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Abstract
Introduction: Rigorous research in the last few years has shown that in addition to 
the	classical	mechanism	of	neurodegeneration,	certain	unconventional	mechanisms	
may also lead to neurodegenerative disease. One of them is a widely studied meta-
bolic disorder: type 2 diabetes mellitus (T2DM). We now have a clear understanding 
of	glucose-mediated	neurodegeneration,	mostly	from	studies	in	Alzheimer's	disease	
(AD)	models.	 AD	 is	 recognized	 to	 be	 significantly	 associated	with	 hyperglycemia,	
even	earning	the	term	“type	3	diabetes.”	Here,	we	review	first	the	pathophysiology	of	
AD,	both	from	the	perspective	of	classical	protein	accumulation,	as	well	as	the	newer	
T2DM-dependent	 mechanisms	 supported	 by	 findings	 from	 patients	 with	 T2DM.	
Secondly,	we	review	the	different	pathways	through	which	neurodegeneration	is	ag-
gravated	in	hyperglycemic	conditions	taking	AD	as	a	case	study.	Finally,	some	of	the	
current	advances	in	AD	management	as	a	result	of	recent	research	developments	in	
metabolic	disorders-driven	neurodegeneration	are	also	discussed.
Methods: Relevant literatures found from PubMed search were reviewed.
Results: Apart	from	the	known	causes	of	AD,	type	2	diabetes	opens	a	new	window	to	
the	AD	pathology	in	several	ways.	It	is	a	bidirectional	interaction,	of	which,	the	mo-
lecular and signaling mechanisms are recently studied. This is our attempt to connect 
all of them to draw a complete mechanistic explanation for the neurodegeneration in 
T2DM.	Refer	to	Figure	3.
Conclusion: The	perspective	of	AD	as	a	classical	neurodegenerative	disease	is	chang-
ing,	and	it	is	now	being	looked	at	from	a	zoomed-out	perspective.	The	correlation	be-
tween	T2DM	and	AD	is	something	observed	and	studied	extensively.	It	is	promising	
to	know	that	there	are	certain	advances	in	AD	management	following	these	studies.
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1  | INTRODUCTION

Neurodegenerative	diseases	are	generally	characterized	by	cellular	
accumulation	of	misfolded	proteins,	 ROS	production	 due	 to	mito-
chondrial	dysfunction,	and	disruption	of	 the	autophagy	machinery	
in	neuronal	cells.	Alzheimer's	disease	(AD)	despite	being	a	neurode-
generative	disease	with	a	well-explored	disease	pathology	is	still	of	
much interest to researchers. Conventional mechanisms of neuro-
degeneration	in	patients	with	AD	include	beta-amyloid	(Aβ) plaque 
accumulation and tau protein neurofibrillary tangles formation in the 
brain,	eventually	leading	to	dementia	and	other	behavioral	problems,	
and	ultimately	to	death.	For	a	long	time,	these	mechanisms	were	the	
focus	of	AD	research,	leading	to	a	growing	hope	that	effective	drugs	
against	AD	would	be	discovered	soon.	Now,	we	understand	that	the	
changes	leading	to	AD	are	also	aging-related,	genetic	and	inheritable,	
and	thus	are	not	easily	reversible.	Recent	progress	 in	AD	research	
has demonstrated that there are several other external factors 
widely	causing	 the	emergence	of	AD	pathologies,	 such	as	obesity,	
diabetes,	brain	injury,	neurotoxicity,	and	infections	(Dosunmu,	Wu,	
Basha,	&	Zawia,	2007;	Pugazhenthi,	Qin,	&	Reddy,	2017).	Although	
it has been more than a decade since the idea of diabetes mellitus 
as	a	causal	disorder	of	many	neuronal	diseases	originated,	this	 link	
has	been	less	explored	(Seaquist,	2010).	This	oversight	is	likely	due	
to inadequate methodologies and lack of appropriate testable mod-
els.	 Recently,	 this	 idea	 has	 gained	momentum	 since	 increased	AD	
pathology	 has	 been	 observed	 in	 AD	 patients	 with	 T2DM	 (Mehla,	
Chauhan,	 &	 Chauhan,	 2014).	 These	 unconventional	 modes	 of	 AD	
emergence	are	 likely	 to	be	 lifestyle-related	and	may	be	controlled	
and	 even	 reversed	 if	 correctly	 targeted.	 Therefore,	 it	 is	 essential	
to focus research on the relationship between metabolic disorders 
and	neuronal	alterations	 resulting	 from	such	disorders,	 in	order	 to	
unravel	the	molecular	mechanisms	behind	it	(Calvo-Ochoa	&	Arias,	
2015).	 Here,	 we	 provide	 a	 concise	 review	 of	 diabetes-associated	
mechanisms	of	neurodegeneration	and	cognitive	 impairment,	with	
an	emphasis	on	the	pathophysiology	of	AD.

2  | PATHOPHYSIOLOGY OF AD

2.1 | Classical AD pathology

Alzheimer's	 disease	 has	 been	 recognized	 as	 a	 deadly	 neurological	
disease since its discovery at the beginning of the 20th century by 
Dr.	Alois	Alzheimer	and	continues	to	be	a	significant	neurodegenera-
tive disease without a cure. It is a prominent cause of dementia in 
elderly	people	all	over	the	world.	According	to	the	World	Alzheimer	
Report	 2015,	 there	 are	 approximately	 46.8	 million	 people	 world-
wide	diagnosed	with	dementia.	 In	AD,	 irreversible	neurodegenera-
tion	causes	severe	damage	to	the	brain	tissue	and	a	reduction	in	size	
of	the	brain	(Bernardes	et	al.,	2017;	Hannah,	1936).	The	term	neu-
rodegeneration refers to the progressive death of neurons due to 
multiple	causes,	some	of	which	are	widely	explored	as	in	the	case	of	
AD.	Classically,	AD	is	characterized	by	the	accumulation	of	protein	

