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Abstract: Since the well-known hallmarks of cancer were described by Hanahan and Weinberg,
fundamental advances of molecular genomic technologies resulted in the discovery of novel puzzle
pieces in the multistep pathogenesis of cancer. MicroRNAs are involved in the altered epigenetic
pattern and metabolic phenotype of malignantly transformed cells. They contribute to the initiation,
progression and metastasis-formation of cancers, also interacting with oncogenes, tumor-suppressor
genes and epigenetic modifiers. Metabolic reprogramming of cancer cells results from the dysregula-
tion of a complex network, in which microRNAs are located at central hubs. MicroRNAs regulate the
expression of several metabolic enzymes, including tumor-specific isoforms. Therefore, they have a
direct impact on the levels of metabolites, also influencing epigenetic pattern due to the metabolite
cofactors of chromatin modifiers. Targets of microRNAs include numerous epigenetic enzymes,
such as sirtuins, which are key regulators of cellular metabolic homeostasis. A better understanding
of reversible epigenetic and metabolic alterations opened up new horizons in the personalized
treatment of cancer. MicroRNA expression levels can be utilized in differential diagnosis, prognosis
stratification and prediction of chemoresistance. The therapeutic modulation of microRNA levels
is an area of particular interest that provides a promising tool for restoring altered metabolism of
cancer cells.
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1. Introduction

Resulting from the advances in molecular biology, cell biology and genomics, the
six well-known fundamental alterations of cancer, defined by Hanahan and Weinberg in
2000 (self-sufficiency in growth signals, insensitivity to growth inhibitory signals, evasion
of programmed cell death, limitless replicative potential, sustained angiogenesis, tissue
invasion and metastasis [1]), have been extended with novel hallmarks in 2011, which
included genome instability, tumor-promoting inflammation, evading immune destruction
and reprogramming energy metabolism [2]. However, Otto Warburg was awarded the
Nobel Prize in 1931 for his discovery of cytochrome c oxidase, not for the formulation of
the Warburg hypothesis [3], his observation that tumors take up and ferment high amounts
of glucose to produce lactate even in the presence of oxygen [4,5] forms the basis of our
current knowledge on the metabolic reprogramming of cancer cells.

Besides characterization of the unique metabolic phenotype of malignantly trans-
formed cells, the better understanding of their epigenetic alterations is another cornerstone
of current cancer research, casting new light on targeted therapeutic interventions. Pio-
neering work carried out by Miescher, Flemming, Kossel and Heitz between 1869 and
1928 resulted in the cytological distinction between regions of euchromatin and heterochro-
matin [6,7]. The first definition of epigenetics originated from Conrad Hal Waddington,
who established this term in 1942 to describe inherited changes in phenotype without
changes in the sequence of the DNA [8,9]. Four decades later, the first human disease to be
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linked to epigenetics was cancer. In 1983, Feinberg and Vogelstein described substantial
hypomethylation in genes of cancer cells compared with their normal counterparts [10,11].

The recent explosion of our knowledge on epigenetic regulation highlights its impor-
tance in the pathogenesis of human cancer [12]. Epigenetic and metabolic alterations in
cancer are not independent, but highly intertwined with each other [13]. Epigenetic modi-
fiers require a series of metabolite cofactors, while the expression of metabolic enzymes is
regulated by epigenetic mechanisms in a significant manner [14].

Since the first microRNA was identified in 1993 (transcribed from the Caenorhabditis
elegans lin-4 locus [15]), it has become clear that microRNAs are strongly involved in the
maintenance of both homeostatic chromatin structure and metabolic homeostasis. In this
Review, we discuss the role of microRNAs in cancer epigenetics and their involvement in
the altered metabolic phenotype of malignantly transformed cells, putting special emphasis
on clinical applications and precision treatment approaches.

2. MicroRNAs and Carcinogenesis

MicroRNAs are a class of phylogenetically conserved, non-coding RNAs, with approx-
imately 22–25 nucleotides in length [16,17]. During the multistep biogenesis of microRNAs,
the long primary transcript is first trimmed into a hairpin-structured intermediate that
is exported from the cell nucleus by the Exportin-5 transporter, in a Ran-GTP dependent
manner [18]. In the cytoplasm, a miRNA:miRNA* duplex is formed, one strand of which
is later incorporated into the effector complex named RNA-induced silencing complex
(RISC) [19]. During the maturation of microRNAs, two consecutive cleavage steps are
mediated by the RNase III endonuclease enzymes Drosha and Dicer [20]. MicroRNAs
generally act as posttranscriptional repressors. They bind to the 3′ untranslated region
(UTR) of the target mRNA [21], which is recognized by the microRNA seed sequence,
located between the second and eighth nucleotides at their 5′ end [14]. Redundancy of the
regulation is featured by the numerous targets of each microRNA, while a single mRNA
can also be targeted by several different microRNAs [22].

