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Abstract
Camera	trapping	and	solicitation	of	wildlife	images	through	citizen	science	have	be-
come	common	tools	in	ecological	research.	Such	studies	collect	many	wildlife	images	
for	which	correct	species	classification	is	crucial;	even	low	misclassification	rates	can	
result	 in	erroneous	estimation	of	the	geographic	range	or	habitat	use	of	a	species,	
potentially	hindering	conservation	or	management	efforts.	However,	some	species	
are	difficult	to	tell	apart,	making	species	classification	challenging—but	the	literature	
on	classification	agreement	rates	among	experts	remains	sparse.	Here,	we	measure	
agreement	among	experts	 in	distinguishing	between	 images	of	 two	similar	conge-
neric	species,	bobcats	(Lynx rufus)	and	Canada	lynx	(Lynx canadensis).	We	asked	ex-
perts	to	classify	the	species	in	selected	images	to	test	whether	the	season,	background	
habitat,	time	of	day,	and	the	visible	features	of	each	animal	(e.g.,	face,	legs,	tail)	af-
fected	agreement	among	experts	about	the	species	in	each	image.	Overall,	experts	
had	moderate	 agreement	 (Fleiss’	 kappa	=	0.64),	 but	 experts	 had	varying	 levels	 of	
agreement	depending	on	these	image	characteristics.	Most	images	(71%)	had	≥1	ex-
pert	classification	of	“unknown,”	and	many	images	(39%)	had	some	experts	classify	
the	image	as	“bobcat”	while	others	classified	it	as	“lynx.”	Further,	experts	were	incon-
sistent	 even	 with	 themselves,	 changing	 their	 classifications	 of	 numerous	 images	
when	they	were	asked	to	reclassify	the	same	images	months	later.	These	results	sug-
gest	that	classification	of	 images	by	a	single	expert	 is	unreliable	for	similar‐looking	
species.	Most	of	 the	 images	did	obtain	a	clear	majority	classification	 from	the	ex-
perts,	although	we	emphasize	that	even	majority	classifications	may	be	incorrect.	We	
recommend	that	researchers	using	wildlife	images	consult	multiple	species	experts	
to	increase	confidence	in	their	image	classifications	of	similar	sympatric	species.	Still,	
when	the	presence	of	a	species	with	similar	sympatrics	must	be	conclusive,	physical	
or	genetic	evidence	should	be	required.
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1  | INTRODUC TION

Ecological	research	is	experiencing	an	explosion	in	the	use	of	wildlife	
imagery.	Camera	trapping	has	become	a	common	noninvasive	sur-
vey	 technique	 (Burton	et	al.,	2015;	O’Connell,	Nichols,	&	Karanth,	
2011;	 Rowcliffe	&	Carbone,	 2008),	 especially	 for	 rare	 and	 elusive	
forest‐dwelling	species	(Furnas,	Landers,	Callas,	&	Matthews,	2017;	
Stewart	et	al.,	2016),	and	has	been	used	to	obtain	crucial	ecological	
information	 (Caravaggi	et	al.,	2017).	Landscape‐scale	camera	grids	
or	 transects	 are	 increasing	 across	 the	 globe	 (McShea,	 Forrester,	
Costello,	He,	&	Kays,	2016),	and	such	sampling	may	be	used	to	mon-
itor	global	biodiversity	in	the	future	(Rich	et	al.,	2017;	Steenweg	et	
al.,	 2017).	 For	 example,	 the	 project	 Snapshot	Wisconsin	 currently	
has	over	1,000	registered	volunteers	maintaining	over	1,200	remote	
cameras	and	has	collected	over	22	million	images	since	it	was	estab-
lished	in	2016	(Wisconsin	Department	of	Natural	Resources,	2018).	
Similarly,	numerous	websites	and	mobile	phone	applications	encour-
age	people	 to	 submit	wildlife	 images	 for	 the	purpose	of	 assessing	
species’	 distributions.	 For	 example,	 the	 United	 Kingdom	Mammal	
Tracker	application	allows	the	general	public	to	submit	geo‐located	
images	of	39	wildlife	species	(Mammal	Watch	South	East,	2018).

Such	camera	networks	and	 image‐solicitation	projects	can	col-
lect	 substantial	 data	 across	 broad	 scales,	 but	 the	 data	may	 be	 of	
limited	utility	because	of	 the	need	to	classify	 the	animals	 that	 the	
images	contain	(He	et	al.,	2016;	Newey	et	al.,	2015;	Wearn	&	Glover‐
Kapfer,	 2017).	 Researchers	 are	 typically	 interested	 in	 classifying	
each	animal	to	the	species	level	and	in	many	cases	even	to	individ-
uals	(Rich	et	al.,	2014;	Weingarth	et	al.,	2012).	However,	classifying	
images	is	difficult	when	they	are	blurry,	taken	in	poor	lighting,	show	
only	part	of	 the	animal,	or	when	only	one	 image	 is	 available	 for	 a	
given	animal	(Meek,	Vernes,	&	Falzon,	2013).

Further,	even	high‐quality	 images	may	be	difficult	 to	classify	 if	
the	 species	has	 similar	 sympatrics	 (McShea	et	 al.,	 2016;	Swanson,	
Kosmala,	Lintott,	&	Packer,	2016;	Yu	et	al.,	2013),	especially	if	classi-
fiers	have	a	bias	toward	one	sympatric	species	over	another,	perhaps	
based	on	the	location	or	background	habitat	of	an	image.	For	exam-
ple,	 rare	 species	 can	have	higher	 false‐positive	 and	 false‐negative	
errors	than	common	species	 (McKelvey,	Aubry,	&	Schwartz,	2008;	
Swanson	 et	 al.,	 2016).	 Similar	 concerns	 have	 also	 been	 raised	 for	
classification	of	acoustic	records	for	groups	such	as	bats,	cetaceans,	
amphibians,	and	birds	(Chambert,	Waddle,	Miller,	Walls,	&	Nichols,	
2017).	Correct	species	classification	is	crucial;	even	low	misclassifi-
cation	rates	can	lead	to	significant	over‐	or	underestimation	of	the	
occupancy,	habitat	preferences,	or	distribution	of	a	species	(Costa,	
Foody,	Jiménez,	&	Silva,	2015;	Miller	et	al.,	2011;	Molinari‐Jobin	et	
al.,	2012;	Royle	&	Link,	2006),	which	could	hinder	conservation	ef-
forts	(McKelvey	et	al.,	2008).

Camera‐trapping	 and	 image‐solicitation	 studies	 have	used	 var-
ious	methods	 for	 image	classification;	manual	 classification	by	 the	
lead	 researchers,	 hired	 technicians,	 or	 volunteer	 students	 is	most	
common,	 but	 crowdsourcing	 from	 the	 general	 public	 (Swanson	 et	
al.,	2016;	Wisconsin	Department	of	Natural	Resources,	2018)	and	
automated	 classification	by	 computer	 software	 (Hiby	 et	 al.,	 2009;	

Jiang	et	al.,	2015)	have	also	been	used.	 In	our	experience	and	ob-
servations	 of	 studies	 where	 images	 are	 manually	 classified,	 most	
images	 are	 classified	 by	 only	 a	 single	 person,	 but	 the	 number	 of	
classifiers	and	their	expertise	are	rarely	reported.	Despite	the	fact	
that	even	highly	trained	experts	are	not	always	correct	(Alexander	&	
Gese,	2018;	Austen,	Bindemann,	Griffiths,	&	Roberts,	2016;	Gibbon,	
Bindermann,	 &	 Roberts,	 2015;	Meek	 et	 al.,	 2013;	 Swanson	 et	 al.,	
2016),	the	accuracy	of	image	classifications	is	rarely	questioned.