both intracellularly and extracellularly. The main culprit is the hy-
drophobic	 beta-amyloid	 (Aβ)	 peptide,	 secreted	 in	 the	 extracellular	
space after the proteolytic cleavage of a transmembrane glycopro-
tein	amyloid	precursor	protein	(APP)	by	beta-secretase	followed	by	
gamma-secretase	enzymes	(O’Brien	&	Wong,	2011).	APP	is	a	trans-
membrane	 protein	 and	 an	 integral	 part	 of	 synapses	 in	 the	 brain,	
while	the	soluble	form	of	Aβ has a crucial role in neuronal growth and 
survival	in	physiological	conditions	(O’Brien	&	Wong,	2011;	Pearson	
&	Peers,	2006).	However,	an	 imbalance	 in	production	and/or	deg-
radation	of	insoluble	Aβ	peptides	40–42	amino	acids	in	length	and	
4.2	kDa	in	size	leads	to	its	accumulation	and	polymerization,	creat-
ing	plaques	that	are	detrimental	to	the	cell	(O’Brien	&	Wong,	2011).	
Another	conventional	mechanism	of	neurodegeneration	in	AD	is	the	
neurofibrillary tangles formed by aggregation of tau protein in the 
cytoplasm due to its misfolding after hyperphosphorylation. The 
normal	physiological	function	of	tau	protein	is	to	help	stabilize	the	
neuronal	cytoskeleton	 (Mietelska-Porowska,	Wasik,	Goras,	Filipek,	
&	Niewiadomska,	2014).	In	patients	with	AD,	aggregates	of	tau	pro-
tein	do	not	undergo	degradation	by	autophagy,	a	protein	degrada-
tion	machinery,	 leading	to	continuous	accumulation	of	this	protein	
(Iqbal,	Liu,	Gong,	Alonso,	&	Grundke-Iqbal,	2009).	The	deposition	of	
tau	eventually	causes	oxidative	 stress	 to	 the	cell,	 and	 the	produc-
tion of reactive oxygen species (ROS) by the mitochondria results 
in	the	activation	of	apoptotic	signals,	leading	to	enhanced	neuronal	
cell	death	(Iqbal	et	al.,	2009;	Liu	et	al.,	2015).	Since	mature	neurons	
cannot	regenerate,	degeneration	of	neurons	leads	to	loss	of	connec-
tions	between	neurons	which	are	crucial	for	memory	retention.	As	
a	result,	older	adults	with	AD	show	various	symptoms	of	dementia,	
such	as	confusion,	difficulty	in	thinking,	recognizing	people,	writing,	
speaking,	and	reading,	as	well	as	other	behavioral	problems	(Ropper,	
1979).

Currently,	 researchers	 are	 working	 on	 various	 aspects	 of	 the	
disease	to	elucidate	complete	molecular	mechanisms,	identify	drug	
targets,	and	design	early	diagnostic	tools	and	to	plan	effective	AD	
management methods. Recent clinical studies have demonstrated 
a	dramatic	correlation	between	AD	and	metabolic	diseases	such	as	
type	2	diabetes	mellitus	(ClinicalTrials.gov	Identifiers:	NCT02501876,	
NCT02360527,	NCT03578991).	Hence,	AD	is	now	recapturing	the	
attention of neuroscientists as a possible complication of defective 
glucose	metabolism	(Bianchi	&	Manco,	2018).

2.2 | Diabetes: A new window to AD pathology

Diabetes mellitus is a lifestyle disease prevalent among people from 
all over the globe. It is a condition in which the glucose metabolism 
of	 the	body	 is	 dysregulated,	 resulting	 in	 a	high	 level	 of	 glucose	 in	
the	 blood.	According	 to	 a	 recent	 report	 by	 International	Diabetes	
Federation	(IDF),	the	number	of	patients	with	diabetes	in	the	world	
has	increased	from	108	million	in	1980	to	425	million	in	2017,	indi-
cating	 that	every	11th	person	 in	 the	world	 is	diabetic	 (Risk	Factor	
Collaboration,	 2016).	 These	 numbers	 probably	 underestimate	 the	
actual	number	of	patients	with	diabetes,	since	one	out	of	two	people	



     |  3 of 13MADHUSUDHANAN et Al.

remains	 undiagnosed	 in	 most	 developing	 countries.	 According	 to	
estimates	by	 the	World	Health	Organization	 (WHO),	 by	2030	de-
veloping countries like India will contribute five times more than de-
veloped	countries	to	the	prevalence	of	diabetes	and	diabetes-related	
deaths	 (Wild,	 Roglic,	Green,	 Sicree,	&	King,	 2004)	 (Figure	 1).	 This	
could also be an indication of the alarming number of patients with 
AD	in	developing	and	underdeveloped	countries,	where	unavailabil-
ity of modern diagnostic techniques and new treatment strategies 
for	AD	are	contributing	to	a	major	health	crisis	(Kalaria	et	al.,	2008).

The cause for increased blood glucose levels in a patients with 
diabetes can vary based on which diabetes is classified into two 
major types: type 1 and 2 diabetes. Type 2 diabetes is the more 
common type. Type 2 diabetes mellitus (T2DM) can be due to in-
sufficient	 insulin	 production	 by	 the	 pancreatic	 beta	 cells,	 or	 due	
to insulin resistance in the body. Insulin resistance is the inability 
of	a	cell	to	respond	adequately	to	insulin	signaling,	resulting	in	de-
creased	 glucose	 uptake	 by	 the	 cell	 (Saini,	 2010).	 Consequently,	
insulin-resistant	cells	die	leading	to	severe	complications	and	ineffi-
cient	functioning	of	multiple	organs.	Diabetic	stroke,	hypertension,	
cardiovascular	 disease,	 kidney	 failure,	 and	 liver	 damage	 are	 some	
of them. Neurodegeneration has been recently added to this list 
(Harding,	 Pavkov,	Magliano,	 Shaw,	&	Gregg,	 2019).	Notably,	 there	
are numerous studies on the association between neurodegenera-
tive	disease	AD	and	T2DM	(Jayaraman	&	Pike,	2014).	Although	such	
studies	repeatedly	emphasize	the	relation	between	AD	and	T2DM,	
it	is	important	to	note	that	diabetes-related	risk	factors	are	not	suffi-
cient	to	cause	AD.	However,	they	indeed	promote	AD	pathology	by	
triggering	neurodegeneration	by	various	mechanisms	(Moroz,	Tong,	
Longato,	Xu,	&	De	La	Monte,	2008).	In	severe	cases	of	T2DM,	glu-
cose toxicity in the brain is mainly due to oxidative stress triggered 
by amplified free radical formation and decreased free radical scav-
enging	mechanisms	(Tomlinson	&	Gardiner,	2008).	Excessive	glucose	
levels	in	the	neuronal	niche	can	cause	lipid	peroxidation,	carbonyla-
tion	of	 proteins,	 and	DNA	damage	which	 causes	 irreparable	harm	
to	 neurons	 (Ito,	 Sono,	 &	 Ito,	 2019).	 High	 amounts	 of	 free	 radical	

production	are	associated	with	inflammation.	As	a	consequence	of	
inflammatory	 pathway	 activation,	metalloproteinases	may	damage	
blood–brain	barrier	(BBB)	integrity	and	cause	brain	edema	(Kamada,	
Yu,	Nito,	&	Chan,	2007).	Hyperglycemic	conditions	in	the	brain	pro-
mote	accumulation	of	lactic	acid,	which	leads	to	intracellular	acidosis	
and sequentially incites mitochondrial dysfunction and energy fail-
ure	(Anderson,	Tan,	Martin,	&	Meyer,	1999).