The significant role of microRNAs during carcinogenesis is supported by increasing
amounts of evidence [19]. The expression pattern of microRNAs distinguishes tumors of
different developmental origin [23,24], therefore, their expression profiles can be utilized
for the classification of human malignancies [25]. Alteration of microRNA expression levels
in cancer was first reported in 2002 by Calin et al., when miR-15 and miR-16 were identified
at 13q14.3, a frequently deleted region in chronic lymphocytic leukemia (CLL) [26]. During
the next decade, it became clear that microRNAs are involved in the pathogenesis of all
types of hematological malignancies and solid tumors [27]. This is in accordance with the
finding that more than 50% of microRNA genes are located in cancer-associated genomic
regions (CAGR) [28], and their targets include key regulators of cell cycle, proliferation,
cell adhesion, apoptosis, angiogenesis and DNA repair [29,30].

MicroRNAs are involved in tumor initiation, progression and metastasis forma-
tion [31]. They are responsible for the regulation of interactions between cancer cells
and cells of the tumor microenvironment including immune cells [15]. Furthermore, they
can act either as tumor suppressors (anti-oncomiRs) or as oncogenic microRNAs (oncomiRs)
by targeting oncogenes and tumor suppressor mRNAs, respectively [28]. However, cer-
tain microRNAs (e.g., miR-29) act as a tumor suppressor in leukemia and function as an
oncomiR in solid tumors [31].

Impaired microRNA regulation of cell cycle progression contributes to the transforma-
tion of stem cells [32]. MicroRNAs regulate cyclin-dependent protein kinases (CDKs) and
cyclines, moreover, the expression levels of numerous microRNAs vary between normal
stem cells and cancer stem cells (CSCs) [32]. The miR-17-92 cluster cooperates with the
c-Myc oncogene to prevent apoptosis in CSCs by targeting E2F and cyclin D [33], while the
let-7 family of microRNAs has been shown to suppress epithelial–mesenchymal transition
and other CSC characteristics by the regulation of numerous cell cycle components, such
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as CDK4, CDK6 and CDC25A [34]. MiR-377 and miR-145 are involved in the regulation of
CSC properties in colon cancer and prostate cancer, respectively [35,36].

Disturbances of the microRNA biogenesis pathway have also been reported in nu-
merous cancer types. Mutations in genes that encode Drosha, Dicer and Exportin-5, or
mutations within the binding sites of target mRNAs, can contribute to the development of
malignant diseases [15].

However, the expression of microRNAs is tightly controlled by transcription factors,
microRNAs are also susceptible to epigenetic modulation [37]. Epigenetic inactivation by
promoter hypermethylation has been detected in case of the tumor suppressor microRNAs
miR-124 and miR-34a in hematological malignancies [38,39]. MicroRNAs regulate several
enzymes of DNA methylation and histone modification, among which strong intercon-
nections have been confirmed [40]. A typical example for the complexity of interactions
is the regulatory loop between the anti-oncomiR miR-34a and the histone deacetylase
enzyme SIRT1. MiR-34a mediates the repression of SIRT1, resulting in the inhibition of
sterol-regulatory element-binding proteins (SREBPs) and nuclear factor κB (NFκB), while
SIRT1 inhibits miR-34a by deacetylating its promoter [41]. The complex role of microRNAs
during carcinogenesis is illustrated in Figure 1.
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Figure 1. MicroRNAs contribute to the initiation and progression of cancer by a wide variety of different mechanisms,
including multiple interactions with oncogenes, tumor suppressor genes, DNA methylation and histone modification.
Altered microRNA expression levels are also involved in the metabolic reprogramming of cancer cells. Targeting such
Warburg-related microRNAs is a promising therapeutic approach. UTR: untranslated region.

