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Introduction

Colorectal cancer (CRC) is leading a sustained increase 
in the burden of healthcare in China (1). In 2020, China 
recorded over 555,000 new CRC cases and more than 
286,000 deaths, constituting over 75% of the CRC cases in 
East Asia (2). The steadily rising incidence of CRC poses a 

serious threat to human health (3). Recently, the search for 
novel biomarkers and more effective targeted therapies has 
emerged as a key area of research. Tumor cells primarily 
derive their energy from aerobic glycolysis, a process that 
directly initiates nutrient uptake (4). Most tumors are 
characterized by significantly increased glucose uptake and 
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accompanying metabolic alterations (5). Numerous genes 
and pathways, including the upregulation of oncogenes RAS 
and Src, mutations in the tumor suppressor gene P53, and 
alterations in the PI3K/AKT/mTOR pathway, are implicated 
in the regulation of glucose metabolism in tumors. Such 
changes result in metabolic reprogramming of cancer  
cells (6), particularly in enhancing glucose uptake and 
glycolysis (7). Molecules that regulate the reprogramming 
of tumor glycometabolism are increasingly recognized as 
promising targets for cancer diagnosis and therapy.

Serving as a pivotal enzyme in the process of aerobic 
glycolysis, pyruvate kinase muscle isozyme (PKM) 
plays a key role as a rate-limiting factor in glycolysis, 
significantly influencing glucose metabolism. PKM exists 
in two isoforms: PKM1 and PKM2. A decrease in PKM1 
expression coupled with an increase in PKM2 can lead to 
the Warburg effect, driving tumor proliferation in cancer 
cells (8-10). Nonetheless, the specific impacts of PKM1 
and PKM2 on tumors remain widely debated (11). A recent 
study (12) suggests that shifts in the PKM1/PKM2 ratio 
may reprogram glucose metabolism, steering it towards 

either aerobic glycolysis or oxidative phosphorylation.
In our prior research (13), we established that the 

oncogene tripartite motif containing 29 (TRIM29) 
modulates glucose metabolism by the ubiquitin-mediated 
degradation of PKM1/2, predominantly targeting PKM1, 
thereby facilitating cancer progression. This study aims 
to investigate the expression patterns of PKM1 and PKM2 
in clinical specimens and to substantiate their impact on 
cellular biological functions and drug responsiveness via 
cellular assays. We present this article in accordance with 
the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-154/rc).

Methods

Bioinformatics analysis

We screened genes and found oncogenes related to glucose 
metabolism in CRC using our team’s previous gene chip 
data (14) (Gene Expression Omnibus access number: 
GSE104836) and the Gene Expression Profiling Interactive 
Analysis (GEPIA) database information (http://gepia.
cancer-pku.cn/).

Human CRC tissue samples

Paraf f in  spec imens  f rom 50  CRC pat ients  were 
collected from The Fourth Hospital of Hebei Medical 
University (Hebei, China) between 2018 and 2019 for 
immunohistochemical (IHC) tests. Clinicopathological 
features, such as tumor invasion and N stage, were 
simultaneously summarized. In addition, we purchased 
a  c o m p l e m e n t a r y  D N A  ( c D N A )  c h i p  ( c D N A -
HColA060CS02) from Shanghai Outdo Biotech Co. 
Ltd. (Shanghai, China) for quantitative polymerase chain 
reaction (q-PCR) to determine the expression levels of 
PKM, PKM1, and PKM2 genes in CRC tissue, as well 
as their correlation with TNM staging (tumor size, 
lymph node involvement, and metastasis). The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
Ethics Board of The Fourth Hospital of Hebei Medical 
University (No. 2020KY151) and individual consent for this 
retrospective analysis was waived.