Correlations	between	the	pathology	of	AD	and	T2DM	have	been	
observed.	Various	studies	using	AD	animal	models	have	shown	that	
diet-induced	 insulin	 resistance/chemically	 induced	 insulin	signaling	
impairment	 increases	 AD	 pathology	 (Hascup	 et	 al.,	 2019;	 Mehla	
et	al.,	2014).	This	implies	that	insulin	resistance	in	a	patients	with	di-
abetes may lead to problems related to memory and cognition. There 
is also evidence to support the idea that patients with diabetes are 
more	 susceptible	 to	 develop	 AD	 (Cheng,	 Huang,	 Deng,	 &	Wang,	
2012). Researchers have postulated that diabetes could be a novel 
mechanism	of	neurodegeneration	wherein	 the	classical	AD	patho-
physiology can be explained from the perspective of unregulated 
insulin/IGF	 (insulin-like	 growth	 factor)	 signaling	 and	 improper	 glu-
cose metabolism. The diabetic brain starves because of insufficient 
expression	 of	 glucose	 transporters	 (mainly	 GLUT4)	 on	 the	 mem-
brane of neurons without which glucose cannot be transported into 
the	 cells	 (Blázquez,	 Velázquez,	 Hurtado-Carneiro,	 &	 Ruiz-Albusac,	
2014).	This	can	result	in	oxidative	stress	in	the	mitochondria,	causing	
neurons	to	degenerate	by	induction	of	apoptosis	(Sripetchwandee,	
Chattipakorn,	&	Chattipakorn,	2018).	On	the	other	hand,	 impaired	
insulin/IGF	signaling	in	the	brain	is	also	implied	in	hyperphosphory-
lation	of	tau	protein	by	one	of	the	many	kinases	(PI3K/Akt/MAPK)	in	
the downstream of insulin signaling pathways. Disrupted regulation 
of any of these kinases in the diabetic brain can lead to tau hyper-
phosphorylation	and	accumulation,	one	of	the	hallmarks	of	AD	(de	la	
Monte,	2014;	Plum,	Schubert,	&	Brüning,	2005).	After	several	clinical	
studies,	the	association	between	T2DM	and	AD	has	finally	become	
well-established,	although	the	molecular	mechanism	remains	to	be	
unveiled	 (Plum	et	al.,	2005).	A	point	to	be	noted	regarding	studies	

F IGURE  1 Graphical	representation	of	
the	estimated	number	of	AD	and	Diabetes	
patients worldwide. It shows a steady 
increase	in	the	number	of	AD	patients	
along with the huge increase in diabetic 
patients	every	year,	indicating	a	strong	
correlation between them. The numbers 
for	2030	and	2040	are	extrapolated	
from	the	current	statistics.	(Sources:	IDF	
(International	Diabetes	Federation),	ADI	
(Alzheimer's	Disease	International)	and	
WHO	(World	Health	Organization).	Data	
points are the estimates reported in the 
websites	of	these	organizations,	and	
they are compiled and represented as a 
histogram for comparison)
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using	AD	animal	models	is	that	patients	with	AD	present	with	met-
abolic	disorders	and	many	symptoms	of	diabetes,	which	may	not	be	
fully	represented	by	animal	models	(Chakrabarti	et	al.,	2015).	Close	
analysis and further studies are necessary to understand the possi-
ble	bidirectional	mechanism	involved	in	mutually	promoting	AD	and	
T2DM	pathologies	(Shinohara	&	Sato,	2017).

3  | MECHANISMS OF T2DM-DERIVED 
NEURODEGENERATION IN AD

3.1 | Neurodegenerative role of Amylin

“Islet	 amyloid	polypeptide”	 (IAPP)	or	 “amylin”	 is	 a	 less	understood	
peptide	 hormone	 synthesized	 and	 cosecreted	 along	 with	 insulin	
by the pancreatic β	cells	(Despa	&	DeCarli,	2013).	It	is	produced	in	
minute	quantities	when	compared	to	insulin,	but	functions	similar	to	
insulin.	Amylin	has	recently	become	a	topic	of	focus	in	current	AD	
research	(Mietlicki-Baase,	2016).	Amylin	 is	structurally	very	similar	
to	beta-amyloid	(Lim	et	al.,	2010).	Like	Aβ,	amylin	is	also	processed	
through	multiple	steps	by	proteolytic	enzymes	to	finally	form	amylin	
or	 islet	amyloid	polypeptide	(IAPP)	(Akter	et	al.,	2016;	Nagamatsu,	
Nishi,	&	Steiner,	1991;	Sanke,	Bell,	 Sample,	Rubenstein,	&	Steiner,	
1988).	 Importantly,	 amylin	 aggregates	 have	 been	 noticed	 in	 the	
pancreatic	 islets	 of	 patients	 with	 T2DM	 (Mietlicki-Baase,	 2016;	
Mitsukawa	et	al.,	1990).	 It	 leads	 to	apoptosis	of	β cells and thus a 
reduction	in	insulin	production	(Lutz	&	Meyer,	2015).	Amylin	deposi-
tion also contributes to insulin resistance and oxidative stress re-
sponses	observed	in	these	cells	(Lutz	&	Meyer,	2015).	Interestingly,	
amylin can also cross the BBB and amylin receptors are distributed 
in	some	parts	of	the	CNS,	as	observed	in	the	case	of	insulin	and	its	
receptors	(Mietlicki-Baase	&	Hayes,	2014)	(Figure	2).	However,	am-
ylin accumulates in several peripheral organs of patients with T2DM 
as	well,	which	explains	the	hyperamylinic	condition	 in	the	diabetic	
brain	 (Jackson	 et	 al.,	 2013).	 Hyperamylinemia	 eventually	 leads	 to	
deleterious	effects	in	the	brain	and	enhances	the	symptoms	of	AD	
pathology	 (Lim,	 Ittner,	 Lim,	&	Götz,	2008).	Thus,	 amylin	 is	 consid-
ered	a	pancreas-derived	neuropeptide	playing	a	crucial	 role	 in	 the	

development	of	AD	pathology	in	patients	with	T2DM	(Jackson	et	al.,	
2013).	Although	 the	 actual	mechanism	of	 amylin-mediated	neuro-
degeneration	 is	 not	 completely	 known,	 attempts	 have	been	made	
to	develop	our	understanding.	One	such	study	involves	AD	patients	
with T2DM and diabetic HIP (human islet amyloid polypeptide) rats 
(a new model for T2DM in which rats express human amylin in pan-
creatic	islets).	The	study	revealed	that	the	accumulation	of	amylin-Aβ 
complex	in	the	brain	of	AD	patients	with	T2DM	activates	the	pro-
duction	of	cytokines	such	as	IL-1β,	which	in	turn	enhances	neuroin-
flammatory immune responses leading to gradual degeneration of 
neurons	 (Verma	et	al.,	2016).	Amylin	and	 its	analogs	are	shown	to	
interact and activate different downstream molecules in the insulin 
signaling	pathway	(Moon,	Chamberland,	&	Mantzoros,	2012;	Nassar,	
Badae,	&	Issa,	2018).