3. Implication of MicroRNAs in the Regulation of Metabolic Pathways

The first microRNA to be linked to metabolic regulation was miR-122 [42], which
is expressed primarily in the liver, regulating lipid metabolism and liver cell differenti-
ation [41]. Since then, growing number of microRNAs have been confirmed to regulate
metabolic pathways [41]. MiR-33, contained by the primary transcript of SREBP2 (as an
intronic microRNA), is involved in the regulation of cellular cholesterol export and fatty
acid β-oxidation [43]. Furthermore, the α1 subunit of the nutrient and energy sensor
AMP-dependent protein kinase (AMPK) is also targeted by this microRNA [41].
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However, the best-characterized microRNAs in metabolic control are responsible
for the maintenance of cholesterol and lipid homeostasis, and new data revealed the
involvement of numerous microRNAs in the regulation of glucose homeostasis and insulin
signaling as well [41]. MiR-103 and miR-107 regulate insulin and glucose homeostasis,
while miR-223 controls the uptake of glucose in skeletal muscle by targeting glucose
transporter 4 (GLUT4) [41]. MiR-375 was confirmed to be one of the key regulators of
insulin secretion [41]. X component and B subunit of pyruvate dehydrogenase enzyme
(PDH) are targeted by miR-26a [44] and miR-146b [45], respectively. Mitochondria has a
central bioenergetic role due to encompassing important pathways of the carbohydrate,
lipid and amino acid metabolism that are also under the control of microRNAs. The
electron transport chain (ETC), tricarboxylic acid (TCA) cycle, fatty acid β-oxidation and
amino acid metabolism are regulated by a large number of microRNAs, such as miR-210,
miR-181a, miR-370 and miR-23a, respectively [46].

According to recently published data, the expression levels of metabolism-regulating
microRNAs are modulated by a wide variety of environmental factors, including physical
activity and nutrition. On a mouse model, altered microRNA expression profiles were
detected in case of caloric restriction and high-fat diet [47]. Involvement of microRNAs in
exercise adaptation has also been confirmed [48]. Maintenance of health requires the appro-
priate control of metabolic homeostasis [41]. A growing amount of evidence highlights the
dysregulation of microRNAs in insulin resistance, diabetes, non-alcoholic fatty liver dis-
ease (NAFLD) and other metabolic disorders, in which specific microRNA signatures have
been identified [41,49,50]. Based on the reversible and targetable changes of microRNA
expression levels, their role in the metabolic reprogramming of cancer cells is an area of
particular interest.

4. The Warburg Effect

In the late 1920s, Otto Warburg hypothesized that the glycolytic switch of cells causes
cancer: “The origin of cancer lies in the anaerobic metabolic component of normal growing
cells, which is more resistant to damage than is the respiratory component. Damage to
the organism favours this anaerobic component and, therefore, engenders cancer” [51,52].
However, Warburg later proposed that mitochondrial dysfunctional is the root of aerobic
glycolysis [53,54], and mitochondrial dysfunction promotes the Warburg effect only in a
minority of tumors [55]. Metabolic alterations in proliferating cancer cells are induced by
interactions between oncogenes and tumor suppressor genes that are also under the control
of signaling cascades and microRNAs [56–58]. Therefore, glycolytic switch is considered to
be an early event in oncogenesis [55] that is an outcome of oncogenic mutations [59].

The most well-known hallmark of the metabolic reprogramming of cancer cells is that
the rate of glycolysis and lactate production is greatly increased, even in the presence of
oxygen (aerobic glycolysis) [60,61]. The expression of the vast majority of glycolytic genes
is regulated by c-Myc and hypoxia inducible factor 1α (HIF1α) transcription factors [62].
According to recently published data, aerobic glycolysis in Burkitt lymphoma cells is
regulated by c-Myc, whereas in lymphoblastoid cell lines, HIF1α is responsible for the
same phenomenon [63]. The hypoxia responsive elements (HRE) also encode for CXCR4
and CXCL12, which play an important role in the homing and preservation of leukemia
stem cells [64]. High glycolytic rate is supported by some tumor-specific enzyme isoforms,
such as hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2) [65]. Besides the backup
of glycolytic phospho-intermediates to be shuttled into biosynthetic pathways [55], non-
metabolic functions of PKM2 have also been revealed that are essential for cell cycle
progression and carcinogenesis [66]. Enhanced glycolysis is counterbalanced by the tumor
suppressor p53 protein, that regulates the expression of TP53-induced glycolysis and
apoptosis regulator (TIGAR), an enzyme responsible for decreasing the level of fructose-
2,6-bisphosphate in cells [67].

Similarly to glycolytic enzymes, GLUT1, a rate-limiting factor for glucose uptake,
is also aberrantly expressed in several tumor types [68]. Excessive glycolysis results in
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the excessive formation of lactate, which contributes to resistance against conventional
therapies [55]. Tumor-derived lactate promotes the M2 polarization of tumor-associated
macrophages, thereby suppressing anticancer immune response [61]. Lactate is excreted
from cells by the lactate-proton symporter enzyme monocarboxylate transporter 4 (MCT4),
expression of which is also under the control of HIF1α [69].