Classification	of	images	by	a	single	person	may	be	adequate	when	
classifying	high‐quality	images	of	species	that	are	distinctive,	such	as	
mountain	goats	(Oreamnos americanus),	porcupines	(Erethizon dorsatum),	
and	snow	leopards	(Panthera uncia),	but	may	be	unreliable	for	sympatric	
species	that	are	similar	in	size,	shape,	or	coloration	(Meek	et	al.,	2013).	
Many	 species	 across	 the	 globe	 fall	 into	 this	 category	 such	 as	 bears,	
deer,	lemurs,	some	mustelids,	felids	and	antelopes,	as	well	as	many	bats,	
raptors,	and	owls.	Specific	examples	include	grizzly	bear	(Ursus arctos) 
versus	black	bear	(Ursus americanus),	mule	deer	(Odocoileus hemionus) 
versus	white‐tailed	deer	(Odocoileus virginianus),	nyala	(Tragelaphus an‐
gasii)	versus	greater	kudu	(Tragelaphus strepsiceros),	and	sharp‐shinned	
hawk	(Accipiter striatus)	versus	Cooper’s	hawk	(Accipiter cooperii).

Here,	we	use	bobcats	(Lynx rufus)	and	Canada	lynx	(Lynx canaden‐
sis;	hereafter	lynx)	as	a	case	study	to	measure	agreement	among	ex-
perts	in	their	classifications	of	images	of	similar	sympatrics.	Bobcats	
and	lynx	are	congeneric	felids	similar	in	size	and	appearance	that	are	
sympatric	across	southern	Canada	and	the	northern	United	States	
(Gooliaff,	Weir,	&	Hodges,	2018;	Hansen,	2007;	McKelvey,	Aubry,	
&	Ortega,	2000).	Although	bobcats	and	lynx	look	similar,	they	have	
slight	anatomical	differences	(Hansen,	2007;	Lewis,	2016).	Lynx	have	
larger	paws,	longer	legs	and	have	more	of	an	arched	back	compared	
to	the	straighter	profile	of	bobcats.	Lynx	have	more	pronounced	fa-
cial	ruffs	and	longer	ear‐tufts,	as	well	as	shorter,	solid	black‐tipped	
tails,	as	opposed	to	the	longer,	black	and	white‐tipped	tails	of	bob-
cats.	Bobcats	 also	have	black	heel	marks	 that	 are	 absent	on	 lynx,	
and	usually	have	more	brownish	and	spotted	pelage	compared	to	the	
gray‐silver	pelage	of	lynx.

Bobcats	 are	 common	 and	 are	 legally	 harvested	 in	 both	 coun-
tries,	 but	 lynx	are	 federally	 listed	as	 threatened	 in	 the	 contiguous	
US	(US	Fish	&	Wildlife	Service,	2000).	Classification	of	felid	images	
in	the	contiguous	US	thus	has	direct	conservation	 implications	for	
lynx;	 bobcats	 falsely	 classified	 as	 lynx	 could	 result	 in	 false	 occu-
pancy	or	distribution	maps,	or	protection	of	areas	that	are	not	in	fact	
used	by	lynx,	whereas	lynx	misclassified	as	bobcats	could	result	 in	
under‐protection.

2  | MATERIAL S AND METHODS

We	measured	agreement	among	experts	 in	 their	classifications	of	
bobcat	and	 lynx	 images	that	we	collected	through	citizen	science.	
In	a	separate	study,	we	solicited	4,399	images	of	bobcats	and	lynx	
from	the	public	across	British	Columbia,	Canada	to	examine	the	pro-
vincial	distribution	of	each	species	(Figure	1;	Gooliaff	et	al.,	2018).	
We	received	2,648	images	(837	separate	detections)	of	bobcats	and	
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lynx	from	remote	cameras	(x̅	images	per	sequence	=	3.2,	median	=	
2,	 range	=	1–38,	44%	of	 detections	had	only	 a	 single	 image),	 and	
1,736	images	(748	separate	detections)	from	conventional	cameras	
and	camera	phones	(x̅	images	per	sequence	=	2.3,	median	=	1,	range	
=	1–26,	52%	of	detections	had	only	a	single	image).

We	subsampled	those	images	to	create	six	trials	of	images	each	
designed	 as	 separate	 experiments	 to	 investigate	 different	 factors	
that	we	thought	might	affect	agreement	among	the	experts	in	their	
classifications	of	 images;	we	 tested	 the	 (a)	 season,	 (b)	background	
habitat,	(c)	visible	features	of	the	animal,	and	(d)	time	of	day	in	im-
ages,	and	(e)	whether	we	provided	the	location	of	images	to	the	ex-
perts	(Table	1).	The	sixth	trial	was	a	retest	of	the	first	set	of	images,	
to	assess	whether	experts	were	consistent	in	their	classifications	of	
the	same	images	months	later.	We	divided	images	into	trials	rather	
than	providing	them	all	at	once	both	to	make	it	easier	for	the	experts	
and	so	that	each	factor	that	we	tested	was	isolated	in	one	set	of	im-
ages.	Within	each	trial	there	were	multiple	categories	of	images	(e.g.,	
“summer”	and	“winter”	categories	in	the	“season”	trial);	we	compared	
agreement	among	the	experts	in	their	classifications	of	the	images	
between	these	different	categories	(Table	1).

To	select	images	for	the	different	categories,	we	first	chose	im-
ages	from	the	entire	set	that	were	of	good	photographic	quality	(i.e.,	
the	animal	was	in	focus	and	not	distant),	were	of	single,	alive,	adult	
individuals	that	showed	no	bait	or	prey,	and	that	were	not	submitted	
by	 any	 participating	 experts.	We	did	 not	 crop,	 edit	 or	modify	 the	
images.	We	then	randomly	selected	images	to	populate	each	cate-
gory	 (Table	1).	Within	each	category,	all	 image	characteristics	 (i.e.,	
season,	background	habitat,	visible	features,	and	time	of	day)	were	
consistent.

Each	image	was	used	only	once,	except	for	images	in	the	“season”	
trial	which	were	repeated	as	the	“consistency”	trial.	We	also	mistak-
enly	included	one	image	twice	in	the	“legs	and	tail”	category.	We	dis-
regarded	the	second	classifications	from	the	experts	for	this	image	
in	all	analyses,	which	resulted	in	the	“legs	and	tail”	category	contain-
ing	19	 images	 rather	 than	20.	Multiple	 images	 that	were	 taken	by	
the	same	remote	camera,	and	thus	that	had	the	same	background,	
were	not	included	in	the	same	trial.	If	the	ratio	of	what	we	thought	
were	bobcat	and	lynx	images	was	below	4:1	for	either	species	in	any	
category,	we	randomly	replaced	images	until	at	least	that	ratio	was	
achieved,	except	for	the	“northern”	images	in	the	“location”	trial	be-
cause	bobcats	are	likely	absent	in	northern	BC	(Figure	1;	Gooliaff	et	
al.,	2018).	In	total,	we	selected	299	images:	116	images	(39%)	from	
remote	cameras	and	183	images	(61%)	from	conventional	cameras.