Parallel research exploiting the structural and biophysical sim-
ilarities	 between	 amylin	 and	 beta-amyloid	 peptide	 has	 unearthed	
another	 fascinating	 finding	 that	 patients	 with	 AD	 significantly	
overexpress	amylin	receptors	(Jhamandas	et	al.,	2011).	It	is	already	
known	that	Aβ	and	amylin	can	bind	to	the	same	receptor,	which	in-
dicates	a	probable	amylin	 receptor-mediated	Aβ action in patients 
with	AD	(Nassar	et	al.,	2018).	In	vitro	studies	have	shown	that	block-
ing amylin receptors could mitigate the electrophysiological effects 
of	Aβ	 and	 confer	neuroprotection	 (Jhamandas	et	 al.,	 2011).	These	
studies provide the rationale for considering amylin receptors as a 
reliable	novel	therapeutic	target	for	the	treatment	of	AD.

3.2 | Impaired insulin signaling in beta-Amyloid 
plaque formation and tau hyperphosphorylation

Insulin signaling is vital for several functions of the brain. Some of 
these	 include	 synaptogenesis,	 plasticity,	 neuroregeneration,	 learn-
ing,	 memory,	 neuritogenesis,	 and	 repair	 (Tumminia,	 Vinciguerra,	
Parisi,	 &	 Frittitta,	 2018).	 Insulin	 also	 regulates	APP	metabolism	 in	
neurons	(Plum	et	al.,	2005;	Tumminia	et	al.,	2018).	Hence,	an	imbal-
ance in insulin signaling can reflect on the metabolism and process-
ing	of	APP,	which	eventually	leads	to	the	accumulation	of	Aβ in the 
cell—a	major	cause	for	neurodegeneration	in	AD.	As	evidence	for	the	

F IGURE  2 Comparison between the 
role	of	amylin	(IAPP)	in	T2DM	patients	
and	Aβ	(beta-amyloid)	in	AD	patients.	It	
supports the fact that the dysfunction 
and	accumulation	of	Amyloidogenic	
peptides are common causes for both the 
pathologies.	Amylin	is	now	considered	
as one of the prominent links in the 
molecular	mechanism	of	glucose-mediated	
neurodegeneration
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potential	role	of	insulin	signaling	in	neurodegeneration	in	AD,	signifi-
cantly reduced expression of insulin receptor (IR) has been observed 
in	 the	brains	of	patients	with	AD	 (Frazier	et	al.,	2019).	Decreasing	
the	intracellular	accumulation	of	Aβ by modulating insulin signaling 
is another strong indication of the vital role of insulin signaling in 
AD	pathology	(Craft,	2006).	Interestingly,	APP	appears	to	be	essen-
tial	 for	maintaining	healthy	glycemic	regulation.	Studies	using	APP	
knockdown mice demonstrate that these mice develop metabolic 
disorders	as	well	(Kulas	et	al.,	2018).

Furthermore,	hyperphosphorylation	of	 the	tau	protein,	one	of	
the	critical	 features	of	AD	pathology	 is	 also	 increased	due	 to	 im-
paired insulin signaling in the brain of patients with T2DM (Plum 
et	 al.,	 2005;	 Tumminia	 et	 al.,	 2018).	 Glycogen	 synthase	 kinase-3	
(GSK-3)	 is	 an	 enzyme	 downstream	 to	 IR	 in	 the	 insulin	 signaling	
cascade,	and	 its	GS	phosphorylating	activity	 is	downregulated	by	
insulin.	 GSK-3	 has	 been	 recently	 demonstrated	 to	 phosphorylate	
tau	proteins.	Thus,	altered	 insulin	signaling	may	modulate	GSK-3β 
activity,	 leading	to	the	hyperphosphorylated	state	of	 tau	proteins	
observed	in	the	brains	of	patients	with	T2DM	(Frazier	et	al.,	2019).	
The hyperphosphorylated tau proteins eventually get converted 
into	neurofibrillary	 tangles,	which	 is	one	of	 the	key	 indications	of	
neurodegeneration	in	AD.

3.3 | Neuroinflammation and defective 
insulin signaling

It	is	well-known	that	neuroinflammatory	pathways	can	cause	del-
eterious	effects	on	neuronal	cells.	In	the	hyperglycemic	condition,	
neuroinflammatory pathways can be induced in numerous ways 
(Refer	to	Figure	3).	First,	increased	mitochondrial	activity	creates	
a	stressful	environment	within	the	cell,	thus	enhancing	ROS	pro-
duction which leads to the activation of inflammatory pathways. 
One of the other key features of T2DM is the overproduction of 
proinflammatory	cytokines	such	as	TNF-α	and	IL-6,	in	part	due	to	
hyperactivation	of	microglia	and	astrocytes,	 the	 immune	cells	of	
the	brain	(Bahniwal,	Little,	&	Klegeris,	2017;	Nasoohi,	Parveen,	&	
Ishrat,	2018).	Persisting	 inflammation	and	abnormal	 levels	of	cir-
culating cytokines that may even breach the BBB can be observed 
in	 patients	 with	 T2DM	 (Nasoohi	 et	 al.,	 2018).	 TNF-α promotes 
various	stress-sensitive	kinases	which	induce	serine	phosphoryla-
tion	 of	 IRS-1,	 an	 essential	 molecule	 in	 the	 insulin	 signaling	 cas-
cade which is usually activated by phosphorylation at a tyrosine 
residue	 to	 propagate	 the	 insulin	 signal	 (Nasoohi	 et	 al.,	 2018).	
Thus,	increased	cytokine	levels	in	the	brain	can	lead	to	defective	
insulin	 signaling,	which	 is	one	of	 the	mechanisms	 through	which	