Sustained bioenergetic demand, required by uncontrolled proliferation, addicts cancer
cells to an adequate anabolic supply [3]. The increased glucose consumption is used as
a carbon source for de novo generation of nucleotides, proteins and lipids that can be
diverted into multiple branching pathways, such as de novo biosynthesis of serine [61].
Substantially increased glutaminolysis serves as a major nitrogen source for proliferating
cells, which also provides citrate to be utilized in fatty acid and cholesterol synthesis [70].
Upregulated activity of the pentose phosphate pathway (PPP) is essential for the high rate
of nucleic acid synthesis, while the generation of NADPH provides a scavenger of reactive
oxygen species (ROS) [71]. The production of ROS is elevated in malignantly transformed
cells, resulting from increased metabolic rate and modifications in signaling pathways that
affect cellular metabolism [66,72]. To counterbalance the higher production of ROS, the
rate of ROS scavenging is also elevated in many tumors [66,73]. In contrast, the mutation
of isocitrate dehydrogenase 1 (IDH1) enzyme results in the accumulation of lipid ROS, due
to the reduced level of glutathione peroxidase 4 (GPX4) protein [74].

Besides losing their normal catalytic activity, mutant IDH1 and IDH2 gain the func-
tion of catalyzing the reduction of alpha-ketoglutarate (α-KG) to the oncometabolite 2-
hydroxyglutarate (2-HG), that is a competitive inhibitor of numerous α-KG-dependent
enzymes [75]. α-KG-dependent hydroxylases are a class of non-heme iron proteins, in-
cluding TET enzymes of DNA hydroxymethylation, Jumonji-domain- (JMJD) containing
histone demethylases and prolyl hydoxylase (PHD) enzymes that hydroxylate proline
residues within the oxygen-dependent domains, resulting in the proteasomal degradation
of the HIF1α transcription factor [76]. The PHD enzymes also have HIF1α-independent
functions and among other factors, are also subject to regulation by the abnormal levels
of oncometabolites that have been observed in many types of cancer [62]. According to
recently published results, 2-HG accumulates in the extracellular space and is taken up
by T lymphocytes, thereby compromising anticancer immune responses [77]. In case of
cytogenetically normal acute myeloid leukemia (AML), high level of 2-HG was identified
as a strong negative prognostic factor, independent of other molecular features [78]. Besides
IDH, mutations of other TCA cycle enzymes, such as succinate dehydrogenase (SDH) and
fumarate hydratase (FH), also lead to metabolic shifts of the cell due to the activation of
HIF1α-mediated glucose utilization [57,79].

In summary, metabolic features of cancer cells can be distinguished as convergent and
divergent metabolic phenotypes [80]. Enhanced glycolysis is the best example to convergent
properties, which are shared among diverse types of tumors, while the stimulation of
heterogeneous pathways results in divergent properties, such as the accumulation of 2-HG
in case of IDH1 and IDH2 mutations [80]. Special metabolic symbiosis between cancer cells
and cancer-associated stroma has also been described (referred to as the reverse Warburg
effect), when glycolysis in the stromal cells supports adjacent cancer cells by the transfer of
catabolites including lactate, pyruvate and ketone bodies [81].

5. MicroRNAs as Key Regulators of Cancer Metabolism—Epigenetic Background of
the Warburg Effect

The strong intertwining between signaling molecules, oncogenes and tumor suppres-
sor genes that are involved in the metabolic reprogramming of cancer cells [82] becomes
an even more complex network by the regulation of these genes by microRNAs. The
expression of c-Myc transcription factor is inhibited by p53-induced microRNAs miR-145
and miR-34c, while c-Myc was confirmed to activate the transcription of the oncogenic
miR-17-92 cluster [58]. Based on its strong impact on glycolysis, TCA cycle and oxidative
phosphorylation, the miR-17-92 cluster is considered to play a central role in the c-Myc
driven metabolic reprogramming of cancer cells [83] (Table 1).
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Table 1. MicroRNAs are involved in both the maintenance of metabolic homeostasis and the
metabolic reprogramming of cancer cells. Examples for Warburg-promoting and anti-Warburg
microRNAs are highlighted with blue and green background, respectively.

