ccRCCwere identified by scATAC-seq. A, UMAP plot highlighting TFmotif scores for ZEB1, SOX8, EBF2, SPIC, ETS1, and EOMES. B,Heatmap
represents the 290 variable TF motifs from each cluster by scATAC-seq. C, TF footprints of ZEB1, SOX8, EBF2, SPIC, ETS1, and EOMES, with motifs in each cluster by
scATAC-seq. The Tn5 insertion bias track is shown below.
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coembedding map (Fig. 8A). Although differences were recognized
in the data of single-cell transcriptome and single-cell chromatin
accessibility, as reflected by spatial projections, the distributions
between the same cell types were very similar (Fig. 8A).

Then, by integrating all tumor cells in scATAC-seq (16 subtypes)
and scRNA-seq (four subtypes), we found a correlation between
chromatin accessibility and gene expression in the tumor cell subtypes
(Fig. 8B; Supplementary Fig. S16C). The gene expression of ccRCC 1

Figure 8.

Integrating scRNA-seq and scATAC-seq analysis. A, Integrating all cell types from scRNA-seq and scATAC-seq by UMAP plot. B, Integrating tumor cell types from
scRNA-seq and scATAC-seq by UMAP plot. C, Heatmap showing the proportions of tumor cells from each scATAC-seq cluster (x-axis) that were annotated with
cluster labels transferred from scRNA-seq clusters (y-axis). D, ccRCC 11 (scATAC-seq cluster)–specific chromatin accessibility regulated the gene expression
characteristics of ccRCC 2 (scRNA-seq cluster). E, ccRCC 1–10, 12–16 (scATAC-seq cluster)–specific chromatin accessibility regulated the gene expression
characteristics of ccRCC 1 (scRNA-seq cluster).
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(scRNA-seq subtype) was associated with the chromatin accessibility
of 15 tumor cell types (scATAC-seq subtypes; Fig. 8C), which
indicated the complexity of tumor cell regulation. We also discovered
a pair of tumor cell types, namely, ccRCC 2 (scRNA-seq subtype)
and ccRCC 11 (scATAC-seq subtypes), which implied a correspon-
dence between chromatin accessibility and gene expression (Fig. 8C).
In previous results, ccRCC 2 and ccRCC 11 were mainly derived
from sample RCC84 (Fig. 2C; Supplementary Fig. S8). Therefore,
revelation of the gene expression characteristics of ccRCC 2 regulated
by the accessible chromatin region of ccRCC11was accurate (Fig. 8D).
However, the regulatory characteristics of ccRCC 1 (scRNA-seq
subtype) were complex and included the regulatory features of 15 scA-
TAC-seq tumor cell subtypes (Fig. 8E). Regardless, we discovered
several common accessible chromatin regions in all 15 tumor
cell subtypes: “chr11-111906243-111914666,” “chr19-10352456-
10354286,” “chr5-178286237-178290844,” and “chr7-73829891-
73835325” (Fig. 8E). “chr11-111906243-111914666” and “chr5-
178286237-178290844” were located on DLAT and ZNF354B, respec-
tively (Supplementary Fig. S16D). DLAT encodes component
E2 of the multienzyme pyruvate dehydrogenase complex. Notably,
the low expression of DLAT signature was associated with reduced
overall patient survival in TCGA ccRCC cohort (P ¼ 3.6e�7; Supple-
mentary Fig. S16E). We also observed that “chr19-10352456-
10354286” and “chr7-73829891-73835325” were located in the
DNA noncoding regions, which are close to the MRPL4 and CLIP2,
respectively (Supplementary Fig. S16D). These findings suggest
that individual differences existed in the accessible chromatin region
of the studied ccRCC tumor cells, and common regulatory regions
were present.