F IGURE  3 Schematic	representation	of	the	different	mechanisms	involved	in	glucose-mediated	neurodegeneration.	Impaired	insulin	
signaling	is	at	the	center	in	T2DM	patients,	which	leads	to	various	AD	symptoms	and	then	ultimately	to	the	neuronal	cell	death
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T2DM	affects	brain	functions	(Ferreira,	Clarke,	Bomfim,	&	Felice,	
2014).	 It	 is	 clear	 that	T2DM-induced	chronic	 inflammation	has	a	
significant impact on the brain and is one of the important causal 
mechanisms	of	many	neurological	disorders	such	as	AD	and	mul-
tiple	 sclerosis	 (MS)	 (Van	Dyken	&	 Lacoste,	 2018).	High	 levels	 of	
TNF-α	in	the	cerebrospinal	fluid	(CSF)	of	patients	with	AD	indicate	
that	inflammation-induced	impaired	brain	insulin	signaling	may	be	
a major cause of insulin resistance observed in these patients. This 
implies	 that	 in	 patients	 with	 AD,	 impaired	 cerebral	 insulin	 sign-
aling due to neuroinflammation may be a possible link between 
cerebral	 dysfunction	 and	 T2DM	 (Ferreira	 et	 al.,	 2014;	 Mehla	
et	al.,	2014;	Nasoohi	et	al.,	2018).	Another	mechanism	by	which	
hyperglycemia-induced	 neuroinflammatory	 pathways	may	 affect	
the	brain	is	through	Toll-like	receptor	4	(TLR4).	TLR4	is	highly	ex-
pressed in all parts of the CNS and may be one more link between 
T2DM	and	AD	(Huang,	Jin,	Zhou,	Shi,	&	Jin,	2017).	TLR4	signaling	
pathways	are	continuously	active	in	diabetes,	leading	to	insulin	re-
sistance.	Although	activation	of	TLR4	 in	 the	 initial	 stages	of	AD	
helps	remove	Aβ	depositions,	 long-term	activation	appears	to	be	
detrimental	to	the	brain.	Chronic	TLR4	activation	causes	chronic	
inflammation,	which	leads	to	diabetic	neuropathy	and	AD	(Huang	
et	al.,	2017).

3.4 | Cognitive impairment in T2DM

The CNS is one of the most important targets of insulin. Insulin re-
ceptors	 (IRs)	 are	widely	 expressed	 in	 different	 parts	 of	 the	 brain,	
especially in the hippocampus. Insulin mediates metabolic homeo-
stasis and regulates neurotrophic processes and synaptic plasticity 
of	the	brain	(Calvo-Ochoa	&	Arias,	2015;	Gudala,	Bansal,	Schifano,	
&	Bhansali,	2013;	Nguyen	et	al.,	2018;	Zhao,	Chen,	Quon,	&	Alkon,	
2004).	Earlier,	in	vitro	studies	using	hippocampal	cell	cultures	estab-
lished	a	neuroprotective	role	for	insulin	(Duarte,	Proença,	Oliveira,	
Santos,	&	Rego,	2006;	Stockhorst,	Fries,	Steingrueber,	&	Scherbaum,	
2004).	 As	 mentioned	 before,	 insulin	 can	 activate	 PI3-K/Akt	 and	
S6K/mTOR	 kinase	 pathways	 which	 apart	 from	 regulating	 glucose	
metabolism also have a pivotal role in neuronal growth and synaptic 
plasticity	(Calvo-Ochoa	&	Arias,	2015;	Stockhorst	et	al.,	2004;	Zhao	
et	al.,	2004).	Importantly,	it	has	been	observed	that	insulin	can	me-
diate	the	expression	and	recruitment	of	AMPA,	NMDA,	and	GABA	
receptors in the postsynaptic cluster and control release of neuro-
transmitters	such	as	acetylcholine	and	norepinephrine,	all	of	which	
are	directly	related	to	the	generation	of	long-term	potentiation	(LTP)	
needed	 for	 long-term	memory	 in	 the	 hippocampus	 (Boyd,	 Clarke,	
Muther,	&	Raizada,	1985;	Skeberdis,	Lan,	Zheng,	Zukin,	&	Bennett,	
2002;	 Van	 Der	 Heide,	 Kamal,	 Artola,	 Gispen,	 &	 Ramakers,	 2005;	
Wan	 et	 al.,	 1997).	 Several	 transgenic	 and	 genetic	 T2DM	 models	
reported	 significant	 reduction	 in	 LTP,	 synaptic	 damage,	 decreased	
expression	of	neurotrophic	factors,	compromised	BBB	integrity,	and	
neuroinflammation. These processes are associated with hippocam-
pus-based	cognitive	 impairment	and	memory	deficit	 (Calvo-Ochoa	
&	Arias,	2015).

Clinical findings and numerous epidemiological studies also sup-
port	the	beneficial	role	of	insulin	on	cognition,	and	now,	it	is	well-es-
tablished that the insulin resistance associated with T2DM can also 
lead	to	vascular	dementia	(Skeberdis	et	al.,	2002).	Vascular	dementia	
is a general term for the cognitive impairment associated with any 
metabolic	disorder;	in	particular,	diabetes-induced	cognitive	impair-
ment	 is	 known	 as	 diabetic	 encephalopathy	 (DE).	 Furthermore,	 all	
these	symptoms	may	eventually	lead	to	the	onset	of	AD.	Evidently,	
all	 AD	 pathophysiologies	 are	 well	 linked	 to	 insulin	 signaling	 and	
T2DM	(Johnson,	Torres,	Impey,	Stevens,	&	Raber,	2017).	These	stud-
ies	indeed	indicate	the	importance	of	insulin	in	cognitive	functions,	
learning,	and	memory	formation.	Hence,	when	compared	to	nondi-
abetic	individuals,	patients	with	diabetes	are	at	approximately	70%	
higher	risk	for	the	development	of	vascular	dementia	or	AD	(Gudala	
et	al.,	2013).