MicroRNA Implication in Metabolic Regulation and Targets

miR-1 G6PD

miR-15 BCL2, FASN

miR-16 BCL2, FASN

miR-17-92 cluster glycolysis, TCA, oxidative phosphorylation, E2F, cyclin D

miR-22 ACLY

miR-23a amino acid metabolism, GLS

miR-23b amino acid metabolism, GLS

miR-26a pyruvate–lactate conversion, PDH X component

miR-33 fatty acid β-oxidation

miR-34a LDH-A, SIRT1

miR-122 lipid metabolism, PKM2

miR-103 insulin and glucose homeostasis

miR-107 insulin and glucose homeostasis

miR-132 GLUT1

miR-137 ASCT2

miR-144 GLUT1

miR-146b pyruvate–lactate conversion

miR-181a TCA

miR-155 HK2

miR-199a HK2

miR-206 G6PD

miR-210 electron transport chain, glycolytic enzymes, ISCU

miR-223 GLUT4

miR-326 PKM2

miR-370 fatty acid β-oxidation

miR-375 insulin secretion

miR-422 PDK2

miR-451 GLUT1

miR-497 transketolase
Abbreviations: ACLY: ATP citrate lyase; ASCT2: alanine/serine/cysteine-preferring transporter 2; BCL2: B-
cell lymphoma 2 gene; CDK: cyclin-dependent protein kinase; FASN: fatty acid synthase; G6PD: glucose-6-
phosphate dehydrogenase; GLS: glutaminase; GLUT: glucose transporter; HK2: hexokinase 2 isoform; ISCU: iron–
sulfur cluster assembly enzyme; LDH: lactate dehydrogenase; PDH: pyruvate dehydrogenase; PDK2: pyruvate
dehydrogenase kinase 2; PKM2: pyruvate kinase M2 isoform; SIRT: sirtuin enzyme; TCA: tricarboxylic acid cycle.

MiR-210, induced by the HIF1α, targets the mitochondrial iron–sulfur cluster assembly
enzyme (ISCU) that provides cofactors for enzymes involved in the Krebs cycle and electron
transport, therefore, the suppression of ISCU results in a shift to glycolysis under normoxic
conditions [58,84].

A set of microRNAs (including miR-132, miR-144, miR-148b, miR-340 and miR-451)
suppresses GLUT1-mediated glucose uptake, among which miR-132 was found to be
downregulated in numerous types of cancer [85,86]. The tumor-specific HK2 isoform is
regulated by both oncogenic and tumor suppressor microRNAs, such as miR-155 and
miR-199a, respectively [82,87]. Another tumor-specific enzyme isoform, PKM2, is inhibited
by miR-326 and miR-122, the latter of which is considered to be a tumor suppressor
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microRNA that decreases the occurrence of metastasis in hepatocellular carcinoma via the
downregulation of PKM2 [88,89].

Lactate dehydrogenase (LDH) is a tetrameric enzyme, the subunits of which are
encoded by two different genes, LDH-A and LDH-B. Elevated LDH-A/LDH-B ratio is
characteristic to tumor cells and promotes lactate formation in a significant manner. While
HIF1α- and c-Myc-related pathways promote the expression of LDH-A [90], overexpression
of the tumor suppressor miR-34a counteracts this effect [91]. Similarly to miR-34a, miR-422
also inhibits the Warburg effect. Activity of pyruvate dehydrogenase (PDH) can be restored
via the suppression of pyruvate dehydrogenase kinase 2 (PDK2) by miR-422, that was
found to be downregulated in gastric cancer [92]. On the other hand, miR-26a promotes
the Warburg effect by targeting the X component of PDH, and thereby inhibiting the key
step of glycolysis entry into the TCA cycle [44].

Glutamine metabolism and enzymes of the PPP are also regulated by microRNAs.
The alanine/serine/cysteine-preferring transporter 2 (ASCT2) of glutamine, upregulated
in different kinds of cancer, is targeted by miR-137 [93], while the repression of miR-23a
and miR-23b resulted in a higher expression level of glutaminase enzyme (GLS) [94].
ATP citrate lyase (ACLY), which is a key enzyme of de novo fatty acid synthesis, was
found to be upregulated in numerous types of cancer, and it is inhibited by miR-22 in
osteosarcoma and lung cancer cells [95]. Fatty acid synthase (FASN) is a central lipogenic
enzyme that is targeted by miR-15 and miR-16. FASN was found to be upregulated in
breast cancer [96]. MiR-1, miR-122 and miR-206 negatively regulate the expression of
glucose-6-phosphate dehydrogenase (G6PD), the enzyme that catalyzes the first reaction of
PPP [71]. Transketolase, involved in the non-oxidative phase of PPP, is targeted by miR-497,
a microRNA that modulates cisplatin chemosensitivity of cervical cancer cells [97,98].