IHC staining

We used IHC staining to analyze the protein expression of 
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PKM, PKM1, and PKM2 in the 50 collected CRC samples. 
An antibody against PKM (Proteintech, Wuhan, China) was 
applied at a dilution of 1:500, an antibody against PKM1 
(Proteintech, Wuhan, China) was applied at a dilution of 
1:500, and an antibody against PKM2 (Proteintech, Wuhan, 
China) was applied at a dilution of 1:500. IHC results were 
assessed independently by at least two pathologists. The 
positive expression of PKM protein was distinguished by 
(1+), (2+), and (3+), representing weak positive, medium 
positive, and strong positive expression, respectively, while 
unstained was defined as (−).

q-PCR

The cDNA chip was removed from −20 ℃ and placed at 
room temperature for 1 minute. The following solution 
was prepared in a centrifuge tube: Power SYBR Green 
PCR Master Mix 610 μL, forward primer (20 μM)  
30.5 μL, reverse primer (20 μM) 30.5 μL, ddH2O 549 μL. 
Then mix the above mixture well, and add 20 μL/well  
into the cDNA array. Seal the cDNA chip with a new 
sealing film, and then place the pore plate on ice for  
15 minutes to fully dissolve the freeze-dried cDNA. After 
gently shaking, centrifuge at 2,000–6,000 rpm for 1 minute. 
Place the orifice plate into the PCR instrument and set the 
program as follows: activation 50 ℃ for 2 minutes, pre-soak 
95 ℃ for 10 minutes, denaturation 95 ℃ for 15 seconds, 
annealing 60 ℃ for 1 minute (40 cycles), melt curve 65 ℃ 
→ 95 ℃, with a temperature rise of 0.5 ℃ every 5 seconds. 
qPCR assays were performed to quantify PKM1, PKM2, 
and GAPDH mRNA levels. We use the comparative 
Ct method (ΔΔCt) to analyze the relative expression of genes. 
The fold change was evaluated as 2−ΔΔCt. The primers of PKM1 
were: forward 5'-CCAGCTTCCCGATCAGTGG-3', reverse 
5'-AGGAAGTCGGCACCTTTCTG-3'. The primers of PKM2 
were: forward 5'-CGAGCCTCAAGTCACTCCACAG-3', 
reverse 5'-AACATTCATGGCAAAGTTCACCC-3'. 
T h e  p r i m e r s  o f  G A P D H  w e r e :  f o r w a r d 
5 ' -GCACCGTCAAGGCTGAGAAC-3 ' ,  r eve r se 
5'-TGGTGAAGACGCCAGTGGA-3'.

Cell culture

The Type Culture Collection of the Chinese Academy 
of Science (Shanghai, China) purchased the SW480 and 
HCT116 cell lines. Short tandem repeat (STR) profiling 
at the time of purchase can authenticate all cell lines. Both 
of the cell lines were mycoplasma-free cells. SW480 was 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
(Thermo, MA, Waltham, USA). HCT116 was cultured in 
RPMI-1640 medium (Thermo, MA, Waltham, USA). Both 
mediums contained 1% antibiotics and 10% fetal bovine 
serum (FBS).

Plasmid transfection

An expression construct was generated by subcloning PCR-
amplified full-length human PKM, PKM1, or PKM2 cDNA 
into an Ez-NEG-M98 (Gene Copoeia, Guangzhou, China) 
to overexpress PKM, PKM1, or PKM2 in cells. At the same 
time, we used an empty vector as a negative control.

Cell migration and Matrigel invasion assays

To assess the migration and invasion capabilities of cancer 
cells, we used Transwell culture plates (Corning Inc., NY, 
USA). For the migration assay, 1.5×105 cells were seeded 
into upper chambers without Matrigel, and a chemotactic 
agent was added below. Cells that migrated to the lower 
chambers were counted post-incubation using a microscope. 
For the invasion assay, membranes were precoated with 
60 µL of Matrigel. Conditions mirrored the migration 
assay, and cells that penetrated the Matrigel and reached 
the lower chambers were counted at experiment’s end. 
Additionally, for wound healing assay, cells in 6-well plates 
were scratched with a 10 μL pipette tip upon reaching 
confluency, and scratch closure was imaged at 0, 24, and  
48 hours using an Olympus IX71 inverted microscope at 
100× magnification. Migration was quantified by measuring 
the initial scratch width and the remaining gap at each time 
point, providing a comprehensive analysis of cell motility 
and invasive behavior. 2-Deoxy-D-glucose (2-DG), as a 
glycolysis inhibitor, was introduced in this experiment 
to explore whether PKM, PKM1, and PKM2 affect the 
migration and invasion of colon cancer cells through the 
glycolysis pathway.

Cell proliferation assay

Cell Counting Kit-8 (CCK8) assay can evaluate the cell 
viability. We cultured the cells in 96-well plates with a 
density of 3,000 cells/well and then performed using 
the CCK8 assay kit (Promega, Fitchburg, WI, USA) for  
72 hours. An enzyme marker can measure the absorbance 
(A) values at 450 nm of different groups to reflect the cell 
viability of each group. We repeated this assay three times.