3.5 | Autophagy dysfunction and diabetes-
induced AD

Autophagy	 is	 the	 catabolic	 degradation	 of	 misfolded	 or	 nonfunc-
tional	 proteins	 and	 parts	 of	 damaged	 organelles	 (Calvo-Ochoa	 &	
Arias,	 2015;	 Chen	 et	 al.,	 2019).	 Autophagy	 dysfunction	 is	 known	
to	contribute	 to	several	neurodegenerative	diseases,	 including	AD	
(Calvo-Ochoa	 &	 Arias,	 2015;	 Kiriyama	 &	 Nochi,	 2015;	 Komatsu	
et	al.,	2006).	Aβ accumulation and neurofibrillary tangle formation 
may be caused by the downregulation of autophagy in neuronal 
cells.	 Recently,	 it	 has	 been	 demonstrated	 that	 downregulation	 of	
autophagy	is	also	associated	with	T2DM,	which	indirectly	suggests	
that autophagy dysfunction could be another important mechanism 
by which it disrupts the homeostasis of neuronal cells and induces 
neurodegeneration	 (Kanamori	 et	 al.,	 2015;	 Wilson,	 Magnaudeix,	
Yardin,	 &	 Terro,	 2014).	 The	 PI3K/mTOR	 pathway	 has	 an	 essential	
role	in	the	regulation	of	autophagy,	which	is	disrupted	in	conditions	
such	as	 insulin	 resistance	and/or	 impaired	 insulin	 signaling	 (Calvo-
Ochoa	&	Arias,	2015).	Researchers	are	also	interested	in	finding	new	
therapeutic targets using knowledge of the shared mechanisms of 
disease	 pathology	 between	 AD	 and	 T2DM.	 Pharmacological	 au-
tophagy induction could be a viable therapeutic strategy not only 
for	AD	but	for	many	other	neurodegenerative	diseases	(Chen	et	al.,	
2019;	Friedman,	Qureshi,	&	Yu,	2015).

3.6 | Involvement of cell adhesion molecules in 
glucose transport and AD

Prion protein (PrPc) is a neuronal membrane protein involved in 
cell–cell	adhesion	and	intercellular	communication.	Prion	has	been	
shown	 to	 interact	 with	 beta-amyloid	 and	 is	 thus	 suspected	 to	
have	a	significant	role	in	AD-related	pathologies	(Jarosz-Griffiths,	
Noble,	Rushworth,	&	Hooper,	2016).	 Interestingly,	prion	antago-
nists are currently being used effectively to reduce the neurotoxic 
effects	of	the	prion-β-amyloid	interaction	and	cognitive	deficit	in	
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AD	 models	 (Sagare,	 Sweeney,	 Nelson,	 Zhao,	 &	 Zlokovic,	 2019).	
Recently,	correlations	have	been	observed	between	prion	protein	
(PrPc) and its modulatory effect on intracellular iron levels in vari-
ous cell types including neuronal cells. Intracellular iron overload 
is considered a risk factor for diabetes. Imbalance in iron homeo-
stasis	in	diabetes	results	in	beta	cell	failure	and	insulin	resistance,	
which	are	the	hallmarks	of	T2DM	(Simcox	&	McClain,	2013).	The	
underlying	molecular	mechanism	is	not	clear,	but	 it	has	been	ob-
served that iron overload in diabetes induces hypoxia and ROS 
production,	which	leads	to	beta	cell	damage	and	decreased	insu-
lin	 gene	 expression	 (Kaneto,	 Katakami,	Matsuhisa,	 &	Matsuoka,	
2010;	Walter	 et	 al.,	 2002).	 Also,	 hypoxia-inducible	 factors	 (HIF)	
may	downregulate	GLUT1	and	GLUT2	expression,	thus	enhancing	
hypoglycemic	conditions	in	the	cell.	In	brief,	apart	from	oxidative	
stress	due	to	HIF	and	ROS,	iron	overload	may	induce	glucose-me-
diated	neurodegeneration	(Merelli	et	al.,	2018).	A	role	for	prion	in	
glucose	uptake	of	 the	cell	by	altering	 the	GLUT2	expression	has	
also	been	reported,	which	indicates	that	prion	can	indirectly	affect	
glucose	metabolism	(Ashok	&	Singh,	2018).

4  | CURRENT RESEARCH ADVANCES AND 
AD MANAGEMENT

Both	 AD	 and	 T2DM	 are	 called	 amyloidoses	 because	 of	 the	 over-
lapping	 mechanisms	 noted	 between	 them,	 as	 discussed	 above.	
Currently,	very	few	FDA	approved	drugs	are	available	for	the	treat-
ment	of	AD,	and	these	are	only	partially	effective	in	preventing	fur-
ther	deterioration	of	the	condition.	Therefore,	at	present,	the	main	
goals	of	AD	researchers	are	to	find	new	drugs	for	designing	better	
treatment strategies and to investigate newer therapeutic targets 
to	reverse	AD	pathology.	Brain	insulin	resistance	and	reduced	glu-
cose uptake by neuronal cells due to ineffective insulin signaling are 
some of the common pathophysiological mechanisms observed in all 
neurodegenerative	processes,	and	hence,	novel	research	advances	
in	 this	 direction	 will	 be	 widely	 appreciated	 (Griffith,	 Eid,	 Rose,	 &	
Patrylo,	2018;	Kim	&	Feldman,	2015).

4.1 | Insulin sensitizers for AD treatment

Soon after the association between neurodegeneration and 
T2DM	was	established,	the	idea	of	using	insulin	as	a	therapy	for	
neurodegenerative	 diseases	 emerged	 (Kim	 &	 Feldman,	 2015).	
Thus,	 insulin	 therapy	 was	 developed	 to	 improve	 cognition	 and	
delay the onset of memory loss and confusion in patients with 
AD	(Chapman,	Schiöth,	Grillo,	&	Benedict,	2018).	 In	most	cases	
of	 patients	with	 T2DM,	 insulin	 signaling	 is	 impaired	 or	 the	 cell	
is	 insensitive	 to	 insulin	 (insulin	 resistance).	To	 treat	 this,	 insulin	
sensitizers	are	used	(Ye,	Luo,	Xiao,	Yu,	&	Yi,	2016).	Some	of	the	
commercially	available,	famous	insulin	sensitizers	are	Metformin	
and	Thiazolidinediones	(TZDs).	Interestingly,	these	insulin	sensi-
tizers	have	shown	therapeutic	potential	against	AD,	which	soon	

came	 to	 be	 known	 as	 type	 3	 diabetes	 (De	 La	Monte	&	Wands,	
2008;	Moreira,	 Campos,	 &	 Soldera,	 2013).	 In	 order	 to	 analyze	
the	 effects	 of	 commercially	 available	 insulin	 sensitizers	 on	AD,	
researchers have used them to restore glucose metabolism in the 
brain	 of	AD	mouse	models	 and	 demonstrated	 that	 these	 drugs	
are	 effective	 in	 overcoming	 AD	 symptoms	 by	 attenuating	 neu-
roinflammation	and	 tau	hyperphosphorylation	 (Yu	et	 al.,	 2015).	
Metformin	 is	 one	 of	 the	well-known	drugs	 for	maintaining	 gly-
cemic control in patients with T2DM. It was recently reported 
as	 a	 potential	 therapeutic	 for	 AD	 as	 it	 improves	 cognitive	 per-
formance and decreases the chances of developing diabetic 
encephalopathy	 (Hsu,	 Wahlqvist,	 Lee,	 &	 Tsai,	 2011;	 Ng	 et	 al.,	
2014;	De	Oliveira	et	al.,	2016;	Pintana,	Apaijai,	Pratchayasakul,	
Chattipakorn,	&	Chattipakorn,	2012).	In	vitro	and	in	vivo	studies	
using diabetic mouse models have reported that metformin treat-
ment improves autophagic clearance of hyperphosphorylated tau 
protein	 in	patients	with	AD	(Chen	et	al.,	2019).	This	 is	 indeed	a	
promising step toward the generation of effective therapeutics 
targeting	 neurodegeneration	 in	 both	 AD	 and	 T2DM-associated	
early-AD	patients.

