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Abstract
Camera trapping and solicitation of wildlife images through citizen science have be-
come common tools in ecological research. Such studies collect many wildlife images 
for which correct species classification is crucial; even low misclassification rates can 
result in erroneous estimation of the geographic range or habitat use of a species, 
potentially hindering conservation or management efforts. However, some species 
are difficult to tell apart, making species classification challenging—but the literature 
on classification agreement rates among experts remains sparse. Here, we measure 
agreement among experts in distinguishing between images of two similar conge-
neric species, bobcats (Lynx rufus) and Canada lynx (Lynx canadensis). We asked ex-
perts to classify the species in selected images to test whether the season, background 
habitat, time of day, and the visible features of each animal (e.g., face, legs, tail) af-
fected agreement among experts about the species in each image. Overall, experts 
had moderate agreement (Fleiss’ kappa = 0.64), but experts had varying levels of 
agreement depending on these image characteristics. Most images (71%) had ≥1 ex-
pert classification of “unknown,” and many images (39%) had some experts classify 
the image as “bobcat” while others classified it as “lynx.” Further, experts were incon-
sistent even with themselves, changing their classifications of numerous images 
when they were asked to reclassify the same images months later. These results sug-
gest that classification of images by a single expert is unreliable for similar‐looking 
species. Most of the images did obtain a clear majority classification from the ex-
perts, although we emphasize that even majority classifications may be incorrect. We 
recommend that researchers using wildlife images consult multiple species experts 
to increase confidence in their image classifications of similar sympatric species. Still, 
when the presence of a species with similar sympatrics must be conclusive, physical 
or genetic evidence should be required.
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1  | INTRODUC TION

Ecological research is experiencing an explosion in the use of wildlife 
imagery. Camera trapping has become a common noninvasive sur-
vey technique (Burton et al., 2015; O’Connell, Nichols, & Karanth, 
2011; Rowcliffe & Carbone, 2008), especially for rare and elusive 
forest‐dwelling species (Furnas, Landers, Callas, & Matthews, 2017; 
Stewart et al., 2016), and has been used to obtain crucial ecological 
information (Caravaggi et al., 2017). Landscape‐scale camera grids 
or transects are increasing across the globe (McShea, Forrester, 
Costello, He, & Kays, 2016), and such sampling may be used to mon-
itor global biodiversity in the future (Rich et al., 2017; Steenweg et 
al., 2017). For example, the project Snapshot Wisconsin currently 
has over 1,000 registered volunteers maintaining over 1,200 remote 
cameras and has collected over 22 million images since it was estab-
lished in 2016 (Wisconsin Department of Natural Resources, 2018). 
Similarly, numerous websites and mobile phone applications encour-
age people to submit wildlife images for the purpose of assessing 
species’ distributions. For example, the United Kingdom Mammal 
Tracker application allows the general public to submit geo‐located 
images of 39 wildlife species (Mammal Watch South East, 2018).

Such camera networks and image‐solicitation projects can col-
lect substantial data across broad scales, but the data may be of 
limited utility because of the need to classify the animals that the 
images contain (He et al., 2016; Newey et al., 2015; Wearn & Glover‐
Kapfer, 2017). Researchers are typically interested in classifying 
each animal to the species level and in many cases even to individ-
uals (Rich et al., 2014; Weingarth et al., 2012). However, classifying 
images is difficult when they are blurry, taken in poor lighting, show 
only part of the animal, or when only one image is available for a 
given animal (Meek, Vernes, & Falzon, 2013).

Further, even high‐quality images may be difficult to classify if 
the species has similar sympatrics (McShea et al., 2016; Swanson, 
Kosmala, Lintott, & Packer, 2016; Yu et al., 2013), especially if classi-
fiers have a bias toward one sympatric species over another, perhaps 
based on the location or background habitat of an image. For exam-
ple, rare species can have higher false‐positive and false‐negative 
errors than common species (McKelvey, Aubry, & Schwartz, 2008; 
Swanson et al., 2016). Similar concerns have also been raised for 
classification of acoustic records for groups such as bats, cetaceans, 
amphibians, and birds (Chambert, Waddle, Miller, Walls, & Nichols, 
2017). Correct species classification is crucial; even low misclassifi-
cation rates can lead to significant over‐ or underestimation of the 
occupancy, habitat preferences, or distribution of a species (Costa, 
Foody, Jiménez, & Silva, 2015; Miller et al., 2011; Molinari‐Jobin et 
al., 2012; Royle & Link, 2006), which could hinder conservation ef-
forts (McKelvey et al., 2008).

Camera‐trapping and image‐solicitation studies have used var-
ious methods for image classification; manual classification by the 
lead researchers, hired technicians, or volunteer students is most 
common, but crowdsourcing from the general public (Swanson et 
al., 2016; Wisconsin Department of Natural Resources, 2018) and 
automated classification by computer software (Hiby et al., 2009; 

Jiang et al., 2015) have also been used. In our experience and ob-
servations of studies where images are manually classified, most 
images are classified by only a single person, but the number of 
classifiers and their expertise are rarely reported. Despite the fact 
that even highly trained experts are not always correct (Alexander & 
Gese, 2018; Austen, Bindemann, Griffiths, & Roberts, 2016; Gibbon, 
Bindermann, & Roberts, 2015; Meek et al., 2013; Swanson et al., 
2016), the accuracy of image classifications is rarely questioned.