Besides microRNAs, DNA-methylation and a wide variety of histone modifications
also contribute to the metabolic reprogramming of cancer cells, thereby composing a com-
plex epigenetic background of the Warburg effect. Promoter methylation of the glycolysis
antagonist fructose-1,6-bisphosphatase-1 (FBP1) is promoted by the NFκB pathway, and
can be used as a biomarker for prognosis prediction in gastric cancer [99]. The promoter
hypermethylation of LDH-B, detected in breast and prostate cancer, can be restored by the
demethylating agent 5-azacytidine [100]. Methylation of PKM2 by coactivator-associated
arginine methyltransferase 1 (CARM1) at three arginine residues results in the localiza-
tion of PKM2 to the mitochondria-associated endoplasmic reticulum membrane, which
promotes aerobic glycolysis by decreasing Ca2+-uptake and mitochondrial membrane
potential [101]. Promoter hypermethylation of Derlin-3, which is implicated in GLUT1
proteasome degradation, contributes to the overexpression of GLUT1 transporter [102].

Monoubiquitination of histone H2B (H2Bub1) exerts an anti-Warburg effect by regu-
lating the expression of mitochondrial respiratory genes. In addition, PKM2 interacts with
H2B and decreases the level of H2Bub1 [103]. Members of the NAD+-dependent sirtuin
family of histone deacetylase enzymes play an important role in the metabolic regulation
of cancer cells [104,105]. In tumor cell lines, the absence of SIRT3 led to the overproduc-
tion of ROS, resulting in the stabilization of HIF1α and the upregulation of its glycolytic
targets [106]. SIRT4 enzyme has been identified as a tumor suppressor and glutamine
gatekeeper, which inhibits the glutamate dehydrogenase (GDH) enzyme [107]. In mouse
embryonic fibroblasts, loss of SIRT4 enzyme resulted in increased glutamine-dependent
proliferation and stress-induced genomic instability [108,109]. Recently published data also
suggest the antitumor activity of the HIF1α corepressor SIRT6 enzyme. Besides its impact
on the expression of glycolytic genes, SIRT6 also regulates the splicing of the tumor-specific
PKM2 isoform [110].

All in all, besides the protein-coding oncogenes and tumor suppressor genes, epige-
netic regulatory mechanisms such as DNA methylation, sirtuin enzymes and microRNAs
are also key regulators of the Warburg effect, providing an unprecedented scale of potential
therapeutic targets.
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6. Clinical Applications

Advances in molecular biology and genomics opened up new horizons for anticancer
treatment, targeting metabolic pathways, microRNAs and epigenetic regulators. Chemo-
and radiotherapy-resistant breast cancer cells were re-sensitized by 2-deoxyglucose, a
competitive inhibitor of glucose [111]. WZB117, an inhibitor of GLUT1 [112], was confirmed
to exert synergistic effects with paclitaxel and cisplatin [65]. Pharmacological inhibition
of GLUT1 with BAY-876 impaired the growth of triple-negative breast cancer cells [113],
while the inhibition of GLUT3-transporter resulted in delayed resistance to temozolomide
in the treatment of glioblastoma [114].

Co-administration of glucocorticoids with inhibitors of HK2, such as 3-bromopyruvate,
increased in vitro sensitivity of glucocorticoids in acute lymphoblastic leukemia (ALL) [115].
In human lung cancer cells, the silencing of PKM2 resulted in the increased efficacy
of docetaxel in vitro and in vivo [116]. CPI-613 (devimistat) is a lipoate analog which
inhibits PDH and α-KG dehydrogenase complexes [66]. CPI-613 re-sensitized AML cells
to cytotoxic agents through the inhibition of TCA cycle [66]. While no specific inhibitors
of wild-type IDH enzyme have been reported, potent inhibitors have been identified for
mutant IDH1 and mutant IDH2. AGI-5198 was reported to inhibit the accumulation of
2-HG in IDH1-mutated glioma cells in vivo [117], that also promoted the differentiation of
glioma cells [118]. In preclinical studies, epigallocatechin gallate was confirmed to interrupt
the anaplerotic use of glutamine in the TCA cycle, thereby reducing tumor growth [119].