We	created	weblinks	for	the	six	trials	(Table	1)	using	FluidSurveys	
(www.fluidsurveys.com).	We	released	trials	online	sequentially,	two	
weeks	apart,	between	January	and	April	2017.	In	each	trial,	experts	
were	 prompted	 to	 classify	 the	 species	 in	 each	 image	 by	 selecting	
“bobcat,”	“lynx,”	or	“unknown.”	The	experts	were	not	able	to	zoom	
in	 on	 images	 to	 ensure	 that	 experts	 based	 their	 classifications	 on	
the	same	view	and	detail	of	the	images.	The	order	of	images	in	each	
trial	was	random,	but	was	the	same	for	all	experts.	Experts	could	not	
proceed	 to	 the	next	 image	without	 selecting	an	answer,	 and	once	
selected,	experts	could	not	view	previous	images.	However,	experts	
were	allowed	to	save	unfinished	trials	and	complete	them	at	a	later	
time.	 Trials	 were	 password	 protected,	 and	 we	 instructed	 experts	
to	not	consult	with	others;	the	experts	did	not	know	who	else	was	
participating	in	the	experiment.	Our	study	obtained	ethics	approval	
from	the	University	of	British	Columbia	(certificate	#	H16‐03169).

F I G U R E  1   Images	of	bobcats	(white	
circles;	n	=	805)	and	lynx	(black	circles;	
n	=	807)	taken	during	2008–2017.	These	
images	were	solicited	from	the	public	
across	British	Columbia	and	here	we	map	
points	based	on	our	own	classifications	of	
the	images.	We	also	show	our	boundary	
between	northern	and	southern	BC	
(dotted	line)

www.fluidsurveys.com
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Experts	were	aware	that	we	were	measuring	agreement	among	
them	in	their	classifications	of	images,	but	they	were	unaware	of	the	
conditions	that	we	were	testing	in	each	trial.	Experts	were	unaware	
of	image	locations	to	ensure	that	experts	based	their	classifications	
on	 the	 images	 themselves	and	not	on	any	contextual	 information.	
We	provided	the	location	for	only	half	of	the	images	in	the	"location"	
trial	 (Table	1),	 to	 test	whether	 knowing	 such	 information	 affected	
agreement	among	the	experts	in	their	classifications	of	the	images.	
These	images	were	accompanied	with	a	map	of	BC	showing	the	lo-
cation	of	the	image	with	a	red	star.	The	map	also	included	cities	and	
highways	to	help	orient	the	experts.	Although	location	information	
would	almost	always	be	available	for	images	collected	in	actual	cam-
era‐trapping	or	image‐solicitation	studies,	and	thus,	our	experiment	
does	not	reflect	a	realistic	scenario	in	this	regard,	we	wanted	to	de-
termine	whether	knowing	such	information	might	bias	expert	classi-
fication	in	these	actual	studies.

We	selected	27	experts	 from	across	western	North	America	 to	
classify	the	 images;	we	chose	experts	from	(a)	northern	BC	and	the	
Yukon	(n	=	9),	where	lynx	are	common	but	bobcats	are	 likely	absent	
(Figure	1;	Gooliaff	et	al.,	2018),	 (b)	 southern	BC	 (n	=	8),	where	both	
species	are	common	(Figure	1;	Gooliaff	et	al.,	2018),	and	(c)	the	north-
western	contiguous	US	(n	=	10),	where	lynx	are	rare	but	bobcats	are	
common	(Hansen,	2007;	McKelvey	et	al.,	2000).	We	considered	peo-
ple	 as	bobcat	or	 lynx	experts	 if	 they	were	biologists	who	had	 field	
or	 image‐classification	 experience	 on	 either	 species.	 Even	 if	 some-
body	had	experience	working	with	only	one	species,	we	felt	that	they	
should	be	able	to	distinguish	the	species	more	familiar	to	them	from	
the	 less‐familiar	 species.	 For	 example,	 if	 somebody	 had	 experience	
working	with	lynx	but	not	bobcats,	they	should	be	able	to	tell	that	an	
image	of	a	bobcat	is	“not	a	lynx.”	All	of	the	people	who	participated	in	
our	experiment	agreed	that	they	had	relevant	experience	to	be	con-
sidered	an	expert.	Our	panel	of	experts	represented	people	likely	to	
participate	in	studies	on	one	or	both	species,	or	who	would	likely	be	
asked	to	classify	bobcat	or	lynx	images.	The	experts	consisted	of	me-
socarnivore	and	furbearer	biologists	from	provincial,	state,	and	federal	
government	agencies,	as	well	as	private	consultants	and	academics.

2.1 | Statistical analysis

Our	 response	 variable	 was	 the	 number	 of	 experts	 that	 classified	
each	 image	 as	 “bobcat,”	 “lynx,”	 or	 “unknown.”	 Because	 we	 used	
images	that	were	contributed	by	the	public,	we	were	unable	to	in-
dependently	 verify	 the	 species	 in	 each	 image	 and	 thus	 could	 not	
conclude	whether	expert	classifications	were	accurate.	Instead,	we	
measured	 agreement	 among	 experts	 in	 their	 classifications	 of	 the	
images	 (hereafter	 agreement)	 using	Fleiss’	 kappa	 (K),	which	meas-
ures	reliability	among	a	group	of	classifiers.	We	calculated	K	using	
the	R	package	irr	(Gamer,	Lemon,	Fellows,	&	Singh,	2014)	and	calcu-
lated	95%	confidence	intervals	based	on	1,000	bootstrap	iterations	
using	the	R	package	boot	(Canty	&	Ripley,	2017).	K	is	bound	between	
−1	and	1;	a	value	of	1	indicates	perfect	agreement,	0	indicates	agree-
ment	that	would	occur	by	chance,	and	−1	indicates	perfect	disagree-
ment	(Fleiss,	1971).

K	 is	 commonly	 used	 in	 medical	 fields	 to	 measure	 agreement	
among	clinicians	in	their	diagnosis	of	certain	conditions	from	images	
(Barnett,	 Glickman,	 Umorin,	 &	 Jalali,	 2018;	 Farr,	 Guitton,	 &	 Ring,	
2018;	Vandenberk	et	al.,	2018),	but	has	also	been	used	to	measure	
agreement	among	biologists	in	identifying	individual	cougars	(Puma 
concolor)	 from	 remote‐camera	 images	 (Alexander	 &	 Gese,	 2018).	
There	 is	 no	 standardized	method	 for	 interpreting	 or	 comparing	K 
beyond	 relative	 differences	 between	 groups	 (Gwet,	 2010).	 Many	
medical	 studies	 consider	 values	 >0.60	 to	 represent	 “substantial”	
agreement	(Landis	&	Koch,	1977);	however,	such	studies	often	ask	
experts	 to	 rate	 the	 severity	 or	 progression	 of	 a	 disease	 or	 condi-
tion,	whereas	we	asked	experts	to	classify	an	animal	species.	Thus,	
in	our	study,	we	interpreted	K	more	critically	because	experts	were	
selecting	 from	fewer	and	more	distinct	categories,	conditions	 that	
typically	increase	K	values	(Sim	&	Wright,	2005).