Classification of images by a single person may be adequate when 
classifying high‐quality images of species that are distinctive, such as 
mountain goats (Oreamnos americanus), porcupines (Erethizon dorsatum), 
and snow leopards (Panthera uncia), but may be unreliable for sympatric 
species that are similar in size, shape, or coloration (Meek et al., 2013). 
Many species across the globe fall into this category such as bears, 
deer, lemurs, some mustelids, felids and antelopes, as well as many bats, 
raptors, and owls. Specific examples include grizzly bear (Ursus arctos) 
versus black bear (Ursus americanus), mule deer (Odocoileus hemionus) 
versus white‐tailed deer (Odocoileus virginianus), nyala (Tragelaphus an‐
gasii) versus greater kudu (Tragelaphus strepsiceros), and sharp‐shinned 
hawk (Accipiter striatus) versus Cooper’s hawk (Accipiter cooperii).

Here, we use bobcats (Lynx rufus) and Canada lynx (Lynx canaden‐
sis; hereafter lynx) as a case study to measure agreement among ex-
perts in their classifications of images of similar sympatrics. Bobcats 
and lynx are congeneric felids similar in size and appearance that are 
sympatric across southern Canada and the northern United States 
(Gooliaff, Weir, & Hodges, 2018; Hansen, 2007; McKelvey, Aubry, 
& Ortega, 2000). Although bobcats and lynx look similar, they have 
slight anatomical differences (Hansen, 2007; Lewis, 2016). Lynx have 
larger paws, longer legs and have more of an arched back compared 
to the straighter profile of bobcats. Lynx have more pronounced fa-
cial ruffs and longer ear‐tufts, as well as shorter, solid black‐tipped 
tails, as opposed to the longer, black and white‐tipped tails of bob-
cats. Bobcats also have black heel marks that are absent on lynx, 
and usually have more brownish and spotted pelage compared to the 
gray‐silver pelage of lynx.

Bobcats are common and are legally harvested in both coun-
tries, but lynx are federally listed as threatened in the contiguous 
US (US Fish & Wildlife Service, 2000). Classification of felid images 
in the contiguous US thus has direct conservation implications for 
lynx; bobcats falsely classified as lynx could result in false occu-
pancy or distribution maps, or protection of areas that are not in fact 
used by lynx, whereas lynx misclassified as bobcats could result in 
under‐protection.

2  | MATERIAL S AND METHODS

We measured agreement among experts in their classifications of 
bobcat and lynx images that we collected through citizen science. 
In a separate study, we solicited 4,399 images of bobcats and lynx 
from the public across British Columbia, Canada to examine the pro-
vincial distribution of each species (Figure 1; Gooliaff et al., 2018). 
We received 2,648 images (837 separate detections) of bobcats and 
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lynx from remote cameras (x̅ images per sequence = 3.2, median = 
2, range = 1–38, 44% of detections had only a single image), and 
1,736 images (748 separate detections) from conventional cameras 
and camera phones (x̅ images per sequence = 2.3, median = 1, range 
= 1–26, 52% of detections had only a single image).

We subsampled those images to create six trials of images each 
designed as separate experiments to investigate different factors 
that we thought might affect agreement among the experts in their 
classifications of images; we tested the (a) season, (b) background 
habitat, (c) visible features of the animal, and (d) time of day in im-
ages, and (e) whether we provided the location of images to the ex-
perts (Table 1). The sixth trial was a retest of the first set of images, 
to assess whether experts were consistent in their classifications of 
the same images months later. We divided images into trials rather 
than providing them all at once both to make it easier for the experts 
and so that each factor that we tested was isolated in one set of im-
ages. Within each trial there were multiple categories of images (e.g., 
“summer” and “winter” categories in the “season” trial); we compared 
agreement among the experts in their classifications of the images 
between these different categories (Table 1).

To select images for the different categories, we first chose im-
ages from the entire set that were of good photographic quality (i.e., 
the animal was in focus and not distant), were of single, alive, adult 
individuals that showed no bait or prey, and that were not submitted 
by any participating experts. We did not crop, edit or modify the 
images. We then randomly selected images to populate each cate-
gory (Table 1). Within each category, all image characteristics (i.e., 
season, background habitat, visible features, and time of day) were 
consistent.

Each image was used only once, except for images in the “season” 
trial which were repeated as the “consistency” trial. We also mistak-
enly included one image twice in the “legs and tail” category. We dis-
regarded the second classifications from the experts for this image 
in all analyses, which resulted in the “legs and tail” category contain-
ing 19 images rather than 20. Multiple images that were taken by 
the same remote camera, and thus that had the same background, 
were not included in the same trial. If the ratio of what we thought 
were bobcat and lynx images was below 4:1 for either species in any 
category, we randomly replaced images until at least that ratio was 
achieved, except for the “northern” images in the “location” trial be-
cause bobcats are likely absent in northern BC (Figure 1; Gooliaff et 
al., 2018). In total, we selected 299 images: 116 images (39%) from 
remote cameras and 183 images (61%) from conventional cameras.