4.2 | Neuroprotective role of Amylin

Amylin	 as	 discussed	 before	 is	 a	 relative	 new	 candidate	 in	 AD	 re-
search.	 Currently,	 there	 are	 two	 controversial	 sides	 regarding	 the	
role	 of	 amylin	 in	 the	 brain.	Apart	 from	 its	 neurodegenerative	 and	
neurotoxic	 effects,	 amylin	 has	 surprisingly	 shown	 some	 neurore-
generative	and	neuroprotective	effects	as	well	 (Adler	et	al.,	2014;	
Bharadwaj	et	al.,	2017).	 Interestingly,	when	scientists	 investigated	
correlations between cognitive efficiency in patients with T2DM 
and	amylin	concentration,	 in	the	 initial	stages	amylin	deposition	 in	
the	brain	caused	a	detrimental	effect,	while	in	the	later	stages	when	
the β	 cells	 failed,	 amylin	 had	 a	 beneficial	 role.	 It	 helped	 in	Aβ au-
tophagic	clearance,	and	an	 improvement	 in	cognition	was	also	ob-
served	(Grizzanti,	Corrigan,	&	Casadesus,	2018;	Patrick	et	al.,	2019).	
In	addition,	various	 functions	of	amylin	 in	 the	CNS	have	been	dis-
covered;	 improvement	of	glucose	metabolism	(Roth,	2013),	 relaxa-
tion	of	cerebrovascular	structures	(Edvinsson,	Goadsby,	&	Uddman,	
2005),	 and	 enhancement	 of	 neural	 regeneration	 (Trevaskis	 et	 al.,	
2010).	Currently,	 amylin	and	amylin	analogs	are	considered	as	po-
tential therapeutic candidates for diabetes as well as for cognitive 
improvement	in	patients	with	AD	(Grizzanti,	Lee,	Camins,	Pallas,	&	
Casadesus,	2016;	Wang	et	al.,	2017).

4.3 | Antidiabetic drugs and AD management

Although	diabetes	research	is	at	its	peak	with	several	new	antidia-
betic	drugs,	advanced	patient-specific	stem	cell	transplant/therapy,	
and	insulin	therapy,	we	are	yet	far	from	identifying	a	permanent	cure	
for	 the	 “silent	 killer”	 (Abdelalim,	 Bonnefond,	 Bennaceur-Griscelli,	
&	Froguel,	2014).	Patients	with	diabetes	are	also	under	the	risk	of	
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early	onset	of	dementia	and	other	age-related	diseases	such	as	AD.	
Recently,	there	have	been	many	attempts	to	prevent	the	AD-like	al-
terations induced by inflammation and oxidative stress in patients 
with T2DM. While some of them target cognitive improvement of 
patients	with	 AD	 using	 commercially	 available	 antidiabetic	 drugs/
insulin	 sensitizers,	others	explore	 the	beneficial	effects	of	glucose	
metabolism-related	natural	peptides	or	synthetic	mimics/analogs	of	
these	natural	peptides	on	neurodegeneration	(Moreira	et	al.,	2013).	
Glucagon-like	peptide	1	(GLP-1),	also	known	as	incretin,	is	a	hormone	
produced	by	enteroendocrine	L	cells	that	impacts	food	ingestion.	It	
acts	as	a	neuropeptide	in	the	brain	and	also	helps	in	glucose-stim-
ulated	 insulin	secretion	from	pancreatic	 islets.	GLP-1	may	regulate	
glucose	metabolism	and	improve	cognition,	thus	serving	as	a	future	
treatment	 strategy	 for	 diabetes-associated	 AD.	 GLP-1	 is	 gener-
ally	 considered	 to	 be	 neuroprotective	 and	 anti-inflammatory,	 as	 it	
works	by	attenuating	neuroinflammation	(Qin,	Chong,	Rodriguez,	&	
Pugazhenthi,	2016).	Moreover,	it	is	known	to	improve	insulin	sensi-
tivity	and	promote	neurogenesis	(Bae	&	Song,	2017;	Tai,	Liu,	Li,	Li,	&	
Hölscher,	2018).	Fibroblast	growth	factor	21	 (FGF21)	also	demon-
strated similar effects on improvement of cognitive function after 
high	fat	and	sugar	diet	(HFD)-induced	cognitive	dysfunction	in	mice,	
probably	due	to	its	anti-inflammatory	properties	(Wang	et	al.,	2018).	

Interestingly,	 GLP-1	 receptor	 agonists	 commercially	 used	 for	 the	
treatment	of	 T2DM,	 such	 as	 lixisenatide and liraglutide, have been 
tested	 on	 AD	mouse	models	 and	 shown	 to	 have	 neuroprotective	
effects. These drugs appear to reverse all the classical pathophysi-
ologies	of	AD	including	strong	LTP	 in	the	hippocampus,	 improving	
synaptic	plasticity	(Gault	&	Hölscher,	2008a),	increasing	number	of	
synapses,	and	reduction	in	the	Aβ accumulation and neuroinflamma-
tory	responses	 (McClean	&	Hölscher,	2014a,	2014b).	Along	similar	
lines,	extensive	studies	have	been	performed	using	glucose-depend-
ent	insulinotropic	polypeptide	(GIP),	another	less	discussed	peptide	
hormone which targets pancreatic islets enhancing beta cell growth 
and	differentiation,	 and	promoting	 insulin	 release	 (Gault,	O’Harte,	
&	Flatt,	 2003).	 It	 also	 independently	 helps	 regulate	blood	glucose	
levels	 (Irwin	 et	 al.,	 2006)	 which	 makes	 it	 an	 attractive	 target	 for	
T2DM	drugs.	But	because	GIP	is	prone	to	degradation	by	proteases,	
it	 has	 a	 very	 short	 half-life	 in	 the	 bloodstream	 (Gault	&	Hölscher,	
2008b;	Irwin	et	al.,	2006).	Thus,	the	newer	approach	is	to	develop	
long-lasting	GIP	agonists	to	diminish	the	potential	risk	of	cognitive	
impairment	and	neurodegeneration	due	to	T2DM	(Gault	&	Hölscher,	
2008b).	These	recent	developments	toward	designing	an	effective	
treatment strategy for neurodegenerative diseases have been sum-
marized	in	Table	1.