We	determined	whether	agreement	varied	between	images	with	
different	characteristics	(i.e.,	season,	background	habitat,	visible	fea-
tures,	and	time	of	day)	by	comparing	K	between	categories	of	images	
within	each	 trial	 (Table	1).	We	also	determined	 the	combination	of	
image	characteristics	that	resulted	in	the	highest	and	lowest	agree-
ment	by	pooling	images	with	the	same	combination	of	characteristics	
from	all	categories.	We	determined	whether	knowing	the	location	of	
an	image	affected	agreement	by	comparing	K	when	experts	knew	the	
location	of	an	image	to	when	they	did	not	for	images	taken	in	north-
ern	and	southern	BC	(Figure	1).	We	also	determined	whether	agree-
ment	varied	depending	on	the	rarity	of	a	species	where	experts	lived	
by	comparing	K	between	experts	from	the	three	regions,	and	deter-
mined	whether	knowing	the	location	of	an	image	affected	agreement	
within	expert	groups	differently	for	either	northern	or	southern	im-
ages.	We	also	determined	whether	experts	were	consistent	in	their	
classifications	 by	 having	 them	 unknowingly	 reclassify	 images	 from	
the	first	trial	(“season”	trial)	10	weeks	later	and	calculating	K	between	
their	first	and	second	classifications	of	the	same	images.

In	addition	to	calculating	K	across	different	kinds	of	images,	we	
also	 calculated	 the	 proportion	 of	 agreement	 for	 individual	 images	
using	the	following	equation,	where	bobcat,	 lynx,	and	unknown are 
the	number	of	experts	 that	classified	an	 image	as	“bobcat,”	 “lynx,”	
and	“unknown,”	respectively,	and	n	is	the	total	number	of	experts:

With	three	classification	options,	the	proportion	of	agreement	had	
an	upper	bound	of	1.00,	indicating	perfect	agreement	and	had	a	lower	
bound	of	 0.31,	 indicating	 perfect	 disagreement	 (i.e.,	 of	 27	 experts,	
nine	each	classified	an	image	as	“bobcat,”	“lynx,”	and	“unknown”).

Finally,	we	calculated	the	number	of	experts	required	to	classify	
an	image	to	reach	a	final	classification	(i.e.,	the	number	of	experts	at	
which	 the	majority	 classification	was	unlikely	 to	 change	by	 asking	
more	experts).	We	calculated	the	mean	probability	that	the	majority	
classification	 (i.e.,	 the	 classification	 of	 the	 greatest	 number	 of	 ex-
perts)	of	a	randomly	selected	subset	of	one	to	27	experts	matched	
the	majority	classification	of	all	27	experts.

[(bobcat2+ lynx
2
+unknown

2)−n]

n× (n−1)



     |  11013GOOLIAFF And HOdGES

3  | RESULTS

All	27	experts	completed	each	of	the	six	trials	(Table	1).	The	follow-
ing	results	refer	to	all	images	in	the	first	five	trials	(n	=	259	images);	
this	set	excludes	the	40	images	in	the	“location”	trial	for	which	we	
provided	locations.	The	total	number	of	individual	expert	classifica-
tions	was	 6,993	 (27	 experts	 ×	 259	 images);	 the	 experts	 classified	
the	 images	as	“unknown”	 in	11%	(n	=	753)	of	classifications	and	as	
“bobcat”	or	“lynx”	in	89%	(n	=	6,240)	of	classifications.

Of	these	259	images,	71%	(n	=	185)	had	≥1	experts	classify	that	
image	 as	 “unknown.”	 Experts	 reached	 a	 majority	 classification	 of	
“unknown”	for	3%	(n	=	9)	of	images,	but	experts	did	not	unanimously	
classify	 any	 images	 as	 “unknown.”	 Experts	 unanimously	 classified	
24%	(n	=	61)	of	images	as	being	either	“bobcat”	or	“lynx,”	while	39%	
(n	=	101)	of	 images	had	≥1	experts	classify	 that	 image	as	 “bobcat”	
and	≥1	as	“lynx.”

Overall,	 the	27	experts	had	moderate	agreement	 in	 their	 clas-
sifications	 of	 the	259	 images	 (K	=	0.64,	 95%	CI	 =	 0.60–0.68).	 The	
majority	of	 images	did	not	have	 a	unanimous	 classification	by	 the	
experts	(76%;	Figure	2a);	the	mean	proportion	of	agreement	score	

for	 individual	 images	was	0.79	 (SD	=	0.19),	but	was	highly	variable	
(Figure	 2b;	 Table	 2).	 However,	 experts	 appeared	 to	 have	 similar	
agreement	 for	 each	 species;	 the	 mean	 proportion	 of	 agreement	
score	was	0.84	(SD	=	0.18,	n	=	92)	and	0.77	(SD	=	0.19,	n	=	167)	for	
images	that	we	had	classified	as	“bobcat”	and	“lynx,”	respectively.

Experts	had	varying	levels	of	agreement	between	images	with	
different	characteristics	(Table	3,	Figure	3).	Experts	had	far	greater	
agreement	 for	 winter	 images	 than	 summer	 images.	 Experts	 had	
greater	agreement	for	 images	with	a	background	showing	human	
infrastructure	 or	 grassland	 than	 for	 images	 with	 a	 forest	 back-
ground.	Experts	had	greater	agreement	for	images	showing	the	full	
body	or	only	the	face	and	 legs	of	an	animal	than	 images	showing	
only	 the	 face	 or	 only	 the	 legs	 and	 tail	 of	 an	 animal.	 Experts	 had	
greater	 agreement	 for	 images	 taken	 at	 night	 than	 images	 taken	
during	the	day.	Experts	had	the	lowest	agreement	for	daytime	sum-
mer	images	with	a	forest	background	showing	only	the	legs	and	tail	
of	an	animal	(K	=	0.34,	95%	CI	=	0.17–0.56,	n	=	15	images).	Experts	
had	the	greatest	agreement	for	daytime	winter	images	with	a	forest	
background	showing	only	the	face	and	legs	of	an	animal	(K	=	0.80,	
95%	CI	=	0.72–0.88,	n	=	35	images).	Experts	had	greater	agreement	

TA B L E  1  Characteristics	of	the	15	image	categories	within	the	six	trials

Trial Season Background habitat Time Visible features Location provided

1)	Season

Summera	(n	=	20) Summer Forest Day 2	of:	face,	legs,	or	tail No

Winterb	(n	=	20) Winter Forest Day 2	of:	face,	legs,	or	tail No

2)	Background	habitat

Forest	(n	=	20) Summer Forest Day 2	of:	face,	legs,	or	tail No

Grassland	(n	=	20) Summer Grassland Day 2	of:	face,	legs,	or	tail No

Developedc	(n	=	20) Summer Developed Day 2	of:	face,	legs,	or	tail No

3)	Visible	features

Full	body	(n	=	20) Winter Forest Day Face,	legs	and	tail No

Face	only	(n	=	20) Winter Forest Day Face	only No

Face	and	legs	(n	=	20) Winter Forest Day Face	and	legs	only No

Legs	and	taild	(n	=	19) Winter Forest Day Legs	and	tail	only No

4)	Time

Day	(n	=	20) Winter Forest Day 2	of:	face,	legs,	or	tail No

Nighte	(n	=	20) Winter Forest Night 2	of:	face,	legs,	or	tail No

5)	Location

a)	Location	provided

Northern	BC	(n	=	20) Summer Forest Day 2	of:	face,	legs,	or	tail Yes

Southern	BC	(n	=	20) Summer Forest Day 2	of:	face,	legs,	or	tail Yes

b)	Location	not	provided

Northern	BC	(n	=	20) Summer Forest Day 2	of:	face,	legs,	or	tail No

Southern	BC	(n	=	20) Summer Forest Day 2	of:	face,	legs,	or	tail No

6)	Consistencyf

aImages	taken	between	April	and	September,	and	showing	no	snow.	bImages	taken	between	October	and	March,	and	showing	snow.	cImages	showing	
human	infrastructure,	such	as	houses,	barns,	or	patios.	dOne	image	was	mistakenly	included	twice	in	this	category;	responses	for	the	second	time	it	
appeared	were	removed	from	all	analyses.	eBlack	and	white	images	taken	at	night.	fThis	trial	contained	the	same	images	as	the	first	trial,	but	they	were	
randomly	reordered.	
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when	 the	 location	 of	 an	 image	 was	 provided,	 and	 experts	 had	
greater	agreement	for	southern	images	than	northern	images	when	
they	knew	the	location	of	an	image	(Table	3).