Translational Cancer Research, Vol 13, No 7 July 2024 3525

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3522-3535 | https://dx.doi.org/10.21037/tcr-24-154

Extracellular acidification rate (ECAR) and oxygen 
consumption rate (OCR) assays

To detect the ECAR and OCR of CRC cancer cells, 
the Seahorse XF Glycolysis Stress Test Kit (Agilent 
Technologies, Beijing, China) and Seahorse XF Cell 
Mito Stress Test Kit (Agilent Technologies) were used. 
The experiment utilized the SW480 and HCT116 cell 
lines. Cells were inoculated with a density of 1.5×104 per 
well into the XF96 healthy plate and were allowed to 
adhere overnight. The proton static loss in the glycolysis 
process was taken as the real-time detection value and 
was incubated in the non-buffered culture medium for 
1 hour before detection. When measuring the ECAR 
value, 10 mM of glucose, 4 µM of oligomycin, and 80 mM  
of 2-DG were sequentially injected at each designated 
time point. When calculating the OCR value, inject 4 µM 
oligomycin, 0.5 µM reversible oxidative phosphorylation 
inhibitor FCCP (p-trifluoromethoxy carboxyl cyanide 
phenylhydrazone), and 0.5 µM mitochondrial complex I 
inhibitor rotenone and mitochondrial complex III inhibitor 
antimycin A (Rote/AA) in sequence at each designated time 
point. Digest cells after testing and count the number of 
cells. ECAR measurements are normalized based on cell 
count in units of mpH/minute/1,000 cells and OCR in units 
of pmol/minute. Each sample is tested four times.

The half inhibitory concentration (IC50) of 5-fluorouracil 
(5-FU) detected with CCK8 assay

The 96-well culture plates had four groups of cells (pc-
Control, pc-PKM1, pc-PKM2, pc-PKM), 5×103 cells for each 
well, six wells/group, and negative control was proceeding 
at the same time. Different concentrations of 5-FU were 
added to each group (final concentrations were 0, 5, 10, 20, 
40, 80, and 120 μg/mL) after cell adhesion. After 72 hours 
incubation in the incubator, 20 μL CCK8 solution was added 
into each well. After 2 hours, we measured the absorbance (A) 
value at 450 nm on the enzyme marker to reflect the viability 
of cells in each group. Subsequently, we added the 2-DG into 
the four groups and repeated this experiment. Using Prism 5.0 
software, we calculated the IC50 of 5-FU.

Statistical analyses

We used two-tailed Student’s t-tests to evaluate differences 
between groups and analyzed correlations with the Chi-
squared test. Statistical analyses were conducted using 

GraphPad Prism (version 5, La Jolla, CA, USA) and SPSS 
(version 21.0, USA). Differences were considered statistically 
significant at P<0.05. Each experiment was conducted at least 
three times (*P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001).

Availability of data and materials

The datasets used and analyzed during the current study are 
available from the corresponding author upon reasonable 
request.

Results

The screening and validation of PKM

According to our previous study (15), we identified 
numerous differentially expressed genes in CRC tissues 
compared to para-cancer tissues: 1,606 upregulated and 
1,615 downregulated mRNAs (Figure 1A). Pathway 
enrichment analysis revealed that glucose metabolism was 
crucial for the onset and progression of CRC (Figure 1B). 
We integrated three datasets: critical enzymes in glucose 
metabolism, genes overexpressed in our previous gene chip, 
and genes overexpressed in the GEPIA database. PKM was 
identified as a common mRNA (Figure 1C). PKM, a key 
enzyme in glycolysis, significantly regulates this metabolic 
pathway. GEPIA database indicated that PKM expression in 
CRC tissue was markedly higher than in para-cancer tissues 
(Figure 1D). Using IHC on 50 pairs of CRC and para-
cancer tissues, we observed PKM protein in the cytoplasm 
and nucleus of CRC cells. We categorized PKM protein 
expression into four grades based on IHC staining intensity: 
PKM (−), PKM (1+), PKM (2+), and PKM (3+) (Figure 1E). 
Among the 50 pairs of CRC tissues and para-cancer tissues, 
there were 40 cases of high expression of PKM protein, 
PKM (2+), and PKM (3+) in CRC tissues (40/50, 80%), 
while only 19 cases of high expression of PKM protein in 
para-cancer tissues (19/50, 38%) (Figure 1F). Then, we 
assessed the relationship between PKM protein expression 
and clinicopathologic parameters, such as T stage and 
lymph node metastasis. Of those with high PKM protein 
expression, 65% (26/40) were T3 + T4 and 55% (22/40) 
had lymph node metastasis, whereas those with low PKM 
protein expression had 30% (3/10) T3 + T4 and 40% 
(4/10) with lymph node metastasis. Elevated PKM protein 
expression in CRC tissue was associated with advanced T 
stage and increased lymph node metastasis (Figure 1G,1H), 
suggesting PKM’s potential role in CRC progression.
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Figure 1 The expression of PKM in CRC tissues and its relationship with clinicopathologic parameters. (A) There were 1,606 upregulated 
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Expression of PKM1 and PKM2 protein in CRC and their 
correlation with clinicopathological parameters