We created weblinks for the six trials (Table 1) using FluidSurveys 
(www.fluidsurveys.com). We released trials online sequentially, two 
weeks apart, between January and April 2017. In each trial, experts 
were prompted to classify the species in each image by selecting 
“bobcat,” “lynx,” or “unknown.” The experts were not able to zoom 
in on images to ensure that experts based their classifications on 
the same view and detail of the images. The order of images in each 
trial was random, but was the same for all experts. Experts could not 
proceed to the next image without selecting an answer, and once 
selected, experts could not view previous images. However, experts 
were allowed to save unfinished trials and complete them at a later 
time. Trials were password protected, and we instructed experts 
to not consult with others; the experts did not know who else was 
participating in the experiment. Our study obtained ethics approval 
from the University of British Columbia (certificate # H16‐03169).

F I G U R E  1   Images of bobcats (white 
circles; n = 805) and lynx (black circles; 
n = 807) taken during 2008–2017. These 
images were solicited from the public 
across British Columbia and here we map 
points based on our own classifications of 
the images. We also show our boundary 
between northern and southern BC 
(dotted line)

www.fluidsurveys.com
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Experts were aware that we were measuring agreement among 
them in their classifications of images, but they were unaware of the 
conditions that we were testing in each trial. Experts were unaware 
of image locations to ensure that experts based their classifications 
on the images themselves and not on any contextual information. 
We provided the location for only half of the images in the "location" 
trial (Table 1), to test whether knowing such information affected 
agreement among the experts in their classifications of the images. 
These images were accompanied with a map of BC showing the lo-
cation of the image with a red star. The map also included cities and 
highways to help orient the experts. Although location information 
would almost always be available for images collected in actual cam-
era‐trapping or image‐solicitation studies, and thus, our experiment 
does not reflect a realistic scenario in this regard, we wanted to de-
termine whether knowing such information might bias expert classi-
fication in these actual studies.

We selected 27 experts from across western North America to 
classify the images; we chose experts from (a) northern BC and the 
Yukon (n = 9), where lynx are common but bobcats are likely absent 
(Figure 1; Gooliaff et al., 2018), (b) southern BC (n = 8), where both 
species are common (Figure 1; Gooliaff et al., 2018), and (c) the north-
western contiguous US (n = 10), where lynx are rare but bobcats are 
common (Hansen, 2007; McKelvey et al., 2000). We considered peo-
ple as bobcat or lynx experts if they were biologists who had field 
or image‐classification experience on either species. Even if some-
body had experience working with only one species, we felt that they 
should be able to distinguish the species more familiar to them from 
the less‐familiar species. For example, if somebody had experience 
working with lynx but not bobcats, they should be able to tell that an 
image of a bobcat is “not a lynx.” All of the people who participated in 
our experiment agreed that they had relevant experience to be con-
sidered an expert. Our panel of experts represented people likely to 
participate in studies on one or both species, or who would likely be 
asked to classify bobcat or lynx images. The experts consisted of me-
socarnivore and furbearer biologists from provincial, state, and federal 
government agencies, as well as private consultants and academics.

2.1 | Statistical analysis

Our response variable was the number of experts that classified 
each image as “bobcat,” “lynx,” or “unknown.” Because we used 
images that were contributed by the public, we were unable to in-
dependently verify the species in each image and thus could not 
conclude whether expert classifications were accurate. Instead, we 
measured agreement among experts in their classifications of the 
images (hereafter agreement) using Fleiss’ kappa (K), which meas-
ures reliability among a group of classifiers. We calculated K using 
the R package irr (Gamer, Lemon, Fellows, & Singh, 2014) and calcu-
lated 95% confidence intervals based on 1,000 bootstrap iterations 
using the R package boot (Canty & Ripley, 2017). K is bound between 
−1 and 1; a value of 1 indicates perfect agreement, 0 indicates agree-
ment that would occur by chance, and −1 indicates perfect disagree-
ment (Fleiss, 1971).

K is commonly used in medical fields to measure agreement 
among clinicians in their diagnosis of certain conditions from images 
(Barnett, Glickman, Umorin, & Jalali, 2018; Farr, Guitton, & Ring, 
2018; Vandenberk et al., 2018), but has also been used to measure 
agreement among biologists in identifying individual cougars (Puma 
concolor) from remote‐camera images (Alexander & Gese, 2018). 
There is no standardized method for interpreting or comparing K 
beyond relative differences between groups (Gwet, 2010). Many 
medical studies consider values >0.60 to represent “substantial” 
agreement (Landis & Koch, 1977); however, such studies often ask 
experts to rate the severity or progression of a disease or condi-
tion, whereas we asked experts to classify an animal species. Thus, 
in our study, we interpreted K more critically because experts were 
selecting from fewer and more distinct categories, conditions that 
typically increase K values (Sim & Wright, 2005).