BPTES (bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)-ethyl-sulfide) is an allosteric
inhibitor of GLS1 enzyme. In pancreatic carcinoma, the synergistic effect of BPTES and
doxorubicin was observed [59]. While ALL cells have an increased dependence on ex-
ogenous asparagine due to the decreased activity of asparagine synthetase enzyme [120],
AML cell lines that are resistant to cytarabine therapy show a significant alteration to
purine metabolism [121]. Etomoxir (irreversible inhibitor of carnitine palmitoyltransferase-
1) inhibited cell viability in glioblastoma cells with a significant reduction in ATP and
NADPH levels [122]. Sensitivity against different kinds of antimetabolites also showed
associations with cytogenetic properties. Comparing AML cell lines, NB4 (acute promye-
locytic leukemia with t(15;17) translocation) and THP-1 (acute monocytic leukemia with
t(9;11) translocation) cells exhibited increased sensitivity to 2-deoxyglucose and etomoxir,
respectively [123].

Modulating the expression levels of microRNAs is receiving a great deal of attention
in cancer. Two major fields are replenishing the expression of anti-oncomiRs, and targeting
oncomiRs with microRNA antagonists (antimiRs) [124]. MicroRNA mimics are double-
stranded molecules matching the corresponding microRNA sequence, while antimiRs
have a single-stranded structure, classified as first-generation antisense oligonucleotides
(ASOs) and locked nucleic acids (LNAs) [15]. There are several ongoing clinical trials
such as the LNA-modified antimiR-155 in cutaneous T cell lymphoma and the miR-34
mimic lipid nanoparticles in multiple solid tumors [15]. Besides the growing number
of therapeutic targets, the spectrum of delivery systems for microRNA therapeutics has
also broadened and includes neutral lipid emulsions, dendrimers (polyamidoamine- or
polypropylene imine-conjugated nucleic acids), cyclodextrin (glucose polymer), adenoviral
vectors, polylactide-co-glycolide (PLGA) polymers, chitosan (cationic polymer derived
from chitin) and bacterium-derived EnGeneIC Delivery Vehicle (EDV) nanocells (also
called targomiRs) [15]. Targeting a wide variety of microRNAs (such as miR-122, miR-125b,
miR-34a, miR-155 and miR-205) with these novel technologies can potentially normalize
dysregulated metabolic enzymes in chemoresistant cancer cells [125]. Numerous microR-
NAs have been confirmed to enhance the efficacy of anticancer drugs [124]. Overexpression
of the GLUT1-targeting miR-218 increased chemosensitivity of bladder cancer cells to cis-
platin [86], while miR-153 enhanced sensitivity against arsenious acid in chronic myeloid
leukemia (CML) [126]. Dietary microRNAs represent a new area and are released into
the circulation after cellular uptake in the gastrointestinal tract. They are transported to
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multiple cell types and tissues, such as liver and immune cells, to directly regulate gene
expression [127].

There are further promising clinical applications of microRNAs, including differential
diagnosis, prediction of prognosis and chemoresistance. Based on the expression level of
four microRNAs (miR-128a, miR-128b, let-7b and miR-223), ALL and AML can be distin-
guished with high accuracy (97–99%) [128]. MicroRNA expression levels can be utilized in
the early detection of bladder cancer [129] and in the differential diagnosis of non-small
cell lung carcinoma [130]. Let-7a and miR-188 are prognostic biomarkers in cytogenetically
normal AML [131]. A six-microRNA-based model has been described to improve prognosis
prediction in breast cancer [132], and a five-microRNA-based signature was identified to
have a significant prognostic value in colon cancer [133]. Downregulation of miR-181a was
associated with cytarabine resistance in HL60 cells, due to reduced targeting of the BCL2
oncogene [134]. In glioma cell lines, miR-16 was confirmed to modulate temozolomide
resistance by regulating BCL2 [135]. MicroRNAs have also been identified in exosomes,
which can be taken up by neighboring or distant cells [136]. Exosomal microRNAs are
involved in cancer progression and metastasis formation [136], they are ligands of toll-like
receptors and activate immune cells [137]. A special circular RNA, hsa_circ_0005963 (ciRS-
122), is a sponge for the PKM2-targeting miR-122. Exosomes from oxaliplatin-resistant
colorectal cancer cells delivered ciRS-122 to sensitive cells, thereby promoting glycolysis
and chemoresistance [138]. Clinical applications of microRNAs and therapeutic approaches
to counteract Warburg effect are summarized in Figure 2.
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7. Concluding Remarks and Future Perspectives

Epigenetic and metabolic alterations have been characterized as novel hallmarks of
cancer during the past two decades. Better understanding of these features became a top
priority of cancer research, which also revealed their multiple interactions with previously
already well-characterized etiologic factors such as disturbances of signaling cascades,
mutations in oncogenes and tumor suppressor genes. Mutations of epigenetic modifiers
have been identified as early events in several cancers. The epimutation concept proposes
the vertical transmission of an error-prone epigenetic pattern, resulting in the generation
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of clones with abnormal mitoses and malignant characteristics [139]. Altered epigenetic
profile and metabolic reprogramming of cancer cells provide promising novel therapeutic
targets. However, special challenges of such novel therapeutic approaches should be noted.