We further analyzed PKM1 and PKM2 expression, the 
two isoforms of PKM, in 50 paraffin-embedded specimens. 
Figure 2A,2B display the varied expression levels of PKM1 
and PKM2 in CRC tissues. Further analysis revealed 11 
cases (11/18, 61.1%) of T3 + T4 and 12 cases (12/18, 
66.7%) of lymph node-positive in CRC with high PKM1 
protein expression, while there were 18 cases (18/32, 
56.3%) of T3 + T4 and 16 cases (16/32, 50.0%) of lymph 
node-positive in CRC with low PKM1 protein expression 
(Figure 2C,2D). Likewise, there were 18 cases (18/27, 
66.7%) of T3 + T4 and 18 cases (18/27, 66.7%) of lymph 
node-positive in CRC with high PKM2 protein expression, 
while there were 11 cases (11/23, 47.8%) of T3 + T4 and  
10 cases (10/23, 43.5%) of lymph node-positive in CRC 
with low PKM2 protein expression (Figure 2E,2F). Overall, 
these findings suggest that the expression levels of PKM1 
and PKM2 proteins are not significantly correlated with 
the T and N stages of CRC, respectively. We postulated 
that the PKM1/PKM2 ratio, rather than their individual 
expression levels, correlates with clinicopathological 
parameters. We categorized the PKM1/PKM2 ratio into 
two groups: PKM1/PKM2 <0.5 and PKM1/PKM2 ≥0.5. In 
the PKM1/PKM2 ≥0.5 group, 14 cases (42.4%) were T3 
+ T4 and 15 cases (45.5%) had lymph node involvement. 
Conversely, in the PKM1/PKM2 <0.5 group, 15 cases 
(88.2%) were T3 + T4 and 13 cases (76.5%) had lymph 
node involvement. A significant statistical difference was 
observed between the two groups (Figure 2G,2H).

Expression of PKM1 and PKM2 in gene chips, and the 
correlation between PKM1/PKM2 ratio and TNM staging

The gene chip analyzed 30 CRC samples and their 
corresponding para-cancer tissues. The quantitative reverse 
transcription polymerase chain reaction (qRT-PCR) results 
indicated a significantly higher expression of PKM1 in CRC 
tissues compared to para-cancer tissues (Figure 3A), with 
PKM2 following a similar trend (Figure 3B). Interestingly, 
a more pronounced difference was observed in the PKM1/
PKM2 ratio between CRC and para-cancer tissues. The 
PKM1/PKM2 ratio in CRC tissues was notably higher 
than in para-cancer tissues, showing a more pronounced 
difference than either PKM1 or PKM2 independently 
(Figure 3C). Additionally, the area under the curve (AUC) 
analysis suggested that with a cutoff value of 1 for the 

PKM1/PKM2 ratio, it could reliably predict T and TNM 
stages in CRC patients. However, its predictive accuracy 
for N staging was marginally reduced (Figure 3D-3F). 
We categorized the PKM1/PKM2 ratio into two groups: 
PKM1/PKM2 <1 and PKM1/PKM2 ≥1. Findings indicated 
that a PKM1/PKM2 ratio of <1 correlated with more 
adverse T and TNM stages (Figure 3G,3H).