We determined whether agreement varied between images with 
different characteristics (i.e., season, background habitat, visible fea-
tures, and time of day) by comparing K between categories of images 
within each trial (Table 1). We also determined the combination of 
image characteristics that resulted in the highest and lowest agree-
ment by pooling images with the same combination of characteristics 
from all categories. We determined whether knowing the location of 
an image affected agreement by comparing K when experts knew the 
location of an image to when they did not for images taken in north-
ern and southern BC (Figure 1). We also determined whether agree-
ment varied depending on the rarity of a species where experts lived 
by comparing K between experts from the three regions, and deter-
mined whether knowing the location of an image affected agreement 
within expert groups differently for either northern or southern im-
ages. We also determined whether experts were consistent in their 
classifications by having them unknowingly reclassify images from 
the first trial (“season” trial) 10 weeks later and calculating K between 
their first and second classifications of the same images.

In addition to calculating K across different kinds of images, we 
also calculated the proportion of agreement for individual images 
using the following equation, where bobcat, lynx, and unknown are 
the number of experts that classified an image as “bobcat,” “lynx,” 
and “unknown,” respectively, and n is the total number of experts:

With three classification options, the proportion of agreement had 
an upper bound of 1.00, indicating perfect agreement and had a lower 
bound of 0.31, indicating perfect disagreement (i.e., of 27 experts, 
nine each classified an image as “bobcat,” “lynx,” and “unknown”).

Finally, we calculated the number of experts required to classify 
an image to reach a final classification (i.e., the number of experts at 
which the majority classification was unlikely to change by asking 
more experts). We calculated the mean probability that the majority 
classification (i.e., the classification of the greatest number of ex-
perts) of a randomly selected subset of one to 27 experts matched 
the majority classification of all 27 experts.

[(bobcat2+ lynx
2
+unknown

2)−n]

n× (n−1)
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3  | RESULTS

All 27 experts completed each of the six trials (Table 1). The follow-
ing results refer to all images in the first five trials (n = 259 images); 
this set excludes the 40 images in the “location” trial for which we 
provided locations. The total number of individual expert classifica-
tions was 6,993 (27 experts × 259 images); the experts classified 
the images as “unknown” in 11% (n = 753) of classifications and as 
“bobcat” or “lynx” in 89% (n = 6,240) of classifications.

Of these 259 images, 71% (n = 185) had ≥1 experts classify that 
image as “unknown.” Experts reached a majority classification of 
“unknown” for 3% (n = 9) of images, but experts did not unanimously 
classify any images as “unknown.” Experts unanimously classified 
24% (n = 61) of images as being either “bobcat” or “lynx,” while 39% 
(n = 101) of images had ≥1 experts classify that image as “bobcat” 
and ≥1 as “lynx.”

Overall, the 27 experts had moderate agreement in their clas-
sifications of the 259 images (K = 0.64, 95% CI = 0.60–0.68). The 
majority of images did not have a unanimous classification by the 
experts (76%; Figure 2a); the mean proportion of agreement score 

for individual images was 0.79 (SD = 0.19), but was highly variable 
(Figure 2b; Table 2). However, experts appeared to have similar 
agreement for each species; the mean proportion of agreement 
score was 0.84 (SD = 0.18, n = 92) and 0.77 (SD = 0.19, n = 167) for 
images that we had classified as “bobcat” and “lynx,” respectively.

Experts had varying levels of agreement between images with 
different characteristics (Table 3, Figure 3). Experts had far greater 
agreement for winter images than summer images. Experts had 
greater agreement for images with a background showing human 
infrastructure or grassland than for images with a forest back-
ground. Experts had greater agreement for images showing the full 
body or only the face and legs of an animal than images showing 
only the face or only the legs and tail of an animal. Experts had 
greater agreement for images taken at night than images taken 
during the day. Experts had the lowest agreement for daytime sum-
mer images with a forest background showing only the legs and tail 
of an animal (K = 0.34, 95% CI = 0.17–0.56, n = 15 images). Experts 
had the greatest agreement for daytime winter images with a forest 
background showing only the face and legs of an animal (K = 0.80, 
95% CI = 0.72–0.88, n = 35 images). Experts had greater agreement 

TA B L E  1  Characteristics of the 15 image categories within the six trials

Trial Season Background habitat Time Visible features Location provided

1) Season

Summera (n = 20) Summer Forest Day 2 of: face, legs, or tail No

Winterb (n = 20) Winter Forest Day 2 of: face, legs, or tail No

2) Background habitat

Forest (n = 20) Summer Forest Day 2 of: face, legs, or tail No

Grassland (n = 20) Summer Grassland Day 2 of: face, legs, or tail No

Developedc (n = 20) Summer Developed Day 2 of: face, legs, or tail No

3) Visible features

Full body (n = 20) Winter Forest Day Face, legs and tail No

Face only (n = 20) Winter Forest Day Face only No

Face and legs (n = 20) Winter Forest Day Face and legs only No

Legs and taild (n = 19) Winter Forest Day Legs and tail only No

4) Time

Day (n = 20) Winter Forest Day 2 of: face, legs, or tail No

Nighte (n = 20) Winter Forest Night 2 of: face, legs, or tail No

5) Location

a) Location provided

Northern BC (n = 20) Summer Forest Day 2 of: face, legs, or tail Yes

Southern BC (n = 20) Summer Forest Day 2 of: face, legs, or tail Yes

b) Location not provided

Northern BC (n = 20) Summer Forest Day 2 of: face, legs, or tail No

Southern BC (n = 20) Summer Forest Day 2 of: face, legs, or tail No

6) Consistencyf

aImages taken between April and September, and showing no snow. bImages taken between October and March, and showing snow. cImages showing 
human infrastructure, such as houses, barns, or patios. dOne image was mistakenly included twice in this category; responses for the second time it 
appeared were removed from all analyses. eBlack and white images taken at night. fThis trial contained the same images as the first trial, but they were 
randomly reordered. 
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when the location of an image was provided, and experts had 
greater agreement for southern images than northern images when 
they knew the location of an image (Table 3).