Experts	were	 inconsistent	 even	with	 themselves,	 as	 shown	by	
comparing	classifications	of	the	40	images	in	the	“season”	trial	with	
classifications	of	those	same	images	10	weeks	later.	No	expert	had	
the	 same	 classifications	 for	 all	 images	 between	 the	 two	 trials;	 on	
average,	 experts	 changed	 their	 classifications	 on	 seven	 of	 the	 40	
images	 (SD	 =	 3.4,	 range	=	1–15).	 Experts	 had	 a	mean	 consistency	
(i.e.,	 agreement)	 with	 themselves	 of	 K	=	0.67	 (SD	 =	 0.14,	 range	 =	
0.29–0.94,	n	=	27).	Further,	we	mistakenly	included	one	image	twice	
in	the	“legs	and	tail”	category,	and	three	experts	changed	their	clas-
sification	of	this	repeated	image	within	the	same	trial.	However,	ex-
perts	showed	improved	agreement	between	the	first	and	last	trials;	
whereas	experts	had	an	agreement	of	K	=	0.55	(95%	CI	=	0.43–0.68)	
for	images	in	the	first	trial	(“season”	trial),	experts	had	an	agreement	

of	K	=	0.63	(95%	CI	=	0.47–0.74)	for	the	same	images	10	weeks	later	
(“consistency”	trial).

Experts	had	contradictory	majority	 classifications	 for	different	
images	of	the	same	animal	 in	two	cases	(Figure	4a).	Out	of	all	299	
images,	there	were	27	sets	of	images	where	this	discrepancy	could	
happen	(i.e.,	where	there	were	different	images	of	the	same	animal	
but	 in	different	 trials).	The	top	two	 images	 in	Figure	4a	are	of	 the	
same	animal,	but	experts	had	a	majority	classification	of	“lynx”	for	
the	left	image	and	“bobcat”	for	the	right	image.	Similarly,	the	bottom	
two	images	in	Figure	4a	are	of	the	same	animal,	but	experts	had	a	
majority	classification	of	“unknown”	for	the	left	image	and	“bobcat”	
for	the	right	image.	In	both	cases,	experts	did	not	know	where	each	
image	was	taken,	and	images	had	the	same	characteristics,	but	the	
images	varied	slightly	in	the	perspective	of	the	animal.

Experts	from	the	three	regions	had	similar	levels	of	agreement;	
nine	northern	BC	and	Yukon	experts	had	an	agreement	of	K = 0.64	

F I G U R E  2  Distribution	of	(a)	the	number	of	experts	that	classified	individual	images	as	the	majority	classification	and	(b)	the	proportion	
of	agreement	scores	among	all	27	experts	for	individual	images	in	all	categories	excluding	the	40	images	for	which	we	provided	locations	
(n	=	259	images).	With	three	classification	options,	the	proportion	of	agreement	had	an	upper	bound	of	1.00,	indicating	perfect	agreement,	
and	a	lower	bound	of	0.31,	indicating	perfect	disagreement
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(95%	CI	=	0.60–0.69),	eight	southern	BC	experts	had	an	agreement	
of	K = 0.60	(95%	CI	=	0.55–0.64),	and	10	northwestern	US	experts	
had	an	agreement	of	K = 0.67	(95%	=	0.63–0.71).	Expert	groups	had	
different	majority	classifications	for	only	6%	(n	=	15)	of	images:	13	
where	one	or	two	groups	had	a	majority	classification	of	“bobcat”	
or	 “lynx”	while	 the	other	group(s)	had	a	majority	 classification	of	
“unknown,”	and	two	where	different	groups	had	a	majority	classi-
fication	of	“bobcat”	and	“lynx.”	The	three	expert	groups	had	similar	
levels	 of	 agreement	 for	 images	 for	which	we	 provided	 locations,	
and	also	had	similar	consistency	for	retested	images.

Experts	did	reach	a	clear	majority	classification	for	most	images	
(Figure	2a).	On	average,	 classifications	of	 a	 single	 expert	matched	
the	majority	classification	of	all	27	experts	for	87%	of	the	259	im-
ages	(median	=	90%,	range	=	64%–97%).	For	five	or	more	randomly	
selected	experts,	 there	was	a	mean	probability	of	>0.90	that	their	
majority	classification	matched	the	final	majority	classification	of	all	
experts,	but	a	mean	probability	of	0.95	required	11	or	more	experts	
(Figure	5).

If	 the	 majority	 classification	 was	 correct	 for	 all	 images,	 then	
experts	were	 incorrect	 in	4%	of	 classifications,	 excluding	 classifi-
cations	of	“unknown”	(i.e.,	238	out	of	6,240	individual	expert	clas-
sifications	of	either	 “bobcat”	or	 “lynx”	did	not	match	the	majority	
classification).	 If	 the	 majority	 classification	 was	 incorrect	 for	 all	
images,	the	misclassification	rate	would	 instead	be	37%.	The	true	
misclassification	 rate	 is	 probably	 somewhere	 between	 these	 two	
bounds.	 Although	 we	 could	 not	 conclusively	 determine	 whether	
expert	 classifications	 were	 correct,	 102	 images	 were	 from	 loca-
tions	where	only	one	of	the	two	species	is	known	to	be	present:	29	
bobcat	images	were	from	the	southern	coast	of	BC	where	lynx	are	
likely	absent,	and	73	 lynx	 images	were	from	north	of	Highway	16	
in	northern	BC	where	bobcats	are	likely	absent	(Figure	1;	Gooliaff	
et	al.,	2018).	If	our	classifications	of	these	images	are	correct,	then	
the	majority	classification	of	all	experts	was	correct	for	all	images	in	
this	subset	excluding	three	images	that	had	a	majority	classification	
of	 “unknown.”	The	misclassification	rate	 for	 this	subset	of	 images	
would	be	4%,	excluding	classifications	of	“unknown”	(i.e.,	91	out	of	

TA B L E  2  Examples	of	images	with	poor	agreement	among	experts	in	their	classifications	(n	=	27	experts).	Images	were	cropped	from	
original	versions;	thus,	they	do	not	show	all	of	the	background	features	observed	by	the	experts	that	classified	them.	Images	provided	by:	(A)	
Paul	Morgan,	(B)	Amber	Piva,	(C)	Jacqueline	Brown,	(D)	Myrna	Blake,	(E)	Bert	Gregersen,	(F)	Scott	MacDonald,	(G)	Donald	Hendricks,	and	(H)	
John	E.	Marriott