Effects of PKM, PKM1, and PKM2 on migration and 
invasion in vitro

For a functional study of PKM, PKM1, and PKM2, we 
introduced their respective plasmids into SW480 and 
HCT116 cells. Concurrently, a negative control group 
was established to eliminate any interference. qRT-PCR 
analysis revealed a notable overexpression of PKM post-
transfection with the PKM plasmid in HCT116 cells  
(Figure S1A). Likewise, PKM1 and PKM2 displayed 
significant overexpression after their respective plasmid 
transfections in HCT116 cells (Figure S1B,S1C). Similarly, 
in SW480 cells, we achieved successful overexpression 
of PKM, PKM1, and PKM2 (Figure S1D-S1F). We 
employed Transwell assays to assess cell migration and 
invasion capacities. Results indicated a significant decrease 
in migrating cell counts in both SW480 and HCT116 cells 
post-PKM1 plasmid transfection.

Conversely, the number of migrating cells significantly 
increased after transfection with the PKM2 plasmid. This 
trend was negated when cells were treated with 2-DG, 
a glycolytic inhibitor (Figure 4A,4B). For the invasion 
assays, the upper chamber membranes were precoated 
with 60 µL of Matrigel to simulate the extracellular 
matrix. Findings from the invasion tests mirrored those 
of the migration assays, demonstrating consistency in the 
effects of PKM2 overexpression and 2-DG treatment  
(Figure 4C,4D). In wound healing assay performed on the 
SW480 and HCT116 cell lines, we observed variations in 
tumor migration capacity: the cells transfected with pc-
PKM1 demonstrated a reduced ability to migrate, while 
those transfected with pc-PKM2 showed an increased 
migratory capacity (Figure S2). In summary, our findings 
indicate that PKM1 acts as a tumor suppressor gene, while 
PKM2 functions as an oncogene, modulating glycolysis.

The effect of PKM, PKM1 and PKM2 on glucose metabolism

To further examine PKM1 and PKM2’s influence on 
glucose metabolism in CRC cells, we assessed the ECAR 

https://cdn.amegroups.cn/static/public/TCR-24-154-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-154-Supplementary.pdf
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Figure 2 Expression of PKM1 and PKM2 protein in CRC and their correlations with clinicopathological parameters. (A,B) IHC staining 
was employed to analyze the protein expression levels of PKM, PKM1, and PKM2 in 50 collected CRC samples (200×). (C) There was no 
significant correlation between PKM1 protein expression and T staging. (D) There was no significant correlation between PKM1 protein 
expression and lymph node metastasis. (E) There was no significant correlation between PKM2 protein expression and T staging. (F) 
There was no significant correlation between PKM2 protein expression and lymph node metastasis. (G) There was a significant correlation 
between the ratio of PKM1/PKM2 and T staging. (H) There was a significant correlation between the ratio of PKM1/PKM2 and lymph 
node metastasis. *, P<0.05; **, P<0.01. PKM, pyruvate kinase muscle isozyme; CRC, colorectal cancer; IHC, immunohistochemical.
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Figure 3 PKM1/PKM2 <1 of mRNA expression was associated with worse T staging and TNM staging. (A) The PKM1 mRNA in CRC 
tissues was significantly higher than that in para-cancer tissues. (B) The PKM2 mRNA in CRC tissues was significantly higher than that in 
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and OCR in HCT116 cells across three groups: pc-
PKM1, pc-PKM2, and a control vector group, utilizing 
the hippocampal energy meter. PKM1 overexpression 
led to a significant decrease in ECAR and an increase in 
OCR relative to the control group. Conversely, PKM2 
overexpression resulted in a significant rise in ECAR and 
a reduction in OCR when compared to the control group 
(Figure 5A,5B). The same experiment was replicated in 

SW480 cells, yielding consistent results (Figure 5C,5D). 
Additionally, we categorized SW480 and HCT116 cells 
into four groups: pc-PKM, pc-PKM1, pc-PKM2, and a 
control vector group. Overexpression of PKM exhibited 
minimal impact on ECAR and OCR (Figure 5E,5F). The 
data suggest the PKM1/PKM2 ratio change, rather than 
total PKM alterations, primarily drives the shift between 
oxidative phosphorylation and glycolysis in cancer cell.
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Figure 5 The effect of PKM, PKM1 and PKM2 on glucose metabolism. (A,B) In HCT116 cells, the overexpression of PKM1 decreased 
ECAR and increased OCR, the overexpression of PKM2 increased ECAR and decreased OCR compared with the control group. (C,D) 
The above experiment was repeated in SW480 cells. (E,F) There was no significant difference in ECAR and OCR between the PKM 
overexpression group and the control group. ECAR, extracellular acidification rate; PKM, pyruvate kinase muscle isozyme; FCCP, 
p-trifluoromethoxy carboxyl cyanide phenylhydrazone; 2-DG, 2-deoxy-D-glucose; OCR, oxygen consumption rate.