Experts were inconsistent even with themselves, as shown by 
comparing classifications of the 40 images in the “season” trial with 
classifications of those same images 10 weeks later. No expert had 
the same classifications for all images between the two trials; on 
average, experts changed their classifications on seven of the 40 
images (SD = 3.4, range = 1–15). Experts had a mean consistency 
(i.e., agreement) with themselves of K = 0.67 (SD = 0.14, range = 
0.29–0.94, n = 27). Further, we mistakenly included one image twice 
in the “legs and tail” category, and three experts changed their clas-
sification of this repeated image within the same trial. However, ex-
perts showed improved agreement between the first and last trials; 
whereas experts had an agreement of K = 0.55 (95% CI = 0.43–0.68) 
for images in the first trial (“season” trial), experts had an agreement 

of K = 0.63 (95% CI = 0.47–0.74) for the same images 10 weeks later 
(“consistency” trial).

Experts had contradictory majority classifications for different 
images of the same animal in two cases (Figure 4a). Out of all 299 
images, there were 27 sets of images where this discrepancy could 
happen (i.e., where there were different images of the same animal 
but in different trials). The top two images in Figure 4a are of the 
same animal, but experts had a majority classification of “lynx” for 
the left image and “bobcat” for the right image. Similarly, the bottom 
two images in Figure 4a are of the same animal, but experts had a 
majority classification of “unknown” for the left image and “bobcat” 
for the right image. In both cases, experts did not know where each 
image was taken, and images had the same characteristics, but the 
images varied slightly in the perspective of the animal.

Experts from the three regions had similar levels of agreement; 
nine northern BC and Yukon experts had an agreement of K = 0.64 

F I G U R E  2  Distribution of (a) the number of experts that classified individual images as the majority classification and (b) the proportion 
of agreement scores among all 27 experts for individual images in all categories excluding the 40 images for which we provided locations 
(n = 259 images). With three classification options, the proportion of agreement had an upper bound of 1.00, indicating perfect agreement, 
and a lower bound of 0.31, indicating perfect disagreement

Propor�on of agreement

Pe
rc

en
ta

ge
 o

f i
m

ag
es

No. of experts that classified the image as the majority classifica�on

0

5

10

15

20

25

30

35

13– 14 15– 16 17– 18 19– 20 21– 22 23– 24 25– 26 27

0

5

10

15

20

25

0.30– 0.39 0.40– 0.49 0.50– 0.59 0.60– 0.69 0.70– 0.79 0.80– 0.89 0.90–  0.99 1

(a)

(b)



     |  11015GOOLIAFF and HODGES

(95% CI = 0.60–0.69), eight southern BC experts had an agreement 
of K = 0.60 (95% CI = 0.55–0.64), and 10 northwestern US experts 
had an agreement of K = 0.67 (95% = 0.63–0.71). Expert groups had 
different majority classifications for only 6% (n = 15) of images: 13 
where one or two groups had a majority classification of “bobcat” 
or “lynx” while the other group(s) had a majority classification of 
“unknown,” and two where different groups had a majority classi-
fication of “bobcat” and “lynx.” The three expert groups had similar 
levels of agreement for images for which we provided locations, 
and also had similar consistency for retested images.

Experts did reach a clear majority classification for most images 
(Figure 2a). On average, classifications of a single expert matched 
the majority classification of all 27 experts for 87% of the 259 im-
ages (median = 90%, range = 64%–97%). For five or more randomly 
selected experts, there was a mean probability of >0.90 that their 
majority classification matched the final majority classification of all 
experts, but a mean probability of 0.95 required 11 or more experts 
(Figure 5).

If the majority classification was correct for all images, then 
experts were incorrect in 4% of classifications, excluding classifi-
cations of “unknown” (i.e., 238 out of 6,240 individual expert clas-
sifications of either “bobcat” or “lynx” did not match the majority 
classification). If the majority classification was incorrect for all 
images, the misclassification rate would instead be 37%. The true 
misclassification rate is probably somewhere between these two 
bounds. Although we could not conclusively determine whether 
expert classifications were correct, 102 images were from loca-
tions where only one of the two species is known to be present: 29 
bobcat images were from the southern coast of BC where lynx are 
likely absent, and 73 lynx images were from north of Highway 16 
in northern BC where bobcats are likely absent (Figure 1; Gooliaff 
et al., 2018). If our classifications of these images are correct, then 
the majority classification of all experts was correct for all images in 
this subset excluding three images that had a majority classification 
of “unknown.” The misclassification rate for this subset of images 
would be 4%, excluding classifications of “unknown” (i.e., 91 out of 