Image

No. of expert classifications
Proportion of 
agreementa Season

Background 
habitat

Visible 
features LocationBobcat Lynx Unknown

A 8 13 6 0.34 Summer Grassland Full	body McBride

B 7 15 5 0.39 Summer Developed Full	body Kamloops

C 6 16 5 0.41 Summer Forest Full	body Tatla	Lake

D 8 3 16 0.43 Summer Grassland Legs	and	tail Fort	Nelson

E 5 5 17 0.44 Winter Forest Face	only Vernon

F 16 9 2 0.45 Summer Developed Full	body Invermere

G 17 7 3 0.46 Summer Forest Full	body Cache	Creek

H 7 19 1 0.55 Summer Grassland Full	body Fort	Nelson

aThe	 proportion	 of	 agreement	 had	 an	 upper	 bound	 of	 1.00,	 indicating	 perfect	 agreement,	 and	 had	 a	 lower	 bound	 of	 0.31,	 indicating	 perfect	
disagreement.	
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2,481	 individual	expert	classifications	of	either	 “bobcat”	or	 “lynx”	
did	not	match	our	classification).

Finally,	we	note	that	the	two	of	us	as	authors	had	sequences	for	
many	and	contextual	information	for	all	images	and	agreed	with	the	
majority	classification	of	all	288	images	in	our	experiment	that	had	
a	majority	 classification	 of	 “bobcat”	 or	 “lynx”	 except	 for	 two;	 one	
majority	classification	by	the	experts	was	“lynx,”	one	“bobcat,”	while	
we	held	 the	opposite	 views.	One	of	 those	 images	 is	 the	 top	 right	
image	in	Figure	4a.

4  | DISCUSSION

We	 demonstrate	 far	 from	 perfect	 agreement	 among	 experts	 in	
distinguishing	 between	 images	 of	 two	 similar	 sympatric	 and	 con-
generic	 species,	bobcats	 and	 lynx.	Previous	work	has	 shown	 that	
experts	cannot	reliably	classify	unique	individuals	from	images	for	
species	 that	 lack	distinct	markings	 (Alexander	&	Gese,	2018);	we	
extend	this	unreliability	to	the	species	level	for	similar	sympatrics.	
Experts	had	different	 levels	of	 agreement	 for	 images	with	differ-
ent	 characteristics,	 but	 in	 no	 case	 did	 experts	 have	 high	 enough	
agreement	that	we	would	consider	the	classification	of	such	images	
by	a	single	expert	to	be	reliable.	While	we	could	not	calculate	the	
absolute	misclassification	 rate	 because	 the	 true	 classifications	 of	
animals	in	the	images	were	not	independently	confirmed,	the	mis-
classification	 rate	 was	 between	 4%	 (if	 the	 majority	 classification	
was	 correct	 for	 all	 images)	 and	37%	 (if	 the	majority	 classification	
was	incorrect	for	all	images).

TA B L E  3  Agreement	among	all	experts	(n	=	27)	in	their	
classifications	of	images	within	each	category	of	images.	All	values	
of	Fleiss’	kappa	had	a	p‐value	<0.001

Category
No. of 
images

No. of images 
with a 
unanimous 
classification

Fleiss’ kappa 
(95% CI)a

Season

Summer 20 1 0.36	(0.21–0.52)

Winter 20 6 0.77	(0.64–0.93)

Background	habitat

Forest 20 3 0.47	(0.34–0.63)

Grassland 20 6 0.64	(0.51–0.78)

Developed 20 10 0.66	(0.46–0.89)

Visible	features

Face	only 20 6 0.66	(0.55–0.79)

Legs	and	tail 19 3 0.66	(0.55–0.79)

Full	body 20 6 0.77	(0.62–0.98)

Face	and	legs 20 8 0.81	(0.73–0.92)

Time

Day 20 2 0.58	(0.41–0.79)

Night 20 4 0.64	(0.53–0.78)

Combinations	(all	daytime)b

Summer,	forest,	
legs	and	tail

15 0 0.34	(0.17–0.56)

Summer,	
developed,	full	
body

10 6 0.40	(0.18–0.77)

Summer,	forest,	full	
body

39 6 0.47	(0.35–0.60)

Summer,	forest,	
face	and	legs

24 3 0.51	(0.37–0.69)

Summer,	grassland,	
full	body

12 4 0.58	(0.43–0.79)

Winter,	forest,	legs	
and	tail

26 3 0.61	(0.50–0.75)

Winter,	forest,	face	
only

20 6 0.66	(0.55–0.80)

Winter,	forest,	full	
body

36 8 0.74	(0.65–0.85)

Winter,	forest,	face	
and	legs

35 14 0.80	(0.72–0.88)

Location	provided

Northern	BC 20 3 0.21	(0.08–0.38)

Southern	BC 20 4 0.62	(0.45–0.83)

Total 40 7 0.50	(0.35–0.68)

Location	not	provided

Northern	BC 20 2 0.04	(0.01–0.07)

Southern	BC 20 1 0.55	(0.44–0.69)

Total 40 3 0.44	(0.32–0.57)
aMeasures	agreement	among	a	group	of	classifiers;	a	value	of	1	indicates	
perfect	agreement,	whereas	a	value	of	0	indicates	agreement	that	would	
occur	by	chance.	bImages	were	pooled	together	from	all	categories	ex-
cluding	the	40	images	for	which	we	provided	locations.	Only	combina-
tions	with	≥10	images	are	shown.	

F I G U R E  3  Agreement	among	all	experts	(n	=	27)	in	their	
classifications	of	images	within	each	category	of	images.	All	
values	of	Fleiss’	kappa	had	a	p‐value	<0.001.	Bars	represent	95%	
confidence	intervals.	Fleiss’	kappa	measures	agreement	among	
a	group	of	classifiers;	a	value	of	1	indicates	perfect	agreement,	
whereas	a	value	of	0	indicates	agreement	that	would	occur	by	
chance
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Further,	we	were	surprised	at	the	frequent	use	of	“unknown”	as	a	
classification	by	the	experts	in	our	study:	experts	classified	images	as	
“unknown”	in	11%	of	classifications,	and	a	striking	71%	of	images	had	
≥1	experts	classify	that	image	as	“unknown.”	Thus,	in	many	cases,	ex-
perts	were	not	confident	enough	to	classify	the	species	in	the	image.	
These	 results	are	particularly	 troubling	given	 that	 the	 images	were	
all	of	high	photographic	quality.	We	do	not	know	whether	experts	or	
novices	would	be	more	likely	to	classify	images	as	“unknown”;	experts	
may	be	aware	of	pitfalls	in	classification	that	novices	do	not	know	to	
look	for,	which	could	mean	that	experts	use	“unknown”	more	often	
than	novices	when	 images	do	not	 include	critical	defining	features.	
Alternatively,	 novices	may	 doubt	 their	 ability	 to	 classify	 a	 species,	
thus	using	“unknown”	more	frequently.	Regardless,	we	provided	the	
option	of	classifying	each	image	as	“unknown”	rather	than	forcing	ex-
perts	to	choose	between	“bobcat”	and	“lynx”	to	allow	for	such	cases	
of	genuine	uncertainty.	If	we	had	forced	experts	to	assign	a	species	
to	each	 image,	our	calculated	minimum	misclassification	rate	of	4%	
would	likely	have	been	much	higher.	We	recommend	that	researchers	
honor	and	trust	cases	of	uncertainty	where	they	cannot	confidently	
classify	the	species	in	an	image.