The changes of PKM1 and PKM2 can affect 5-FU drug 
sensitivity 

SW480 cell lines transfected with pc-PKM, pc-PKM1, pc-
PKM2, and pc-Control were subjected to CCK8 assays 
to evaluate the influence of PKM, PKM1, and PKM2 
on proliferation. There was no significant difference in 
growth rate between the pc-Control and pc-PKM groups. 
Elevated PKM1 expression compared to the control group 
significantly reduced cell proliferation. Conversely, elevated 
PKM2 expression markedly enhanced cell proliferation. 
This trend was nullified upon adding 2-DG to the cells 
(Figure 6A). Cells overexpressing PKM showed no 

significant change in IC50 compared to the control. PKM1-
overexpressing cells were more sensitive to 5-FU with a 
significantly decreased IC50, whereas PKM2-overexpressing 
cells exhibited reduced sensitivity to 5-FU and a notably 
increased IC50 value. This trend was negated upon the 
addition of 2-DG (Figure 6B).

Discussion

As we all know, glucose is the primary energy source 
for most cells. Glucose is transported into cells via 
glucose transporters (GLUTs) on the cell membrane 
and is subsequently metabolized. Under adequate 
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Figure 6 The effect of PKM1 and PKM2 on 5-FU drug sensitivity. (A) CCK8 assay without or with glycolytic inhibitors. Each point 
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with glycolytic inhibitors in different groups. *, P<0.05. OD, optical density; PKM, pyruvate kinase muscle isozyme; 5-FU, 5-fluorouracil; 
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oxygen conditions, cells predominantly utilize oxidative 
phosphorylation for energy production. Pyruvate enters 
the mitochondria and is decarboxylated to produce acetyl 
CoA, which then participates in the tricarboxylic acid (TCA) 
cycle to release energy. Under hypoxic conditions, cells 
derive energy from glycolysis. In the cytoplasm, pyruvate 
is reduced to lactate by the enzyme lactate dehydrogenase 
(LDH), aiding cellular adaptation in hypoxic conditions. 
Tumor cells undergo metabolic reprogramming during 
cancer development to adapt to changes in nutrition, 
inadequate blood supply, and the hypoxic microenvironment 
of primary lesions. Even in oxygen-rich conditions, 
tumor cells primarily derive energy from glycolysis rather 
than oxidative phosphorylation. This metabolic shift is 
recognized as a hallmark of tumor cells and contributes to 
tumor growth (16). The specific glucose metabolism pattern 
in tumor cells is termed the Warburg effect or aerobic 
glycolysis (17,18).

Since the 1980s, the widespread application of fluoro-

2-deoxy-D-glucose (FDG) positron emission tomography 
(PET) in clinical practice has led researchers to discover 
an interesting phenomenon: most tumors exhibit abnormal 
glucose metabolism. A more pronounced glucose absorption 
is associated with stronger malignant biological behavior 
of the cancer. Numerous studies have demonstrated that 
metformin, a classic antidiabetic drug, possesses anticancer 
properties, playing a significant role in tumor prevention 
and treatment (19-23). The malignant transformation of 
adenomas is a crucial step in the onset and progression of 
colon cancer. It is reported that aerobic glycolysis emerges 
as a unique feature during the CRC phase of the adenoma-
carcinoma sequence (24). Researchers have investigated 
the metabolic alterations in CRC and identified significant 
differences in metabolite phenotypes between CRC tissue 
and normal tissue, encompassing glucose metabolism. Some 
critical molecules in the glucose metabolism pathway are 
closely associated with the prognosis of cancer patients (25). 
Concurrently, reprogramming of glycolytic metabolism 
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can promote the invasion and metastasis of CRC (26). 
Therefore, we are further convinced that reprogramming 
glucose metabolism is crucial to the onset and progression 
of tumors. In our previous study (13), we also preliminarily 
confirmed the critical role of metabolic abnormalities in 
CRC. Based on the aforementioned observations, this study 
aims to reprogram glucose metabolism to explore its role in 
the malignant behavior of CRC.