TABLE  1 Antidiabetic	drugs	in	clinical	trials	for	neurodegenerative	diseases

Drug Type Status Data availability statement

Liraglutide GLP-1	analog FDA	approved	drug	for	T2DM	and	in	phase	
IIb	clinical	trial	(NCT01843075)	(Batista	
et	al.,	2018;	Femminella	et	al.,	2019)	for	AD

The data that support the findings 
of this study are openly available in 
PubMed at https://doi.org/10.1002/
path.5056	(Batista	et	al.,	2018)

Pioglitazone Peroxisome	proliferator-
activated receptor gamma 
(PPAR-gamma)	agonist,	
thiazolidinedione	insulin	
sensitizer

FDA	approved	drug	for	T2DM	and	in	phase	
II	clinical	trial	for	AD	(NCT00982202)	
(Galimberti	&	Scarpini,	2017;	Geldmacher,	
Fritsch,	McClendon,	&	Landreth,	2011)

The data that support the findings 
of this study are openly available in 
PubMed at https://doi:10.1001/archn 
eurol.2010.229	(Geldmacher	et	al.,	
2011)

Exendin-4	(or	
Exenatide)

GLP-1	agonist FDA	approved	for	T2DM	and	in	phase	II	
clinical	trial	for	AD	and	(NCT02847403)	
Parkinson's	disease	(NCT01174810)	(Aviles-
Olmos	et	al.,	2013)

The data that support the findings 
of this study are openly available in 
PubMed at https://doi.org/10.1172/
JCI68295	(Aviles-Olmos	et	al.,	2013)

Lixisenatide/Adlyxin GLP-1	receptor	agonist FDA	approved	drug	for	T2DM	and	in	phase	II	
clinical	trial	for	PD	(NCT03439943)

The data that support the findings 
of this study are openly available in 
Clinical Trials at https://clini caltr ials.
gov/ct2/show/NCT03	439943	(Study	
to	Evaluate	the	Effect	of	Lixisenatide	in	
Patient	With	Parkinson's	Disease	n.d.)

Metformin Biguanide-Insulin	sensitizer FDA	approved	drug	for	T2DM	and	in	phase	II	
clinical	trial	for	AD	(NCT00620191)

The data that support the findings 
of this study are openly available 
in PubMed at https://10.1212/01.
wnl.00001	40292.04932.87	
(Luchsinger,	Tang,	Shea,	&	Mayeux,	
2004)

Telmisartan Telmisartan is an 
Angiotensin	2	receptor	
blocker

FDA	approved	drug	for	hypertension	and	in	
phase	III	clinical	trial	(NCT00274118)	for	
T2DM	and	in	phase	III	clinical	trial	for	AD	
(NCT00274118)	(Cummings,	Lee,	Ritter,	&	
Zhong,	2018)

The data that support the findings 
of this study are openly available in 
PubMed	at	https://doi.org/10.1016/j.
trci.2018.03.009	(Cummings	et	al.,	
2018)

Sources: clinicaltrials.gov and druginfo.nlm.nih.gov

https://doi.org/10.1002/path.5056
https://doi.org/10.1002/path.5056
https://doi:10.1001/archneurol.2010.229
https://doi:10.1001/archneurol.2010.229
https://doi.org/10.1172/JCI68295
https://doi.org/10.1172/JCI68295
https://clinicaltrials.gov/ct2/show/NCT03439943
https://clinicaltrials.gov/ct2/show/NCT03439943
https://10.1212/01.wnl.0000140292.04932.87
https://10.1212/01.wnl.0000140292.04932.87
https://doi.org/10.1016/j.trci.2018.03.009
https://doi.org/10.1016/j.trci.2018.03.009
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5  | CONCLUSION

To	 date,	 only	 a	 total	 of	 five	 FDA	 (Food	 and	Drug	Administration)-
approved	 drugs	 for	 treating	 AD	 are	 available,	 which	 indicates	 the	
level of complexity in addressing research problems among neuro-
degenerative	diseases.	This	 is	partially	because	AD	research	 in	 the	
last	decade	has	mostly	focused	on	conventional	AD	pathophysiology,	
which	 is	 not	 easily	 reversible.	Moreover,	 it	 is	 evident	 that	 patients	
with	T2DM	are	at	a	higher	risk	of	developing	AD	symptoms,	which	
is	 why	 the	 concept	 of	 metabolism-dependent	 neurodegeneration	
mechanisms is gaining importance. This concept enables research-
ers	to	study	neurodegenerative	diseases	such	as	AD	with	an	entirely	
different	perspective,	through	the	lens	of	a	metabolic	disorder.	The	
overlapping	mechanisms	of	AD	and	T2DM	justify	why	AD	must	be	
considered as “type 3 diabetes.” This fresh perspective takes us to-
ward	an	entirely	different	approach,	which	involves	targeting	insulin	
signaling,	 and	 glucose	 metabolism	 as	 a	 novel	 therapeutic	 strategy	
for	 AD.	 A	 greater	 understanding	 of	 the	 underlying	mechanisms	 of	
T2DM-associated	 neurodegeneration	will	 guide	 researchers	 to	 de-
velop	advanced	AD	management	strategies.	Thus,	insulin	sensitizers/
insulin therapy and antidiabetic drugs are also among the latest focus 
of	AD	research.

In	short,	diabetes-related	neurodegeneration	 is	a	challenging	
problem,	which	needs	to	be	explored	further.	The	progress	in	AD	
research	 in	 this	 direction	 is	 considerable;	 however,	much	 needs	
to be done in the near future. This fresh perspective opens the 
window to promising new developments in the treatment of sev-
eral	 neurodegenerative	 diseases,	 especially	Alzheimer's	 disease.	
These	striking	parallels	are	a	matter	of	concern,	not	only	for	sci-
entists but also for the public, because of the alarming increase in 
the	number	of	patients	with	diabetes	all	over	the	world.	Thus,	by	
exploring	new	knowledge	about	the	pathogenesis	of	diabetes-as-
sociated	 neurodegeneration,	 we	 anticipate	 that	 scientists	 will	
develop more advanced and effective therapeutics in the near 
future.
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