Expert	agreement	varied	among	different	kinds	of	 images.	The	
largest	difference	was	that	experts	had	much	lower	agreement	for	

F I G U R E  4  Examples	of	how	the	
visible	features	of	an	animal	and	the	
location	of	an	image	can	affect	expert	
classification.	(a)	The	top	two	images	
are	of	the	same	animal	but	show	slightly	
varying	body	parts	and	had	different	
majority	classifications	by	the	experts;	the	
same	occurred	for	the	bottom	two	images.	
We	show	the	number	of	experts	that	
classified	each	image	as	“bobcat,”	“lynx,”	
and	“unknown.”	(b)	Both	images	are	of	the	
same	animal	taken	near	Prince	George,	
British	Columbia	and	have	the	same	
image	characteristics.	The	image	on	the	
left	was	not	included	in	our	experiment	
but	had	a	4:4	split	vote	between	bobcat	
and	lynx	among	local	biologists	who	were	
asked	to	classify	the	image.	We	included	
the	image	on	the	right	in	our	experiment	
without	providing	its	location;	26	experts	
classified	the	image	as	“bobcat”,	and	one	
expert	classified	the	image	as	“unknown”.	
Images	provided	by	(from	top	to	bottom	
row):	BC	Parks,	Emre	Giffin,	James	
Gagnon

F I G U R E  5  Mean	probability	that	the	majority	classification	
of	a	randomly	selected	subset	of	experts	matched	the	majority	
classification	of	all	27	experts,	calculated	across	all	images	
excluding	the	40	images	for	which	we	provided	locations	(n	=	259	
images).	Bars	represent	95%	confidence	intervals.	Probabilities	
are	lower	for	even	numbers	of	experts	because	of	the	likelihood	
of	drawing	a	split	vote,	which	is	not	possible	for	odd	numbers	of	
experts

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

0 3 6 9 12 15 18 21 24 27 

No. of experts 

M
ea

n 
pr

ob
ab

ili
ty

 o
f 

m
aj

or
ity

 c
la

ss
ifi

ca
�o

ns
  m

at
ch

in
g 



11018  |     GOOLIAFF And HOdGES

summer	images	than	for	winter	images.	Bobcats	and	lynx	are	likely	
more	difficult	to	distinguish	in	the	summer	because	lynx	have	much	
lighter	summer	pelage	and	often	become	more	brownish,	and	hence	
more	similar	to	bobcats,	whereas	in	the	winter,	lynx	have	thick,	gray‐
silver	pelage.	Experts	also	had	lower	agreement	for	images	showing	
only	the	face	or	only	the	legs	and	tail	than	images	showing	the	full	
body	or	only	the	face	and	legs	of	an	animal,	suggesting	that	it	may	
be	easiest	 to	distinguish	between	 the	 two	 species	when	both	 the	
face	 and	 legs	 are	 visible.	 Surprisingly,	 experts	 had	 slightly	 higher	
agreement	for	 images	taken	at	night	than	 images	taken	during	the	
day.	Perhaps	experts	found	it	easier	to	distinguish	between	the	two	
species	at	night	because	they	were	forced	to	focus	on	the	physical	
features	of	 each	 animal,	 rather	 than	 taking	 the	 color	of	 an	 animal	
into	account.

Expert	agreement	also	depended	on	the	background	of	images.	
Experts	may	have	cued	in	on	certain	background	features	to	aid	in	
their	classifications,	for	example,	associating	tree	species	or	habitat	
with	one	species	over	the	other.	Some	of	the	experts	spontaneously	
commented	to	us	after	the	study	was	complete	that	for	some	images	
they	had	based	their	classifications	on	the	vegetation.	Experts	had	
lower	agreement	for	images	with	a	forest	background	than	images	
with	a	background	of	grassland	or	human	infrastructure,	 likely	be-
cause	grassland	and	developed	habitats	are	more	characteristic	of	
bobcats,	but	both	species	use	forests.

Further,	we	 showed	 that	 the	 location	of	 an	 image	 can	 also	 af-
fect	expert	classification;	experts	had	greater	agreement	when	they	
were	 provided	with	 the	 location	 of	 an	 image.	Again,	 spontaneous	
post‐study	comments	from	experts	revealed	that	some	experts	used	
the	location	of	an	image	to	“confirm”	their	selections.	However,	while	
we	expected	experts	to	have	greater	agreement	for	images	that	we	
provided	 locations	for,	we	were	surprised	to	find	that	experts	had	
greater	agreement	for	southern	images	than	northern	images	when	
the	location	was	provided.	We	expected	the	opposite	because	bob-
cats	are	likely	absent	in	northern	BC;	thus,	there	was	essentially	only	
one	 choice	 for	 northern	 images,	whereas	 knowing	 the	 location	of	
southern	images	should	have	provided	little	help	since	both	species	
are	 common	 there	 (Figure	 1;	 Gooliaff	 et	 al.,	 2018).	 Instead,	 some	
experts	 classified	 images	 from	 northern	 parts	 of	 the	 province	 as	
“bobcat,”	counter	to	our	expectation.	This	result	suggests	that	those	
experts	 were	 not	 familiar	 with	 the	 distribution	 of	 bobcats	 in	 BC.	
Still,	we	strongly	suspect	that	the	location	of	an	image	can	bias	its	
classification	if	the	person	classifying	the	image	has	a	preconceived	
idea	of	the	species’	distribution,	which	can	lead	to	misclassification	
of	similar	species	 if	one	species	 is	thought	to	be	extremely	rare	or	
absent	in	a	particular	area,	when	in	fact	it	is	present.	As	some	spe-
cies	suffer	range	contractions	and	population	declines,	while	others	
expand	ranges	with	climate	change,	we	think	this	possible	location	
bias	is	worth	further	study.

For	example,	the	left	image	in	Figure	4b	was	taken	near	Prince	
George	in	2016,	and	sent	to	us	as	part	of	our	citizen	science	search	
for	images	(Gooliaff	et	al.,	2018).	At	the	time,	there	had	never	been	
a	confirmed	bobcat	record	that	far	north.	We	classified	the	image	as	
“bobcat,”	but	the	 image	was	widely	circulated	on	social	media	and	

the	local	news	station,	which	sparked	an	intense	debate	among	hunt-
ers,	trappers,	and	naturalists	as	to	whether	the	animal	was	a	bobcat	
or	 lynx.	Biologists	 in	Prince	George	were	asked	by	 the	 local	news	
station	 to	 classify	 the	 image,	 and	 initially	 four	 biologists	 thought	
“bobcat”	and	four	biologists	thought	“lynx.”	After	additional	images	
showing	the	animal’s	paws	were	shared,	those	biologists	shifted	to-
ward	classifying	the	image	as	“bobcat”	or	“possible	hybrid”	(K.	Otter,	
University	of	Northern	British	Columbia,	personal	communication).	
The	right	 image	 in	Figure	4b	 is	of	 the	same	animal	and	shares	 the	
same	 characteristics	 (i.e.,	 season,	 background	 habitat,	 visible	 fea-
tures,	and	time	of	day)	as	the	left	image.	We	asked	experts	to	classify	
the	right	image	in	our	experiment	without	providing	its	location;	26	
experts	classified	the	image	as	“bobcat”	and	one	as	“unknown.”