TA B L E  2  Examples of images with poor agreement among experts in their classifications (n = 27 experts). Images were cropped from 
original versions; thus, they do not show all of the background features observed by the experts that classified them. Images provided by: (A) 
Paul Morgan, (B) Amber Piva, (C) Jacqueline Brown, (D) Myrna Blake, (E) Bert Gregersen, (F) Scott MacDonald, (G) Donald Hendricks, and (H) 
John E. Marriott

Image

No. of expert classifications
Proportion of 
agreementa Season

Background 
habitat

Visible 
features LocationBobcat Lynx Unknown

A 8 13 6 0.34 Summer Grassland Full body McBride

B 7 15 5 0.39 Summer Developed Full body Kamloops

C 6 16 5 0.41 Summer Forest Full body Tatla Lake

D 8 3 16 0.43 Summer Grassland Legs and tail Fort Nelson

E 5 5 17 0.44 Winter Forest Face only Vernon

F 16 9 2 0.45 Summer Developed Full body Invermere

G 17 7 3 0.46 Summer Forest Full body Cache Creek

H 7 19 1 0.55 Summer Grassland Full body Fort Nelson

aThe proportion of agreement had an upper bound of 1.00, indicating perfect agreement, and had a lower bound of 0.31, indicating perfect 
disagreement. 
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2,481 individual expert classifications of either “bobcat” or “lynx” 
did not match our classification).

Finally, we note that the two of us as authors had sequences for 
many and contextual information for all images and agreed with the 
majority classification of all 288 images in our experiment that had 
a majority classification of “bobcat” or “lynx” except for two; one 
majority classification by the experts was “lynx,” one “bobcat,” while 
we held the opposite views. One of those images is the top right 
image in Figure 4a.

4  | DISCUSSION

We demonstrate far from perfect agreement among experts in 
distinguishing between images of two similar sympatric and con-
generic species, bobcats and lynx. Previous work has shown that 
experts cannot reliably classify unique individuals from images for 
species that lack distinct markings (Alexander & Gese, 2018); we 
extend this unreliability to the species level for similar sympatrics. 
Experts had different levels of agreement for images with differ-
ent characteristics, but in no case did experts have high enough 
agreement that we would consider the classification of such images 
by a single expert to be reliable. While we could not calculate the 
absolute misclassification rate because the true classifications of 
animals in the images were not independently confirmed, the mis-
classification rate was between 4% (if the majority classification 
was correct for all images) and 37% (if the majority classification 
was incorrect for all images).

TA B L E  3  Agreement among all experts (n = 27) in their 
classifications of images within each category of images. All values 
of Fleiss’ kappa had a p‐value <0.001

Category
No. of 
images

No. of images 
with a 
unanimous 
classification

Fleiss’ kappa 
(95% CI)a

Season

Summer 20 1 0.36 (0.21–0.52)

Winter 20 6 0.77 (0.64–0.93)

Background habitat

Forest 20 3 0.47 (0.34–0.63)

Grassland 20 6 0.64 (0.51–0.78)

Developed 20 10 0.66 (0.46–0.89)

Visible features

Face only 20 6 0.66 (0.55–0.79)

Legs and tail 19 3 0.66 (0.55–0.79)

Full body 20 6 0.77 (0.62–0.98)

Face and legs 20 8 0.81 (0.73–0.92)

Time

Day 20 2 0.58 (0.41–0.79)

Night 20 4 0.64 (0.53–0.78)

Combinations (all daytime)b

Summer, forest, 
legs and tail

15 0 0.34 (0.17–0.56)

Summer, 
developed, full 
body

10 6 0.40 (0.18–0.77)

Summer, forest, full 
body

39 6 0.47 (0.35–0.60)

Summer, forest, 
face and legs

24 3 0.51 (0.37–0.69)

Summer, grassland, 
full body

12 4 0.58 (0.43–0.79)

Winter, forest, legs 
and tail

26 3 0.61 (0.50–0.75)

Winter, forest, face 
only

20 6 0.66 (0.55–0.80)

Winter, forest, full 
body

36 8 0.74 (0.65–0.85)

Winter, forest, face 
and legs

35 14 0.80 (0.72–0.88)

Location provided

Northern BC 20 3 0.21 (0.08–0.38)

Southern BC 20 4 0.62 (0.45–0.83)

Total 40 7 0.50 (0.35–0.68)

Location not provided

Northern BC 20 2 0.04 (0.01–0.07)

Southern BC 20 1 0.55 (0.44–0.69)

Total 40 3 0.44 (0.32–0.57)
aMeasures agreement among a group of classifiers; a value of 1 indicates 
perfect agreement, whereas a value of 0 indicates agreement that would 
occur by chance. bImages were pooled together from all categories ex-
cluding the 40 images for which we provided locations. Only combina-
tions with ≥10 images are shown. 