Tumor suppressor genes and oncogenes can regulate 
the reprogramming of glucose metabolism in cancer cells. 
It is well-known that KRAS and BRAF genes significantly 
impact the malignant behavior of CRC. Reports indicate 
that mutations KRAS G13D or BRAF V600E directly affect 
glycolysis (27). KRAS contributes to reprogramming glucose 
metabolism in cancer cells by enhancing glucose uptake 
and inducing the expression of key glycolytic enzymes (28).  
Researchers found that c-MYC can drive glycolysis by 
upregulating genes within the glycolytic pathway across 
various cancer types (29). Mutations in p53 also promote the 
reprogramming of glucose metabolism (30). PTEN prevents 
the reprogramming of glucose metabolism by reducing 
the rate of glycolysis (31). Additionally, research on crucial 
enzymes related to glucose metabolism reprogramming 
in tumor cells is garnering increased attention. Some 
studies indicate that the reduction of PKM1 expression, 
coupled with the re-expression of PKM2 leading to tumor 
proliferation, generally triggers the Warburg effect in 
cancer cells (8-10). In this study, we observed that PKM2 
overexpression significantly enhanced the migration and 
invasion ability of CRC cells, while PKM1 overexpression 
substantially inhibited these abilities in colon cancer cells. 
This discovery aligns with the previous research findings of 
Shuyu Yu’s team (32). We further confirmed the modulation 
of CRC cells’ biological functions through the glycolytic 
pathway by PKM1  and PKM2 .  Simultaneously, we 
discovered that the PKM1/PKM2 ratio, rather than the total 
PKM, is a crucial factor affecting glucose metabolism and 
the biological function of CRC cells.

Acquired  drug  res i s tance  present s  a  common 
challenge in cancer treatment. Compared to oxidative 
phosphorylation, aerobic glycolysis in tumor cells consumes 
more glucose by up-regulating glucose transporters, 
particularly in chemotherapy-resistant tumor cells (33). 
Lactic acid, a glycolysis metabolite, plays a crucial role 
in the biological process of drug resistance (34). Reports 
suggest that multi-kinase inhibitor anti-angiogenic drugs 
[tyrosine kinase inhibitors (TKIs)] can down-regulate 
glycolysis in breast and lung tumor models to overcome 

TKI resistance (35). Sun et al. discovered that Shenmai 
injection can augment the anti-tumor efficacy of cisplatin 
via glucose metabolism reprogramming (36). Additionally, 
reprogramming of glucose metabolism can influence the 
tumor’s immune microenvironment. During this process, 
cancer cells consume substantial glucose and produce 
lactate, leading to a low energy and oxygen state in the 
tumor microenvironment (TME) that facilitates immune 
evasion by cancer cells (37). Dong et al. also posited that 
targeting glucose metabolism reprogramming could be a 
strategy to combat drug resistance (38). There are limited 
studies on the sensitivity of metabolic reprogramming to 
chemotherapy drugs in CRC. In this study, we discovered 
that modulating the expression of PKM1 and PKM2 in 
tumor cells can regulate the sensitivity of CRC cells to 
5-FU drugs. This discovery aids in further enhancing the 
treatment sensitivity of patients with CRC.

Despite the absence of clinical interventions for abnormal 
tumor metabolism, investigating the regulatory network 
of PKM ratio in glucose metabolism of colon cancer may 
illuminate new treatment methodologies and targets. We 
anticipate that as research deepens, critical molecules in 
glucose metabolism will be paired with corresponding 
inhibitors or activators. Ultimately, for the betterment 
of patient outcomes, successful clinical transformation is 
imperative in the future.

Conclusions

Our study identifies the PKM1/PKM2 ratio as a crucial 
factor in CRC progression and response to 5-FU treatment. 
We demonstrate that PKM2 overexpression enhances CRC 
malignancy, while PKM1 acts oppositely. These findings 
align with the known Warburg effect in cancer metabolism, 
suggesting new therapeutic approaches targeting glucose 
metabolism in CRC. Our results also point to a potential 
strategy in overcoming drug resistance in CRC by 
modulating metabolic pathways. Further research into 
these mechanisms may offer novel targets for CRC therapy, 
aiming to improve patient outcomes.
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