Treatments targeting altered metabolic phenotypes should consider the heterogeneity
of metabolism between different types of tumors and even within distinct regions of a solid
tumor [80]. Divergent metabolic properties (such as the accumulation of 2-HG) can be
targeted with a more acceptable toxicity profile compared to that of convergent metabolic
phenotypes [80]. Targeting CSC metabolism is also a promising treatment option in
cancer. An increasing amount of evidence suggests the metabolic plasticity of CSCs, which
contributes to their resistance to conventional therapies [140]. CSCs can favor glycolysis or
oxidative phosphorylation, depending on the niche where they are located [141]. Based
on the rapid transition of the metabolic phenotype of CSCs under glucose deprivation or
hypoxia, targeting the adaptive mechanisms is an optional treatment approach [141].

Ensuring appropriate specificity is a topmost challenge of epigenetic therapies. Epige-
netic drugs should be transmitted specifically to distinct regions of chromatin. Growing
number of delivery vehicles and a wide variety of modified oligonucleotides have recently
been constructed that can be utilized in the modulation of microRNA expression levels.
MicroRNAs affect hundreds of targets in complex regulatory networks. Therefore, the
context-dependent role of microRNAs should always be taken into consideration. Besides
the therapeutic modulation of microRNA expression levels, a wide variety of their further
clinical applications should be highlighted, including differential diagnosis, biomarkers
for advanced prognostic stratification and prediction of chemoresistance. While the mod-
ulation of microRNA levels can enhance chemosensitivity, the impact of conventional
chemotherapeutic agents on microRNAs also should be noted. For example, 5-fluorouracil
has been shown to enhance the expression of anti-oncomiRs such as the let-7 family and
miR-15b [134]. In recent years, the number of clinical trials targeting Warburg-related
microRNAs has increased. Though the majority of these drugs were well tolerated, the
possibility of unpredictable side effects is highlighted by the fact that the trial of MRX34
(miR-34 mimic molecule targeting LDH-A) was terminated due to severe immune-related
reactions [142].

Early identification of reversible epigenetic and metabolic alterations is of key signifi-
cance to increase the efficacy and reduce the toxicity of cancer treatment by advanced prog-
nosis stratification and novel combinations of conventional and targeted therapeutic agents.
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α-KG alpha-ketoglutarate
ACLY ATP citrate lyase
ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
AMPK adenosine monophosphate-dependent protein kinase
ASCT alanine/serine/cysteine-preferring transporter
ASO antisense oligonucleotide
BCL2 B-cell lymphoma 2 gene
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BPTES bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)-ethyl-sulfide
CAGR cancer-associated genomic region
CARM coactivator-associated arginine methyltransferase
CDK cyclin-dependent protein kinase
CLL chronic lymphocytic leukemia
CML chronic myeloid leukemia
CSC cancer stem cell
EDV EnGeneIC Delivery Vehicle
ETC electron transport chain
FASN fatty acid synthase
FBP fructose-1,6-bisphosphatase
FH fumarate hydratase
G6PD glucose-6-phosphate dehydrogenase
GDH glutamate dehydrogenase enzyme
GLS glutaminase enzyme
GLUT glucose transporter
GPX4 glutathione peroxidase 4 enzyme
HIF1α hypoxia inducible factor 1α
HK2 hexokinase 2 isoform
HRE hypoxia responsive element
IDH isocitrate dehydrogenase
ISCU iron–sulfur cluster assembly enzyme
JMJD Jumonji-domain
LDH lactate dehydrogenase
LNA locked nucleic acid
MCT monocarboxylate transporter
NAFLD non-alcoholic fatty liver disease
NFκB nuclear factor κB
PDH pyruvate dehydrogenase
PDK pyruvate dehydrogenase kinase
PHD prolyl hydoxylase domain
PKM2 pyruvate kinase M2 isoform
PLGA polylactide-co-glycolide
PPP pentose phosphate pathway
RISC RNA-induced silencing complex
ROS reactive oxygen species
SDH succinate dehydrogenase
SIRT sirtuin enzyme
SREBP sterol-regulatory element-binding protein
TCA tricarboxylic acid
TIGAR TP53-induced glycolysis and apoptosis regulator
UTR untranslated region
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