F I G U R E  3  Agreement among all experts (n = 27) in their 
classifications of images within each category of images. All 
values of Fleiss’ kappa had a p‐value <0.001. Bars represent 95% 
confidence intervals. Fleiss’ kappa measures agreement among 
a group of classifiers; a value of 1 indicates perfect agreement, 
whereas a value of 0 indicates agreement that would occur by 
chance
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Further, we were surprised at the frequent use of “unknown” as a 
classification by the experts in our study: experts classified images as 
“unknown” in 11% of classifications, and a striking 71% of images had 
≥1 experts classify that image as “unknown.” Thus, in many cases, ex-
perts were not confident enough to classify the species in the image. 
These results are particularly troubling given that the images were 
all of high photographic quality. We do not know whether experts or 
novices would be more likely to classify images as “unknown”; experts 
may be aware of pitfalls in classification that novices do not know to 
look for, which could mean that experts use “unknown” more often 
than novices when images do not include critical defining features. 
Alternatively, novices may doubt their ability to classify a species, 
thus using “unknown” more frequently. Regardless, we provided the 
option of classifying each image as “unknown” rather than forcing ex-
perts to choose between “bobcat” and “lynx” to allow for such cases 
of genuine uncertainty. If we had forced experts to assign a species 
to each image, our calculated minimum misclassification rate of 4% 
would likely have been much higher. We recommend that researchers 
honor and trust cases of uncertainty where they cannot confidently 
classify the species in an image.

Expert agreement varied among different kinds of images. The 
largest difference was that experts had much lower agreement for 

F I G U R E  4  Examples of how the 
visible features of an animal and the 
location of an image can affect expert 
classification. (a) The top two images 
are of the same animal but show slightly 
varying body parts and had different 
majority classifications by the experts; the 
same occurred for the bottom two images. 
We show the number of experts that 
classified each image as “bobcat,” “lynx,” 
and “unknown.” (b) Both images are of the 
same animal taken near Prince George, 
British Columbia and have the same 
image characteristics. The image on the 
left was not included in our experiment 
but had a 4:4 split vote between bobcat 
and lynx among local biologists who were 
asked to classify the image. We included 
the image on the right in our experiment 
without providing its location; 26 experts 
classified the image as “bobcat”, and one 
expert classified the image as “unknown”. 
Images provided by (from top to bottom 
row): BC Parks, Emre Giffin, James 
Gagnon

F I G U R E  5  Mean probability that the majority classification 
of a randomly selected subset of experts matched the majority 
classification of all 27 experts, calculated across all images 
excluding the 40 images for which we provided locations (n = 259 
images). Bars represent 95% confidence intervals. Probabilities 
are lower for even numbers of experts because of the likelihood 
of drawing a split vote, which is not possible for odd numbers of 
experts
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summer images than for winter images. Bobcats and lynx are likely 
more difficult to distinguish in the summer because lynx have much 
lighter summer pelage and often become more brownish, and hence 
more similar to bobcats, whereas in the winter, lynx have thick, gray‐
silver pelage. Experts also had lower agreement for images showing 
only the face or only the legs and tail than images showing the full 
body or only the face and legs of an animal, suggesting that it may 
be easiest to distinguish between the two species when both the 
face and legs are visible. Surprisingly, experts had slightly higher 
agreement for images taken at night than images taken during the 
day. Perhaps experts found it easier to distinguish between the two 
species at night because they were forced to focus on the physical 
features of each animal, rather than taking the color of an animal 
into account.

Expert agreement also depended on the background of images. 
Experts may have cued in on certain background features to aid in 
their classifications, for example, associating tree species or habitat 
with one species over the other. Some of the experts spontaneously 
commented to us after the study was complete that for some images 
they had based their classifications on the vegetation. Experts had 
lower agreement for images with a forest background than images 
with a background of grassland or human infrastructure, likely be-
cause grassland and developed habitats are more characteristic of 
bobcats, but both species use forests.

Further, we showed that the location of an image can also af-
fect expert classification; experts had greater agreement when they 
were provided with the location of an image. Again, spontaneous 
post‐study comments from experts revealed that some experts used 
the location of an image to “confirm” their selections. However, while 
we expected experts to have greater agreement for images that we 
provided locations for, we were surprised to find that experts had 
greater agreement for southern images than northern images when 
the location was provided. We expected the opposite because bob-
cats are likely absent in northern BC; thus, there was essentially only 
one choice for northern images, whereas knowing the location of 
southern images should have provided little help since both species 
are common there (Figure 1; Gooliaff et al., 2018). Instead, some 
experts classified images from northern parts of the province as 
“bobcat,” counter to our expectation. This result suggests that those 
experts were not familiar with the distribution of bobcats in BC. 
Still, we strongly suspect that the location of an image can bias its 
classification if the person classifying the image has a preconceived 
idea of the species’ distribution, which can lead to misclassification 
of similar species if one species is thought to be extremely rare or 
absent in a particular area, when in fact it is present. As some spe-
cies suffer range contractions and population declines, while others 
expand ranges with climate change, we think this possible location 
bias is worth further study.

For example, the left image in Figure 4b was taken near Prince 
George in 2016, and sent to us as part of our citizen science search 
for images (Gooliaff et al., 2018). At the time, there had never been 
a confirmed bobcat record that far north. We classified the image as 
“bobcat,” but the image was widely circulated on social media and 

the local news station, which sparked an intense debate among hunt-
ers, trappers, and naturalists as to whether the animal was a bobcat 
or lynx. Biologists in Prince George were asked by the local news 
station to classify the image, and initially four biologists thought 
“bobcat” and four biologists thought “lynx.” After additional images 
showing the animal’s paws were shared, those biologists shifted to-
ward classifying the image as “bobcat” or “possible hybrid” (K. Otter, 
University of Northern British Columbia, personal communication). 
The right image in Figure 4b is of the same animal and shares the 
same characteristics (i.e., season, background habitat, visible fea-
tures, and time of day) as the left image. We asked experts to classify 
the right image in our experiment without providing its location; 26 
experts classified the image as “bobcat” and one as “unknown.”