Discussion
Because of a complex interplay between genetic and nongenetic

determinants of somatic evolution, the study of cancer requires the
integration of multiple heritable dimensions at the single-cell
resolution (57). Although researchers have previously done a great
deal of work at the single-cell transcriptome level (13–17, 22, 42)
and exomes (58) in ccRCC, this is just one dimension of informa-
tion for cancer research (57). For a tumor cell, it should contain
more information, such as TFs, histone modifications, chromatin
accessibility, DNA methylation, copy-number alterations, protein
expression, SNVs, and INDELs. With the development of single-cell
multiomics technology in recent years (59, 60), many unknown
fields have been explored. However, there are a few single-cell
multiomics studies in oncology, especially on ccRCC. Thus, in this
study, we hope to integrate scRNA-seq, scATAC-seq, WES, and
protein mass spectrometry techniques to comprehensively under-
stand ccRCC.

We captured 102,723 high-quality single-cell transcriptome infor-
mation from 19 ccRCC samples by scRNA-seq (Fig. 1B). More cell
numbers and larger sample sizes will better reveal the tumor hetero-
geneity of ccRCC. Here, we performed molecular classification of
tumor cells based on the gene expression characteristics, which is a
supplement to the prognostic classification of ccRCC in TCGA
project (12). In addition, by integrating the results of single-cell
transcriptome and WES, the authors found that gene expressions in
the mutated and nonmutated tumor cells were very similar, with a
Pearson correlation coefficient greater than 0.98 (Fig. 3A–D). This
also indicated that a single mutated gene in ccRCC did not cause
great changes in all gene expression of tumor cells. Interestingly, we

discovered a specific ligand–receptor pair (SLC40A1-CP) in the tumor
immunemicroenvironment, mainly TAM interacting with tumor cells
(Fig. 4H and I). Previous studies have reported that SLC40A1 (49) is a
marker of TAM, which is a cell membrane protein that may be
involved in iron export from duodenal epithelial cells. CP (13) is a
marker of ccRCC tumor cells, which is a metalloprotein that binds
most of the copper in plasma and is involved in the peroxidation of Fe
(II) transferrin to Fe(III) transferrin. Therefore, the biological effects of
SLC40A1-CP binding are worthy of further study.

scATAC is a robust method for studying DNA epigenetic reg-
ulation, which reveals epigenetic regulatory features down to cell
types and even individual cells (19, 20). In this study, we discovered
some chromatin accessible regions on lncRNAs with tumor
cell specificity (Fig. 6A). In addition, our experiments verified that
these lncRNAs could promote ccRCC invasion and migration
in vitro. This is going to be an interesting discovery because
previous studies have shown that it is difficult to find each lncRNA
that contributes a lot to the adaptability of organisms, whereas large
numbers of lncRNAs contribute substantially when they are con-
sidered in aggregate (61). On the basis of these lncRNAs found by
scATAC-seq, we can further search for the binding proteins
through protein mass spectrometry, so as to understand their
regulatory mechanism. Moreover, scATAC-seq is efficient and
accurate in identifying tumor cell–specific TFs. Thus, scATAC-
seq may be a reliable method to study the regulatory networks of
DNA in tumor cells.

Although our study obtained a large amount of information
about transcriptome and chromatin accessible regions, it is still very
difficult to fully understand the regulatory relationship between
them. The regulation of gene expression by cis-acting lncRNAs is a
very complex process that involves promoters and enhancers (53).
More explorations and research are needed to fully elucidate the
regulatory network of ccRCC. On the other hand, we found it
difficult to define cell types based on scATAC-seq results compared
with scRNA-seq. In this study, the two cell types (CDC37þ cells
and SHCBP1þ cells) identified by scATAC-seq were not matched
with scRNA-seq results. More and more powerful analysis methods
for scATAC-seq data may need to be developed in the future.
Although scRNA-seq and scATAC-seq were performed simulta-
neously on the same tube single-cell from the same RCC sample in
this study, which did not capture both mRNA and nucleus in the
same cell with labeling. Collectively, our study demonstrates the
comprehensive gene expression and DNA regulation information of
ccRCC, discovering and validating lncRNAs that promote tumor
cell invasion and migration, which will provide new insights into
the treatment of ccRCC.
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