Despite	 the	 fact	 that	 experts	 unanimously	 classified	only	24%	
(n	=	61)	of	images,	experts	did	reach	a	clear	majority	classification	for	
most	images.	Thus,	while	classifications	of	an	image	by	a	single	ex-
pert	were	unreliable,	we	believe	that	the	final	majority	classifications	
were	correct	for	most	images.	Our	findings	suggest	that	the	location	
of	an	expert	did	not	matter,	as	long	as	many	experts	were	asked.	We	
found	only	 slight	 differences	 in	 agreement	 between	 experts	 from	
northern	BC	and	the	Yukon,	southern	BC,	and	the	northwestern	US,	
suggesting	that	experts	were	not	biased	by	the	rarity	of	a	species	in	
the	area	where	they	live.

4.1 | Implications for studies using wildlife images

As	photographic	data	become	increasingly	used	in	ecological	studies	
for	many	groups	of	species	(Rowcliffe	&	Carbone,	2008,	Burton	et	
al.,	2015,	Steenweg	et	al.,	2017,	Wisconsin	Department	of	Natural	
Resources,	2018),	we	urge	researchers	to	reevaluate	and	report	how	
they	 classify	 their	 images.	Reviews	on	 the	best	practices	 for	 such	
studies	focus	on	data	management	and	sharing	(Scotson	et	al.,	2017;	
Wearn	&	Glover‐Kapfer,	2017);	we	highlight	the	need	to	also	think	
carefully	about	image	classification.

We	 acknowledge	 that	 our	 experiment	 does	 not	 mirror	 actual	
camera‐trapping	 or	 image‐solicitation	 studies	 because	 experts	
were	provided	with	single	independent	images	without	any	contex-
tual	information;	however,	we	interpret	our	results	to	indicate	that	
image	 classifications	 by	 a	 single	 expert	 are	 unreliable	 for	 species	
with	similar	sympatrics	in	such	studies.	In	camera‐trapping	studies,	
researchers	know	the	landscape	and	local	sites	where	cameras	are	
installed	 and	 can	measure	 distances	 from	 the	 camera	 to	 estimate	
animals’	 sizes.	 In	 image‐solicitation	 studies,	 researchers	 know	 at	
least	 the	 general	 location	 of	 images.	 These	 design	 features	might	
help	with	 classification,	but	might	 also	mean	 that	 the	 implicit	 bias	
of	an	individual	classifier	might	result	in	misclassifications	(e.g.,	the	
aforementioned	case	in	Prince	George	where	experts	did	not	expect	
bobcats	 to	 be	 present).	 Both	 types	 of	 studies	 also	 often	 produce	
multiple	images	of	the	same	animal,	some	of	which	show	different	
body	 parts,	which	would	 likely	 improve	 classification.	 It	would	 be	
valuable	to	conduct	a	study	based	on	sequences	of	images	for	each	
animal	to	compare	agreement	among	experts	in	their	classifications	
when	multiple	rather	than	single	images	are	available.	However,	we	
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note	that	in	our	public	solicitation	for	images	(Gooliaff	et	al.,	2018),	
approximately	 half	 of	 detections	 from	 remote	 cameras	 (44%)	 and	
conventional	cameras	(52%)	still	had	only	single	images.

Although	here	we	measured	 agreement	 among	people	 in	 clas-
sifying	 single	 images,	 our	 experiment	was	 based	on	 the	 best‐case	
scenario	of	experts	classifying	images	of	high	photographic	quality.	
While	we	 randomly	selected	 images	 for	our	experiment	 to	ensure	
that	we	did	not	consciously	or	 subconsciously	choose	 images	 that	
were	 easy	 or	 difficult	 to	 classify,	 our	 initial	 screen	 of	 using	 only	
high‐quality	 images	meant	 that	our	collection	of	 images	was	 likely	
far	easier	to	classify	than	 images	that	would	typically	be	collected	
in	camera‐trapping	or	image‐solicitation	studies,	as	blurry	images	or	
those	with	 animals	more	 distant	 from	 the	 camera	would	 be	more	
difficult	to	classify	(Meek	et	al.,	2013).

Misclassification	rates	would	also	likely	be	higher	when	images	
are	classified	by	non‐experts,	such	as	volunteers	and	crowdsourcing	
(McShea	et	al.,	2016;	Swanson	et	al.,	2016;	Wisconsin	Department	
of	Natural	 Resources,	 2018).	 Image	 classifications	 by	 non‐experts	
may	be	suitable	for	species	that	are	distinctive,	but	we	strongly	sug-
gest	caution	when	classifying	 images	for	species	with	similar	sym-
patrics;	we	recommend	that	such	images	be	flagged	for	classification	
by	multiple	experts.	Specifically,	we	recommend	that	studies	using	
wildlife	 images	consult	at	 least	 five	species	experts	when	classify-
ing	images	showing	species	with	similar	sympatrics.	Still,	we	stress	
that	the	majority	classification	of	even	five	experts	is	not	necessarily	
correct,	only	that	the	majority	classification	is	unlikely	to	change	by	
asking	more	experts.

Further,	 we	 recommend	 that	 researchers	 be	 explicit	 about	
their	methods	for	classifying	images.	If	researchers	employ	a	de-
sign	where	most	 images	 are	 classified	by	one	or	 two	 individuals	
who	 then	 consult	 with	 colleagues	 on	 difficult	 images,	 we	 urge	
such	information	to	be	provided,	for	example,	specifying	whether	
the	main	classifiers	disagreed	on	the	classification	of	such	images,	
or	whether	all	 images	that	met	a	certain	profile	were	flagged	for	
further	 scrutiny.	 When	 sharing	 metadata	 from	 camera‐trapping	
and	 image‐solicitation	 studies,	 we	 recommend	 that	 researchers	
include	information	on	the	number	of	people	who	classified	each	
image,	whether	 those	 people	were	 experts	 or	 non‐experts,	 and	
the	individual	classifications	of	each	researcher.	We	also	suggest	
that	 researchers	 make	 available	 the	 raw	 images	 to	 provide	 the	
option	 of	 reclassifying	 certain	 images	 in	 future	 studies,	 at	 least	
images	that	are	highly	influential	to	the	final	conclusions	that	are	
drawn	(e.g.,	images	from	range	edges,	or	images	that	are	the	only	
record	of	a	species	in	a	given	locality).

Images	 have	 been	 described	 as	 being	 conclusive	 evidence	
for	the	presence	of	a	species,	even	when	that	species	 is	thought	
to	 be	 absent	 or	 extinct	 (McKelvey	 et	 al.,	 2008),	 but	 that	 is	 only	
true	if	the	species	in	the	image	can	be	conclusively	classified.	We	
show	that	experts	 find	 it	difficult	 to	distinguish	between	 images	
of	similar	species,	which	implies	that	images	collected	from	cam-
era	trapping	or	public	solicitation	should	not	be	taken	as	definitive	
evidence	of	species	presence	for	any	species	that	may	be	readily	
misclassified	as	a	similar	sympatric,	such	as	bobcats	and	lynx,	but	

rather	as	an	initial	subjective	screen	and	then	followed	with	defin-
itive,	objective	survey	methods	such	as	noninvasive	DNA	sampling	
or	live‐trapping.
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