Despite the fact that experts unanimously classified only 24% 
(n = 61) of images, experts did reach a clear majority classification for 
most images. Thus, while classifications of an image by a single ex-
pert were unreliable, we believe that the final majority classifications 
were correct for most images. Our findings suggest that the location 
of an expert did not matter, as long as many experts were asked. We 
found only slight differences in agreement between experts from 
northern BC and the Yukon, southern BC, and the northwestern US, 
suggesting that experts were not biased by the rarity of a species in 
the area where they live.

4.1 | Implications for studies using wildlife images

As photographic data become increasingly used in ecological studies 
for many groups of species (Rowcliffe & Carbone, 2008, Burton et 
al., 2015, Steenweg et al., 2017, Wisconsin Department of Natural 
Resources, 2018), we urge researchers to reevaluate and report how 
they classify their images. Reviews on the best practices for such 
studies focus on data management and sharing (Scotson et al., 2017; 
Wearn & Glover‐Kapfer, 2017); we highlight the need to also think 
carefully about image classification.

We acknowledge that our experiment does not mirror actual 
camera‐trapping or image‐solicitation studies because experts 
were provided with single independent images without any contex-
tual information; however, we interpret our results to indicate that 
image classifications by a single expert are unreliable for species 
with similar sympatrics in such studies. In camera‐trapping studies, 
researchers know the landscape and local sites where cameras are 
installed and can measure distances from the camera to estimate 
animals’ sizes. In image‐solicitation studies, researchers know at 
least the general location of images. These design features might 
help with classification, but might also mean that the implicit bias 
of an individual classifier might result in misclassifications (e.g., the 
aforementioned case in Prince George where experts did not expect 
bobcats to be present). Both types of studies also often produce 
multiple images of the same animal, some of which show different 
body parts, which would likely improve classification. It would be 
valuable to conduct a study based on sequences of images for each 
animal to compare agreement among experts in their classifications 
when multiple rather than single images are available. However, we 
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note that in our public solicitation for images (Gooliaff et al., 2018), 
approximately half of detections from remote cameras (44%) and 
conventional cameras (52%) still had only single images.

Although here we measured agreement among people in clas-
sifying single images, our experiment was based on the best‐case 
scenario of experts classifying images of high photographic quality. 
While we randomly selected images for our experiment to ensure 
that we did not consciously or subconsciously choose images that 
were easy or difficult to classify, our initial screen of using only 
high‐quality images meant that our collection of images was likely 
far easier to classify than images that would typically be collected 
in camera‐trapping or image‐solicitation studies, as blurry images or 
those with animals more distant from the camera would be more 
difficult to classify (Meek et al., 2013).

Misclassification rates would also likely be higher when images 
are classified by non‐experts, such as volunteers and crowdsourcing 
(McShea et al., 2016; Swanson et al., 2016; Wisconsin Department 
of Natural Resources, 2018). Image classifications by non‐experts 
may be suitable for species that are distinctive, but we strongly sug-
gest caution when classifying images for species with similar sym-
patrics; we recommend that such images be flagged for classification 
by multiple experts. Specifically, we recommend that studies using 
wildlife images consult at least five species experts when classify-
ing images showing species with similar sympatrics. Still, we stress 
that the majority classification of even five experts is not necessarily 
correct, only that the majority classification is unlikely to change by 
asking more experts.

Further, we recommend that researchers be explicit about 
their methods for classifying images. If researchers employ a de-
sign where most images are classified by one or two individuals 
who then consult with colleagues on difficult images, we urge 
such information to be provided, for example, specifying whether 
the main classifiers disagreed on the classification of such images, 
or whether all images that met a certain profile were flagged for 
further scrutiny. When sharing metadata from camera‐trapping 
and image‐solicitation studies, we recommend that researchers 
include information on the number of people who classified each 
image, whether those people were experts or non‐experts, and 
the individual classifications of each researcher. We also suggest 
that researchers make available the raw images to provide the 
option of reclassifying certain images in future studies, at least 
images that are highly influential to the final conclusions that are 
drawn (e.g., images from range edges, or images that are the only 
record of a species in a given locality).

Images have been described as being conclusive evidence 
for the presence of a species, even when that species is thought 
to be absent or extinct (McKelvey et al., 2008), but that is only 
true if the species in the image can be conclusively classified. We 
show that experts find it difficult to distinguish between images 
of similar species, which implies that images collected from cam-
era trapping or public solicitation should not be taken as definitive 
evidence of species presence for any species that may be readily 
misclassified as a similar sympatric, such as bobcats and lynx, but 

rather as an initial subjective screen and then followed with defin-
itive, objective survey methods such as noninvasive DNA sampling 
or live‐trapping.
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